Artificial Intelligence in the Perception and Experience of Students from a Pedagogical University
Abstract
Introduction: The explosive growth of ChatGPT in 2022 has resulted in the terms “ChatGPT” and “AI” (artificial intelligence) becoming almost synonymous in popular perception and everyday speech.
Research Aim: Identification of knowledge and experiences of students from a pedagogical university related to Artificial Intelligence.
Research Method: Diagnostic survey using an electronic survey questionnaire.
Results: The survey participants had a broad understanding of the concept of AI. They most often identified it with technology (50.00%). The most common use of AI was generating and working with text (51.35%). All of participants had contact with AI, but 15% had not used it. Most of them encountered it for the first time in the media (52.50%), and they most often gained knowledge about AI from the Internet (76.25%). The largest number of students using AI tools (66.18%) indicated text generators, of which 84.44% were ChatGPT. The participants are supporters of using AI in educational institutions, but most of them did not even know the university guidelines regarding the use of AI in education and declared that they were not interested in them. More than half of the participants believed that using AI tools to complete tasks and exams constitutes cheating or plagiarism and is morally wrong.
Conclusions: Attention should be paid to the appropriate preparation of future teachers for the use of AI in their professional work, including this technology in educational programs, while emphasizing ethical and moral issues.
Keywords
Full Text:
PDFReferences
Bii, P., Too, J., & Mukwa, C. (2018). Teacher attitude towards use of chatbots in routine teaching. Universal Journal of Educational Research, 6(7), 1586–1597. https://doi.org/10.13189/ujer.2018.060719
Bozkurt, V., & Gursoy, D. (2023). The artificial intelligence paradox: Opportunity or threat for humanity? International Journal of Human-Computer Interaction, 1–14. https://doi.org/10.1080/10447318.2023.2297114
Cabała, P., Kwiatkowska, K., Woźniak, K., & Zakrzewska, M. (2023). Opinie studentów wobec możliwości i ograniczeń wykorzystania systemu ChatGPT. E-mentor, 5(102), 48–56. https://www.doi.org/10.15219/em102.1638
Chan, C.K.Y. (2023). Is AI Changing the Rules of Academic Misconduct? An In-depth Look at Students’ Perceptions of ‘AI-giarism’. https://doi.org/10.48550/arXiv.2306.03358
Chan, C.K.Y, & Hu, W. (2023). Students’ voices on generative AI: perceptions, benefits, and challenges in higher education. International Journal of Educational Technology in Higher Education, Article 20:43. https://doi.org/10.1186/s41239-023-00411-8
Chan, C.K.Y., & Lee, K.K.W. (2023). The AI generation gap: Are Gen Z students more interested in adopting generative AI such as ChatGPT in teaching and learning than their Gen X and Millennial Generation teachers? https://arxiv.org/abs/2305.02878
Chen, Y., Jensen, S., Albert, L.J., Gupta, S., & Lee, T. (2023). Artificial intelligence (AI) student assistants in the classroom: Designing chatbots to support student success. Information Systems Frontiers, 25, 161–182. https://doi.org/10.1007/s10796-022-10291-4
Cotton, D.R.E., Cotton, P.A., & Shipway, J.R. (2023). Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. Innovations in Education and Teaching International, 61(2), 228–239. https://doi.org/10.1080/14703297.2023.2190148
Cordeschi, R. (2007). AI turns fifty: Revisiting its origins. Applied Artificial Intelligence, 21(4–5), 259–279. https://doi.org/10.1080/08839510701252304
Davis, F.D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
Elkins, K., & Chun, J. (2020). Can GPT-3 pass a writer’s Turing test? Journal of Cultural Analytics, 5(2), 17212. https://doi.org/10.22148/001c.17212
Fazlagić, J. (2022). Rozwój sztucznej inteligencji jako wyzwanie dla systemu edukacji. In J. Fazlagić (Ed.), Sztuczna inteligencja (AI) jako megatrend kształtujący edukację. Jak przygotowywać się na szanse i wyzwania społeczno-gospodarcze związane ze sztuczną inteligencją? (pp. 25–37). IBE.
Fu, S., Gu, H., & Yang, B. (2020). The affordances of AI-enabled automatic scoring applications on learners’ continuous learning intention: An empirical study in China. British Journal of Educational Technology, 51(5), 1674–1692. https://doi.org/10.1111/bjet.12995
Gayed, J.M., Carlon, M.K.J., Oriola, A.M., & Cross, J.S. (2022). Exploring an AI-based writing assistant’s impact on English language learners. Computers and Education: Artificial Intelligence, 3, 100055. https://doi.org/10.1016/j.caeai.2022.100055
Gibbs, G. (2011). Analizowanie danych jakościowych. PWN.
Grimaldi, G., & Ehrler, B. (2023). AI et al.: Machines are about to change scientific publishing forever. ACS Energy Letters Journal, 8(1), 878–880. https://doi.org/10.1021/acsenergylett.2c02828
Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California Management Review, 61(4), 5–14. https://doi.org/10.1177/0008125619864925
Hennessey, M. (2023). Exclusive: Almost half of Cambridge students have used ChatGPT to complete university work. VARSITY. https://www.varsity.co.uk/news/25463
Thorp, H. (2023). ChatGPT is fun, but not an author. Science, 379, 313–313. https://doi.org/10.1126/science.adg7879
Kaplan, J. (2016). Artificial Intelligence: What Everyone Needs to Know. Oxford University Press.
