Fear Anatomy – an Attempt to Assess the Impact of Selected Macroeconomic Variables on the Variability of the VIX S&P 500 Index

Łukasz Markowski, Jakub Keller

Abstract


This article deals with the subject of volatility of financial markets in relation to the US stock market and its volatility index, i.e. the VIX index. The authors analyzed previous studies on the VIX index and based on them, defined a research gap that relates to the problem of market response to emerging macroeconomic information about the US economy. The vast majority of research on the VIX index relates to its forecasting based on mathematical models not taking into account current market data. The authors attempted to assess the impact of emerging macro data on the variability of the VIX index, thus illustrating the magnitude of the impact of individual variables on the so-called US Stock Exchange fear index. The study analysed 80 macroeconomic variables in the period from January 2009 to June 2019 in order to check which of them cause the greatest market volatility. The study was based on correlation study and econometric modeling. The obtained results allowed to formulate conclusions indicating the most important macroeconomic parameters that affect the perception of the market by investors through the pricing of options valuation on the S&P 500 index. The authors managed to filter the most important variables for predicting the change of VIX level. In the eyes of the authors, the added value of the article is to indicate the relationship between macro variables and market volatility illustrated by the VIX index, which has not been explored in previous studies. The analyzes carried out are part of the research trend on market information efficiency and broaden knowledge in the area of capital investments.


Keywords


VIX index; volatility index; macroeconomic indicators; market efficiency; U.S. Stock Exchange

Full Text:

PDF

References


Aramian, F. (2014). Modeling VIX Futures and Pricing VIX Options in the Jump Diffusion Modeling. Stockholm: Stockholm University.

Arshanapalli, B., d’Ouville, E., Fabozzi, F., & Switzer, L. (2006). Macroeconomic news effects on conditional volatilities in the bond and stock markets. Applied Financial Economics, 16, 377–384. doi:10.1080/09603100500511068

Badshah, I.U., Frijns, B., & Tourani-Rad, A. (2013). Contemporaneous spill-over among equity, gold, and exchange rate implied volatility indices. Journal of Futures Markets, 33(6), 555–572. doi:10.1002/fut.21600

Bekaert, G., & Hoerova, M. (2014). The VIX, the variance premium and stock market volatility. Journal of Econometrics, 183(2), 181-192. doi:10.1016/j.jeconom.2014.05.008.

Bomfim, A.N. (2003). Pre-announcement effects, news effects, and volatility: Monetary policy and the stock market. Journal of Banking and Finance, 27, 133–151. doi:10.1016/S0378-4266(01)00211-4

Chung, S., & Tsai, W., & Wang, Y., & Weng, P. (2011). The Information Content of the S&P 500 Index and VIX Options on the Dynamics of the S&P 500 Index, The Journal of Futures Markets, 31(12), 1170-1201. doi:10.1002/fut.20532.

Clements, A., & Chen, E.T. (2007). S&P 500 implied volatility and monetary policy announcements. Finance Research Letters, 4(4), 227–232. doi:10.1016/j.frl.2007.07.002

Daigler, R. T., & Dupoyet, B., & Petterson, F. M. (2016). The implied convexity of VIX futures. The Journal of Derivatives, 23(3), 73-90. doi:10.3905/jod.2016.23.3.073.

Goard, J., & Mazur, M. (2013). Stochastic volatility models and the pricing of VIX options, Mathematical Finance, 23(3), 439-458. doi:10.1111/j.1467-9965.2011.00506.x.

Han, H., Kutan, A.M., & Ryu, D. (2015). Modeling and predicting the market volatility index: The case of VKOSPI. Economics Discussion Papers, 2015-7.

Huang, D., & Shalistovich, I., & Schlag, C., & Thimme, J. (2018). Volatility-of-Volatility Risk, Journal of Financial and Quantitive Analysis, 54(6), 2423-2452.doi:10.1017/S0022109018001436.

Huskaj, B., & Nossman, M. (2013). A term structure model for VIX futures. The Journal of Futures Markets, 33(5), 421-442. doi:10.1002/fut.21550.

Jones, B., Lin, C., & Masih, M.M. (2005). Macroeconomic announcements, volatility, and interrelationships: An examination of the UK interest rate and equity markets. International Review of Financial Analysis, 14, 356–375. doi:10.1016/j.irfa.2004.10.001

Lalancette, S., & Simonato, J. (2017). The Role of the Conditional Skewness and Kurtosis in VIX Index Valuation. European Financial Management, 23(2), 325-354. doi:10.1111/eufm.12096.

Luo, X., & Zhang, J. (2012). The Term Structure of VIX. The Journal of Futures Markets, 32(12), 1092-1123. doi:10.1002/fut.21572.

Marshall, A., Musayev, T., Pinto, H., & Tang, L. (2012). Impact of news announcements on the foreign exchange implied volatility. Journal of International Financial Markets Institutions and Money, 22(4), 719–737. doi:10.1016/j.intfi.2012.04.006

Mencia, J., & Sentana, E. (2013). Valuation of VIX derivatives. Journal of Financial Economics, 108(2), 367-391. doi:10.1016/j.jfineco.2012.12.003.

Nikkinen, J., & Vähämaa, S. (2009). Central bank interventions and implied exchange rate correlations. Journal of Empirical Finance, 16(5), 862–873. doi:10.1016/j.jempfi.2009.05.002

Nofsinger, J., & Prucyk, B. (2003). Option volume and volatility response to scheduled economic new releases. The Journal of Futures Markets, 23(4), 315–345. doi:10.1002/fut.10064

Onan, M., & Salih, A., & Yasar, B. (2014). Impact of macroeconomic announcements on implied volatility slope of SPX options and VIX. Finance Research Letters, 11, 454-462. doi:10.1016/j.frl.2014.07.006.

Shu, J., & Zhang, J. (2012). Casuality in the VIX futures markets. The Journal of Futures Markets, 32(1), 24-46. doi:10.1002/fut.20506.

Srinivasan, P. (2017). Macroeconomic information and the implied volatility: Evidence from India VIX. Theoretical Economics Letters, 7, 490–501. doi:10.4236/tel.2017.73037

Whaley, R. (1993). Derivatives on Market Volatility: hedging Tools Long Overdue. The Journal of Derivatives, 1(1), 74–84. doi:10.3905/jod.1993.407868

Zhu, S., & Lian, G. (2012). An analytical formula for VIX futures and its applications. The Journal of Futures Markets, 32(2), 166-190. doi:10.1002/fut.20512.




DOI: http://dx.doi.org/10.17951/h.2020.54.2.41-51
Date of publication: 2020-06-29 12:10:43
Date of submission: 2019-12-31 16:36:08


Statistics


Total abstract view - 836
Downloads (from 2020-06-17) - PDF - 0

Indicators



Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Łukasz Markowski, Jakub Keller

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.