Effect of Variety and Climatic Seasonality on Soil Intracellular Enzymatic Activities in Coffee Agroforestry Systems

Yuri J. Pardo-Plaza, Jorge E. Paolini Gómez, Miriam Elena Cantero-Guevara

Abstract


Most soil physicochemical parameters do not respond immediately to changes in management when compared to microbiological and biochemical ones; the study of biological and biochemical quality of soils can serve as indicators of their general condition. Enzymatic activities are important in the biochemical functioning of soils. In this work, the activity of three intracellular enzymes of the soil was evaluated: dehydrogenase activity, florescein diacetate hydrolysis and arginine deaminase, its seasonal fluctuation and the effect of two coffee varieties Caturra and Catuaí on an agroforestry system. The soil samples were taken during the dry and rainy seasons in two contiguous plots sown with the two coffee varieties and in each one a non-systematic zigzag sampling was carried out. The physical, chemical properties and intracellular enzymatic activities of the soil were determined by the classical methods of analysis and following standard protocols. It was observed that the dehydrogenase activity and hydrolysis of fluorescein diacetate had greater activity in the rainy season regardless of the variety, whereas arginine deaminase showed more activity in the dry season and for the Caturra variety. The intracellular enzymatic activities showed sensitivity to the changes during the sampling period, in soils planted with coffee varieties Caturra and Catuaí.


Keywords


agroforestry system; coffee; dehydrogenase activity; florescein diacetate hydrolysis; arginine deaminase

Full Text:

PDF

References


Acosta-Martínez, V., Cruz, L., Sotomayor-Ramírez, D., Pérez-Alegría, L., 2007. Enzyme activities as affected by soil properties and land use in a tropical watershed. Applied Soil Ecology, 35(1): 35–45. https://doi.org/10.1016/j.apsoil.2006.05.012.

Alef, K., Kleiner, D., 1986. Arginine ammonification, a simple method to estimate microbial activity potentials in soils. Soil Biology and Biochemistry, 18(2): 233–235. https://doi.org/10.1016/0038-0717(86)90033-7.

Alef, K., Kleiner, D., 1987. Applicability of arginine ammonification as indicator of microbial activity in different soils. Biology and Fertility of Soils, 5(2): 148–151. https://doi.org/10.1007/bf00257650

Anderson, M., 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics, 62: 245–253.

Araújo, A., Cesarz, S., Leite, L., Borges, C., Tsai, S., Eisenhauer, N., 2013. Soil microbial properties and temporal stability in degraded and restored lands of Northeast Brazil. Soil Biology and Biochemistry, 66: 175–181. https://doi.org/10.1016/j.soilbio.2013.07.013.

Arellano, R., Paolini, J., Vásquez, L., Mora, E., 2004. Produccion y desccomposicion de la hojarasca en tres agroecosistemas de cafe en el Estado Trujillo, Venezuela. Revista Forestal Venezolana, 48(1): 7−14.

Brzezińska, M., Stępniewska, Z., Stępniewski, W., 1998. Soil oxygen status and dehydrogenase activity, Soil Biology and Biochemistry, 30(13): 1783–1790. https://doi.org/10.1016/S0038-0717(98)00043-1.

Camiña, F., Trasar-Cepeda, C., Gil-Sotres, F., Leirós, C., 1998. Measurement of dehydrogenase activity in acid soils rich in organic matter. Soil Biology and Biochemistry, 30: 1005-1011. https://doi.org/10.1016/s0038-0717(98)00010-8

Cardona, D., Sadeghian, S., 2006. Evaluación de propiedades físicas y químicas de suelos establecidos con café bajo sombra ya plena exposición solar. Cenicafé, 56(4): 348–364.

Cortés, A., Malagón, D., 1983. Los levantamientos de suelos y sus aplicaciones multidisciplinarias. Centro Interamericano de Desarrollo Integral de Aguas y Tierras. Serie Suelos y Climas SC58, Mérida: 409.

Dick, R., 1997. Soil enzyme activities as integrative indicators of soil health. In: C.E. Pankhurst, B.M. Doube, V.V.S.R. Gupta (Eds.). Biological Indicators of Soil Health. CAB International, 18 (1):121–157.