Kargulowa, A. (2003). Szkoła wobec dylematów współczesności. In D. Jankowski (Ed.), Szkoła w społeczności lokalnej (pp. 25–36). Wydział Pedagogiczno-Artystyczny UAM.
Kharroubi, S.A., Tannir, I., Abu El Hassan, R., & Ballout, R. (2024). Knowledge, attitude, and practices toward artificial intelligence among university students in Lebanon. Education Sciences, 14(8), 863. https://doi.org/10.3390/educsci14080863
Kubera, G. (2023). Skąd wzięła się sztuczna inteligencja? Historia najważniejszych postaci i ich wkład w rozwój AI. Business Insider. https://businessinsider.com.pl/technologie/poczatki-sztucznej-inteligencji-postacie-ktore-zmienily-bieg-historii/mgjr6y8
Lewis, A. (2022). Multimodal large language models for inclusive collaboration learning tasks. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Student Research Workshop (pp. 202–210). Washington.
Li, C., & Xing, W. (2021). Natural language generation using deep learning to support MOOC learners. International Journal of Artificial Intelligence in Education, 31(2), 186–214. https://doi.org/10.1007/s40593-020-00235-x
Malmström, H., Stöhr, C., & Ou, A.W. (2023). Chatbots and other AI for learning: A survey of use and views among university students in Sweden. Chalmers Studies in Communication and Learning in Higher Education, Article 2023:1. https://doi.org/10.17196/cls.csclhe/2023/01
McCarthy, J., Minsky, M.L., Rochester, N., & Shannon C.E. (1955). A proposal for the Dartmouth summer research project on artificial intelligence. http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
McCarthy, J. (n.d.). What is AI? / Basic Questions. Stanford. http://jmc.stanford.edu/artificial-intelligence/what-is-ai/index.html
Minsky, M. (1954). Theory of Neural-Analog Reinforcement Systems and Its Application to the Brain Model Problem. PhD dissertation. Princeton University.
Nam, J. (2023). 56% of College Students Have Used AI on Assignments or Exams. Best Colleges. https://www.bestcolleges.com/research/most-college-students-have-used-ai-survey/
Ng, D.T.K., Leung, J.K.L., Chu, S.K.W., Qiao, M.S. (2021). Conceptualizing AI literacy: An exploratory review. Computers & Education: Artificial Intelligence, 2, Article 100041. https://doi.org/10.1016/j.caeai.2021.100041
Nilsson, N.J. (1998). Artificial Intelligence: A New Synthesis. Morgan Kaufmann Publishers.
Lucy, L., & Bamman, D. (2021, June 11). Gender and representation bias in GPT-3 generated stories. In Proceedings of the Third Workshop on Narrative Understanding (pp. 48–55). Mexico City.
Łupkowski, P. (2010). Test Turinga. Perspektywa sędziego. Wyd. Nauk. UAM.
Ritchie, I. (2024). AI history. https://www.ritchie.studio/wp-content/uploads/2024/04/AI-history-2024.pdf
Russell, S., & Norvig, P. (2010). Artificial Intelligence: A Modern Approach. Prentice-Hall.
Southworth, J., Migliaccio, K., Glover, J.[J.], Glover, J [Ja’Net], Reed, D., McCarty, C., Brendemuhl, J., & Thomas, A. (2023). Developing a model for AI across the curriculum: Transforming the higher education landscape via innovation in AI literacy. Computers & Education: Artificial Intelligence, 4, Article 100127. https://doi.org/10.1016/j.caeai.2023.100127
Sysło, M. (2022). Sztuczna inteligencja wkracza do szkół: jak uczyć się o AI i z pomocą AI. In J. Fazlagić (Ed.), Sztuczna inteligencja (AI) jako megatrend kształtujący edukację. Jak przygotowywać się na szanse i wyzwania społeczno-gospodarcze związane ze sztuczną inteligencją? (pp. 74–98). IBE.
Transformer, G.G.P, Osmanovic Thunström, A., & Steingrimsson, S. (2022). Can GPT-3 write an academic paper on itself, with minimal human input? https://hal.archives-ouvertes.fr/hal-03701250/document
Turing, A. (1950). Computing machinery and intelligence. Mind, 49, 433–460.
Wieretilo, N. (2023). Shifting Horizons – Transformative Trends Reshaping the Landscape of Higher Education. Coopernicus. https://coopernicus.pl/wp-content/uploads/2024/01/Raport-Edukacyjny-PL.pdf
DOI: http://dx.doi.org/10.17951/lrp.2025.44.2.37-58
Date of publication: 2025-06-26 23:46:45
Date of submission: 2024-09-29 21:30:39
Statistics
Indicators
Copyright (c) 2025

This work is licensed under a Creative Commons Attribution 4.0 International License.