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Wstęp

Zgodnie z ustawą o rachunkowości „instrumentem finansowym jest kontrakt, 
który powoduje powstanie aktywów finansowych u jednej ze stron i zobowiązania 
finansowego u drugiej strony” [Ustawa z dnia 24 września 1994 r.]. Oznacza to, że 
instrument finansowy daje wierzycielowi uprawnienie do przyszłego przychodu 
finansowego wymagalnego w ściśle określonym terminie wymagalności. Z posiada-
niem instrumentu finansowego jest związane ryzyko utraty posiadanego bogactwa. 
Nieprecyzyjne oceny korzyści płynących z posiadania instrumentu finansowego są 
naturalną przyczyną ryzyka obarczającego instrumenty finansowe.

Wartość przyszłego przychodu z tytułu posiadania instrumentu finansowego in-
terpretujemy jako antycypowaną wartość przyszłą (w skrócie FV) tego instrumentu. 
Zgodnie z tezą o niepewności [Mises, 1962; Kaplan, Barish, 1967] każdy przyszły 
nieznany nam stan rzeczy jest niepewny. Niepewność w ujęciu Misesa i Kaplana 
jest skutkiem braku naszej wiedzy o przyszłym stanie rzeczy. W rozpatrywanym 
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przypadku można jednak określić ten przyszły moment czasu, w którym rozpatry-
wany stan rzeczy będzie już nam znany. Ten rodzaj niepewności Misesa i Kaplana 
nazywany jest w skrócie niepewnością. Jest to warunek wystarczający do tego, aby 
modelem niepewności było prawdopodobieństwo [Kolmogorow, 1933; Mises, 1957; 
Lambalgen, 1996; Sadowski, 1997; Czerwiński, 1969; Caplan, 2001]. Z tego powodu 
niepewność określa się też niepewnością kwantyfikowalną. Warto tutaj zauważyć, 
że FV nie jest obciążona niepewnością Knighta [1921]. Wszystko to prowadzi do 
stwierdzenia, że FV jest zmienną losową.

Punktem odniesienia do oceny instrumentu finansowego jest jego wartość bie-
żąca (w skrócie PV), zdefiniowana jako teraźniejszy ekwiwalent płatności dostępnej 
w ustalonym momencie. Powszechnie jest obecnie akceptowany pogląd, że PV przy-
szłych przepływów finansowych może być wartością przybliżoną. Konsekwencją 
takiego podejścia jest ocena PV za pomocą liczb rozmytych. Odzwierciedleniem tych 
poglądów było zdefiniowanie rozmytej PV jako zdyskontowanej rozmytej prognozy 
wartości przyszłego przepływu finansowego [Ward, 1985]. Koncepcja zastosowania 
liczb rozmytych w arytmetyce finansowej wywodzi się od Buckleya [1987]. Defini-
cja Warda jest uogólniona w pracach Chiu i Parka [1994] oraz  Greenhut, Normana 
i Temponi [1995] do przypadku nieprecyzyjnie oszacowanego odroczenia. Sheen 
[2005] rozwija definicję Warda do przypadku rozmytej stopy nominalnej. Buckley 
[1987], Gutierrez [1989], Kuchta [2000] i Lesage [2001] dyskutują problemy zwią-
zane z zastosowaniem rozmytej arytmetyki do wyznaczania rozmytej PV. Huang 
[2007b] rozwija definicję Warda do przypadku, kiedy przyszły przepływ finansowy 
jest dany jako rozmyta zmienna losowa. Bardziej ogólna definicja rozmytej PV jest 
proponowana przez Tsao [2005], który zakłada, że przyszły przepływ finansowy jest 
określony jako rozmyty zbiór probabilistyczny. Wszyscy ci autorzy przedstawiają 
PV jako dyskonto nieprecyzyjnie oszacowanej wartości przyszłego przepływu fi-
nansowego. Odmienne podejście zostało zaprezentowane w pracach Piaseckiego 
[2011a, 2011b] oraz Piaseckiego i Siwek [2015], gdzie rozmytą PV oceniono na 
podstawie bieżącej ceny rynkowej instrumentu finansowego. Pod pojęciem portfela 
finansowego autor rozumie dowolny, skończenie elementowy zbiór instrumentów 
finansowych. Każdy portfel finansowy jest instrumentem finansowym i w związku 
z tym jest oceniany w ten sam sposób, jak jego składniki. W pracy Markowitza 
[1952] przedstawiono przypadek prostej stopy zwrotu, gdzie PV jest dodatnią liczbą 
rzeczywistą, natomiast FV jest zmienną losową o normalnym rozkładzie prawdopo-
dobieństwa. Drogą dedukcji matematycznej wykazano tam między innymi, że stopa 
zwrotu z portfela jest średnią ważoną stóp zwrotu z jego poszczególnych składników.

