Between the Ear and the Algorithm: Artificial Intelligence in Music Education
Abstract
The aim of the article is to analyse the role of artificial intelligence in music education from the perspective of contemporary technological and cultural transformations. The paper discusses the evolution of AI – from algorithmic composition to generative tools – and their impact on creative practices and music learning. It presents the results of recent studies on the use of AI in music teaching, which provide insights into the educational benefits of artificial intelligence, such as the democratisation of creativity, individualisation of learning, enhancement of students’ motivation and creativity, as well as the integration of formal and informal learning contexts. The article also highlights the risks associated with automation, commercialization, and the lack of emotional depth in music created by algorithms, including ethical, legal, and social issues that require critical pedagogical reflection. The paper examines selected AI-based applications applicable to various educational practices in general, music, and higher education settings – from both teachers’ and students’ perspectives. The conclusion emphasises the need for further research on the impact of artificial intelligence on music education, particularly regarding teacher preparation for working with new technologies and the integration of digital competencies with artistic sensitivity. It also stresses the importance of maintaining a balance between human creativity and the automation of creative processes so that technology remains a means of education rather than its ultimate goal.
Keywords
Full Text:
PDF (Język Polski)References
Abu-Naser, S. S., & Dwimah, A. (2025). Symbolic Hybrid Knowledge-Based Systems: Integrating Knowledge-Based Reasoning and Machine Learning in Explainable AI. International Journal of Academic Engineering Research (IJAER), 9(8), 80-84. DOI: 10.13140/RG.2.2.22704.21765.
Behr A. (2023). Now and Then: enabled by AI – created by profound connections between the four Beatles. The Conversation, 3 November. Pobrane z: https://theconversation.com/now-and-then-enabled-by-ai-created-by-profound-connections-between-the-four-beatles-216920 (data dostępu: 11.10.2025).
Bienstock R. (2021). An artificial intelligence algorithm has created „new” Jimi Hendrix, Nirvana songs. Guitar World, 5 April. Pobrane z: https://www.guitarworld.com/news/an-artificial-intelligence-algorithm-has-created-new-jimi-hendrix-nirvana-songs (data dostępu: 9.10.2025).
Bolwell R. (2024). AI Revives Elvis: Presley Resurrected in Innovative Immersive Production. MNPR Magazine. 4 January. Pobrane z: https://www.mnprmagazine.com/news/ai-revives-elvis-presley-resurrected-in-innovative-immersive-production (data dostępu: 12.10.2025).
Carbonell, J. R. (1970). AI in CAI: An Artificial-Intelligence Approach to Computer-Assisted Instruction. IEEE Transactions on Man-Machine Systems, 11(4), 190-202.
Cao Y., Sun Y. (2024). The Research on the Application of Deep Learning in Education. IETI Transactions on Data Analysis and Forecasting (iTDAF), 2(3), 4-11. DOI: https://doi.org/10.3991/itdaf.v2i3.514.
Casey, M. A., Veltkamp, R., Goto, M., Leman, M., Rhodes, C., & Slaney, M. (2008). Content-based music information retrieval: Current directions and future challenges. Proceedings of the IEEE, 96(4), 668-696. DOI: https://doi.org/10.1109/JPROC.2008.916370.
Cheng L. (2025). The impact of generative AI on school music education: Challenges and recommendations. Arts Education Policy Review, 126(4). DOI: https://doi.org/10.1080/10632913.2025.2451373.
Elgammal A., Gotham M., Song K. & Böhlefeld N. (2022). Beethoven X: Es könnte sein! (It could be!). 3rd Conference on AI Music Creativity (AIMC). DOI: https://doi.org/10.5281/ZENODO.7088335.
Fernández, J. D., & Vico, F. (2013). AI Methods in Algorithmic Composition: A Comprehensive Survey. Journal of Artificial Intelligence Research, 48, 513-582. DOI: https://doi.org/10.1613/jair.3994.
Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep Learning. Warszawa: PWN.
Holmes T. (2020). Electronic and Experimental Music: Technology, Music, and Culture. New York: Routledge.
Holster J. (2024). Augmenting Music Education through AI: Practical Applications of ChatGPT. Music Educators Journal, 110(4). DOI: 10.1177/00274321241255938.
Jimenez, I. A. C., Marcolin, F., & Vezzetti, E. (2025). Exploring the emotional landscape: cutting-edge technologies for emotion assessment and elicitation. Frontiers in Psychology, 15. DOI: 10.3389/fpsyg.2024.1542158.
Johnson, C., & King, A. (2024). Music, Technology, Innovation: Industry and Educational Perspectives. New York: Routledge.
Lattie, E. G., Adkins, E. C., Winquist, N., Stiles-Shields, C., Wafford, Q. E., & Graham, A. K. (2019). Digital mental health interventions for depression, anxiety, and enhancement of psychological well-being among college students: systematic review. Journal of Medical Internet Research, 21(7), e12869. DOI: 10.2196/12869
Martínez-Ramírez M. A., Liao W-H., Fabbro G., Uhlich S., Nagashima C. & Mitsufuji Y. (2022). Automatic music mixing with deep learning and out-of-domain data. 23rd International Society for Music Information Retrieval Conference (ISMIR), December. DOI: https://doi.org/10.48550/arXiv.2208.11428.