Dilly, O., Munch, J., 1996. Microbial biomass content, basal respiration and enzyme activities during the course of decomposition of leaf litter in a black alder (Alnus glutinosa (L.) Gaertn.) forest. Soil Biology and Biochemistry, 28(8): 1073–1081. https://doi.org/10.1016/0038-0717(96)00075-2

Durango, W., Uribe, L., Henríquez, C., Mata, R., 2015. Respiración, biomasa microbiana y actividad fosfatasa del suelo en dos agroecosistemas y un bosque en Turrialba, Costa Rica. Agronomía costarricense, 39(1): 37–46.

Ferreras, L., Toresani, S., Bonel, B., Fernández, E., Bacigaluppo, S., Faggioli, V., Beltrán, C., 2009. Parámetros químicos y biológicos como indicadores de calidad del suelo en diferentes manejos. Ciencia del suelo, 27(1): 103–114.

García, I., 2003. Técnicas de análisis de parámetros bioquímicos en suelos: medida de actividades enzimáticas y biomasa microbiana. In: E. Mundi-Prensa (Ed.), Madrid (in Spanish).

Gómez,Y., Paolini, J., 2006. Actividad microbiana en suelos de sabanas de los Llanos Orientales de Venezuela convertidas en pasturas. Revista de biología tropical, 54(2): 273–285. https://doi.org/10.15517/rbt.v54i2.13868.

Gómez, Y., Paolini, J., 2008. Efecto de la variabilidad temporal y el manejo del suelo sobre los parámetros microbiológicos en sabanas de los Llanos Orientales de Venezuela. Saber. Revista Multidisciplinaria del Consejo de Investigación de la Universidad de Oriente, 20(1): 18–28.

Gómez, Y., Paolini, J., 2011. Variación en la actividad microbiana por cambio de uso en suelos en sabanas, Llanos Orientales, Venezuela. Revista de Biología Tropical, 59(1): 1–15. https:// doi.org/10.15517/rbt.v59i1.3174.

Heanes, D., 1984. Determination of total organic‐C in soils by an improved chromic acid digestion and spectrophotometric procedure. Communications in soil science and plant analysis 15(10): 1191–1213. https://doi.org/10.1080/00103628409367551

Henríquez, C., Uribe, L., Valenciano, A., Nogales, R., 2014. Actividad enzimática del suelo-deshidrogenasa, β-glucosidasa, fosfatasa y ureasa-bajo diferentes cultivos. Agronomía costarricense, 38(1): 43–54.

IGAC., 2006. Métodos analíticos del laboratorio de suelos. Instituto Geográfico Agustín Codazzi. Bogotá, Subdirección de Agrología VI Edición: 449

Lammel, D., Azevedo, L., Paula, A., Armas, R., Baretta, D., Cardoso, E., 2015. Microbiological and faunal soil attributes of coffee cultivation under different management systems in Brazil. Brazilian Journal of Biology, 75(4): 894–905. https://doi.org/10.1590/1519-6984.02414.

Melloni, R., Belleze, G., Pinto, A., Dias, de P., Silve, E., Melloni, E., Alvarenga, M., de Alcântara, E., (2013). Métodos de controle de plantas daninhas e seus impactos na qualidade microbiana de solo sob cafeeiro. Revista Brasileira de Ciência do Solo, 37(1): 67–75. doi.org/10.1590/s0100-06832013000100007

Nannipieri P., Giagnoni L., Renella, G., Puglisi, E., Ceccanti, B., Masciandaro, G., Fornasier, F., Moscatelli, M., Marinari, S., 2012. Soil enzymology: classical and molecular approaches. Biology and fertility of soils, 48(7): 743–762. DOI: https://doi.org/10.1007/s00374-012-0723-0

Pajares, M., Gallardo, L., Etchevers, B., 2010. Indicadores bioquímicos en suelos de un transecto altitudinal en el eje neovolcánico mexicano. Agrociencia, 44(3): 261–274.