Praca Markowitza [1952] stanowi punkt wyjścia do rozwoju teorii portfelowej. 
Głównie na rozwój tej teorii miała wpływ teoria zbiorów rozmytych [Zadeh, 1965]. 
Dostrzegano problem nieprecyzyjnych ocen stóp zwrotu i ograniczeń. Zaowocowa-
ło to powstaniem wielu rozmytych modeli portfela finansowego. Kompetentnym 
źródłem informacji o tych modelach są opracowania Fang, Lai i Wanga [2008] oraz 
Gupty i in. [2014]. Badania nad przedstawionymi modelami są nadal kontynuowane 
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[por. prace: Huang, 2007a; Duan, Stahlecker, 2011; Li, Jin, 2011; Wu, Liu, 2012; 
Liu, Zhang, 2013; Zhang, Zhang, Xiao, 2013; Mehlawat, 2016; Guo i in., 2016; 
Saborido i in., 2016].

Istotną wadą wszystkich cytowanych powyżej prac jest zdefiniowanie ex cathedra 
rozmytej stopy zwrotu z portfela jako kombinacji liniowej stóp zwrotu z jego poszcze-
gólnych składników. Jedynym uzasadnieniem takiego stanu rzeczy było mechaniczne 
uogólnienie modelu Markowitza do przypadku rozmytego. Uogólnienie to nie było 
uzasadnione drogą dedukcji. Osłabia to wiarygodność prowadzonych obliczeń.

Jedną ze wspólnych cech łączących wszystkie wymienione powyżej prace jest 
stosowanie funkcji przynależności zbiorów rozmytych jako substytutu rozkładu 
prawdopodobieństwa. Oznacza to, że losowość w tych modelach jest zastępowana 
przez nieprecyzyjność.

Prace Piaseckiego [2011a, 2011b], Siwek [2015] oraz Piaseckiego i Siwek [2017] 
nie mieszczą się w tym nurcie badawczym, ponieważ w opisanych tam modelach 
funkcja przynależności nie zastępuje rozkładu prawdopodobieństwa, lecz wchodzi 
z tym rozkładem w interakcje. To rozszerzenie modelu w istotny sposób wzboga-
ca możliwości rzetelnego opisu stopy zwrotu. Pomimo uwzględnienia nieprecyzji 
w oszacowaniu stopy zwrotu, w zaproponowanym rozmytym modelu można wy-
korzystać bez zmian całą bogatą empiryczną wiedzę zebraną na temat rozkładów 
prawdopodobieństwa stóp zwrotu. Jest to wysoce korzystna cecha zaproponowanego 
modelu, gdyż przybliża możliwość jego realnych zastosowań. Losowość w tych 
modelach wchodzi w interakcję z nieprecyzyjnością.

Obecnie rozwijane są badania według obu wymienionych wyżej paradygmatów. 
Modeli uwzględniających interakcję losowości z nieprecyzyjnością jest niestety 
mniej. Najprawdopodobniej wynika to z faktu ich wyższej złożoności matematycznej. 
Na niwie finansów skwantyfikowanych do tego nurtu badawczego możemy zaliczyć 
prace Tsao [2005], Huang [2007b], Siwek [2015] oraz Piaseckiego i Siwek [2017], 
z czego do analizy portfelowej odnoszą się jedynie dwie ostatnie.

W pracy Siwek [2015] przedstawiono przypadek prostej stopy zwrotu, gdzie PV 
jest rozmytą liczbą trójkątną, natomiast FV to zmienna losowa o normalnym roz-
kładzie prawdopodobieństwa. W ten sposób jako punkt wyjścia wybrano założenie 
o normalnym rozkładzie prostej stopy zwrotu, przyjęte w opracowaniu Markowitza 
[1952]. Za opisaniem PV za pomocą trójkątnej liczby rozmytej przemawiają wyniki 
dyskusji przeprowadzonej w pracach: Buckleya [1987], Gutierrez [1989], Kuchty 
[2000] i Lesage’a [2001]. Narzędziem stosowanym do oceny korzyści z posiadania 
instrumentu finansowego była rozmyta oczekiwana stopa zwrotu. Zastosowano tutaj 
arytmetykę liczb rozmytych. W wyniku tej analizy uzyskano zależności tak bardzo 
skomplikowane, że uniemożliwiało to dalszą formalną analizę właściwości portfela.