Merchán Sánchez-Jara J., González Gutiérrez, S., Cruz Rodríguez, J. & Syroyid Syroyid B. (2024). Artificial Intelligence-Assisted Music Education: A Critical Synthesis of Challenges and Opportunities. Education. Science, 1171(14). DOI: https://doi.org/10.3390/educsci14111171.
Mitchell T. (1997). Machine learning, Portland: McGraw-Hill Companies, Inc.
Ng P. & Bax N. (2023). Spooker Trouper: ABBA Voyage, Virtual Humans and the Rise of the Digital Apparition. White Rose Research Online, 46(2). DOI: https://doi.org/10.3366/para.2023.0427.
Nierhaus, G. (2009). Algorithmic composition: paradigms of automated music generation. Wien-New York: Springer Science & Business Media.
O’Leary E. (2025). Considering the Possibilities and Problems of AI in Music Education: The Need for Critical Literacies. Action, Criticism, and Theory for Music Education, 24(3), 138-64. DOI:10.22176/act24.3.13.
Orio, N., Lemouton, S., & Schwarz, D. (2003). Score Following: State of the Art and New Developments. Proceedings of the 2003 Conference on New Interfaces for Musical Expression (NIME-03), Montreal, Canada, 36-41. DOI: 10.5281/zenodo.1176547.
Pedersen I. (2025). AI agents, wearable computing and the future of postsecondary learning. Frontiers in Education. 10. DOI: 10.3389/feduc.2025.1651453.
Roddy, S., & Bridges, B. (2025). Cybernetic Resurgences: Machine Music Beyond AI Slop. W: N. Zagalo, D. Keller (eds.), Emerging Trends in Narratives, Education and Creative Practice (p. 95-113). Cham: Springer.
Russell, S., & Norvig, P. (2021). Artificial Intelligence: A Modern Approach. Harlow: Pearson.
Shu L. (2024). Research on Creative Practice in Music Education Empowered by AI. Lecture Notes in Education Psychology and Public Media, 67.
DOI: 10.54254/2753-7048/67/20251010.
Stolyarov, G. (2019). Empowering musical creation through machines, algorithms, and artificial intelligence. Journal of Contemporary Music, Art and Technology, 1(2), 81-99. DOI: https://doi.org/10.51191/issn.2637-1898.2019.2.2.81.
Szajner, A. (2024). Wpływ sztucznej inteligencji na edukację muzyczną: ewolucja czy regresja? Dydaktyka Informatyki, 19, 159–165. DOI: 10.15584/di.2024.19.12.
Śluzek, N., Suppan, K. (2024). Sztuczna inteligencja w edukacji wyższej – szansa czy zagrożenie? Szkoła – Zawód – Praca, 27, 13–24. DOI 10.34767/SZP.2024.01.01.
Yang, S. (2025). The Illusion of ‘Authenticity’: Ethical Dilemmas and Aesthetic Imagination in Pop Music Creation in the Age of AI. Journal of Contemporary Art Criticism, 24(2), 77–94. DOI: 10.71113/JCAC.v1i1.302
Yang, S. (2025). The Illusion of ‘Authenticity’: Ethical Dilemmas and Aesthetic Imagination in Pop Music Creation in the Age of AI. Journal of Contemporary Art Criticism, 24(2), 77-94. DOI: 10.71113/JCAC.v1i1.302.
Yu X., Ma N., Zheng L., Wang L. & Wang K. (2023). Developments and Applications of Artificial Intelligence in Music Education. Technologies, 11(42). DOI: https://doi.org/10.3390/technologies11020042.
Zhang Y., Wen Fen B., Zhang C. & Pi S. (2024). Transforming Music Education Through Artificial Intelligence: A Systematic Literature Review on Enhancing Music Teaching and Learning. International Journal of Interactive Mobile Technologies, 18(18). DOI: https://doi.org/10.3991/ijim.v18i18.50545.
Zhao, S. (2024). The Role of Artificial Intelligence in Personalized Music Teaching Quality Evaluation. Journal of Computational Methods in Sciences and Education, 12(4), 155-172. DOI: 10.1177/14727978241297010.
Żochowska W. (2019). Dzieciństwo maszyny. Dwutygodnik.com. Strona Kultury, 265. Pobrane z: https://www.dwutygodnik.com/artykul/8473-dziecinstwo-maszyny.html (data dostępu: 11.10.2025).
Żochowska W. (2022). Sztuczna muzyka, prawdziwe lęki. Ruch Muzyczny, 10. Pobrane z: https://ruchmuzyczny.pl/article/2298-sztuczna-muzyka-prawdziwe-leki (data dostępu: 11.10.2025).
DOI: http://dx.doi.org/10.17951/j.2025.38.3.127-140
Date of publication: 2026-01-30 08:09:59
Date of submission: 2025-10-21 20:45:30
Statistics
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2026 Marcin Michalak

This work is licensed under a Creative Commons Attribution 4.0 International License.