Pajares, S., Gallardo J., Masciandaro, G., Ceccanti, B., Etchevers, J., 2011. Enzyme activity as an indicator of soil quality changes in degraded cultivated Acrisols in the Mexican Trans‐volcanic Belt. Land Degradation & Development, 22(3): 373–381. https://doi.org/10.1002/ldr.992.

Paolini, J., Aponte, H., Atacho, P., 2010. Propiedades bioquímicas de suelos del semiárido venezolano. In: Memorias del 16th congress of the International Soil conservation organization (ISco). Santiago de chile, chile.

Partelli, F., Vieira, H., Ferreira, E., Viana, A., Martins, M., Urquiaga, S., 2012. Chemical and microbiological soil characteristics under conventional and organic coffee production systems. Communications in soil science and plant analysis, 43(5): 847–864. DOI: https://doi.org/10.1080/00103624.2012.648470.

Pohlan, H., Janssens, M., 2010. Growth and production of coffee. Soils, plant growth and crop production, 3: 101.

Quilchano, C., Marañón, T., 2002. Dehydrogenase activity in Mediterranean forest soils. Biology and Fertility of Soils, 35(2): 102–107. https://doi.org/10.1007/s00374-002-0446-8.

Rioja, A., 2002. Apuntes de fitotecnia general. Escuela de Ingenieros Agrónomos de Ciudad Real E.U.I.T.A. Ciudad Real. Universidad de Castilla-La Mancha, España.

Romillac, N., 2019. Ammonification. Encyclopedia of Ecology Soil, 2: 256–263. https://doi.org/10.1016/b978-0-12-409548-9.10889-9.

Rossel, D., Tarradellas, J., Bitton, G., Morel, J., 1997. Use of enzymes in soil ecotoxicology: a case for dehydrogenase and hydrolytic enzymes. Soil Ecotoxicology,179–206.

Sánchez-Arias, L., Paolini, J., Rodríguez, J., 2010. Dinámica de las propiedades del suelo en bosques de Rhizophora mangle L. (Rhizophoraceae) en Isla de Margarita, Venezuela. Revista de biología tropical, 58(2): 547–564. https: //doi.org/10.15517/rbt.v58i2.5228.

Schnürer, J., Rosswall, T., 1982. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Applied Environmental Microbiology, 43(6): 1256–1261.

Soil Survey Staff (SSS), 2006. Keys to soil taxonomy. Available at http://soils.usda.gov/technical/classifi cation/tax_keys/ (verified 10 June 2009), USDA-Natural Resources Conservation Service, Washington, DC.

Tabatabai, M., 2003. Soil enzymes. The Encyclopedia of Agrochemicals, 3: 1415–1462. https://doi.org/10.1002/047126363x.agr354

Tripathy, S., Bhattacharyya, P., Mohapatra, R., Som, A., Chowdhury, D., 2014. Influence of different fractions of heavy metals on microbial ecophysiological indicators and enzyme activities in century old municipal solid waste amended soil. Ecological Engineering, 70: 25–34. https://doi.org/10.1016/j.ecoleng.2014.04.013.

Velmourougane, K., 2016. Impact of organic and conventional systems of coffee farming on soil properties and culturable microbial diversity. Scientifica, 2016:1–9. DOI: https: //doi.org/10.1155/2016/3604026.

Weil, R., Magdoff, F., 2004. Significance of Soil Organic Matter to Soil Quality and Health. Soil Organic Matter in Sustainable Agriculture,1–43. https://doi.org/10.1201/9780203496374.ch1

Wilke, B., 2005. Determination of chemical and physical soil properties, Monitoring and assessing soil bioremediation. Springer, pp. 47–95.




DOI: http://dx.doi.org/10.17951/pjss.2021.54.1.25-39
Date of publication: 2021-06-29 19:03:02
Date of submission: 2020-06-07 05:41:04


Statistics


Total abstract view - 832
Downloads (from 2020-06-17) - PDF - 288

Indicators



Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Yuri J. Pardo-Plaza, Jorge E. Paolini Gómez, Miriam E. Cantero Guevara

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.