Alternatywne rozwiązanie tego problemu zaproponowano w pracy Piaseckiego 
i Siwek [2017], gdzie oczekiwaną stopę zwrotu zastąpiono oczekiwanym czynnikiem 
dyskonta. Następnie wykazano, że rozmyty oczekiwany czynnik dyskonta portfela 
jest średnią ważoną rozmytych oczekiwanych czynników dyskonta poszczególnych 
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składników portfela. Dzięki temu do zadania wyboru portfela można zastosować 
rozmyty program liniowy.

Celem niniejszego opracowania jest przedstawienie odmiennego podejścia do 
wyznaczenia rozmytej oczekiwanej stopy zwrotu z portfela opisanego w pracy Siwek 
[2015]. Do wyznaczenia rozmytej stopy zwrotu wykorzystamy tym razem definicję 
prostej stopy zwrotu.

1. Wybrane elementy teorii liczb rozmytych

Za pomocą symbolu  oznaczamy rodzinę wszystkich podzbiorów rozmy-
tych w prostej rzeczywistej . Dubois i Prade [1979] definiują liczbę rozmytą jako 
podzbiór rozmyty  o ograniczonym nośniku, reprezentowany przez swą 
funkcję przynależności   spełniającą warunki:

�  (1)

� (2)

Zgodnie z zasadą rozszerzenia Zadeha suma liczb rozmytych  jest 
liczbą rozmytą

� (3)

opisaną przez funkcję przynależności:

� (4)

W tej pracy szczególną uwagę poświęcimy rozmytej liczbie trójkątnej ,  
wyznaczonej dla dowolnych licz rzeczywistych  za pomocą funkcji przy-
należności , określonej na nośniku liczby następująco:

� (5)

Podstawową zaletą liczb trójkątnych jest prostota ich dodawania, gdyż mamy:

� (6)
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2. Stopa zwrotu z instrumentu finansowego

Dla ustalonego momentu  rozważać będziemy prostą stopę zwrotu  z da-
nego instrumentu finansowego, zdefiniowaną za pomocą zależności:

� (7)

gdzie:
 – stan elementarny rynku finansowego

 opisana za pomocą zmiennej losowej 
 oszacowana w sposób dokładny lub przybliżony

Za Markowitzem [1952] zakładamy, że prosta stopa zwrotu , wyzna-
czona dla PV równej cenie rynkowej , ma normalny rozkład prawdopodobieństwa 

. W tym artykule – podobnie jak w pracy Siwek [2015] – zakładamy dodat-
kowo, że PV jest oszacowana jako rozmyta liczba trójkątna  re-
prezentowana za pomocą (5) przez swą funkcję przynależności ,  
gdzie:

−  jest maksymalnym dolnym oszacowaniem możliwej ceny rynkowej,
−  jest minimalnym górnym oszacowaniem możliwej ceny rynkowej.
W pracy Piaseckiego i Siwek [2017] pokazano, że w tej sytuacji oczekiwana 

stopa zwrotu  jest liczbą rozmytą daną za pomocą funkcji przynależności 
 określonej na swym nośniku przez tożsamość:

� (8)

3. Portfel finansowy

Rozważmy teraz przypadek portfela finansowego  złożonego z   instrumentów 
finansowych . Za Markowitzem [1952] zakładamy, że dla każdego 
instrumentu  jego prosta stopy zwrotu , wyznaczona dla PV równej ce-
nie rynkowej , ma rozkład normalny . Załóżmy, że PV instrumentu  jest 
równa trójkątnej liczbie rozmytej , gdzie:

−	  jest maksymalnym dolnym oszacowaniem możliwej ceny rynkowej 
instrumentu finansowego ,

−	  jest minimalnym górnym oszacowaniem możliwej ceny rynkowej in-
strumentu finansowego .
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Rozmyta oczekiwana stopa zwrotu z instrumentu  jest wtedy wyznaczona przez 
funkcję przynależności  opisaną za pomocą (8).

Cena rynkowa portfela  wynosi:

� (9)

Oczekiwana stopa zwrotu  z portfela jest równa:

� (10)

Maksymalne dolne oszacowanie możliwej ceny rynkowej portfela  jest równe:

� (11)

Minimalne górne oszacowanie możliwej ceny rynkowej portfela  jest równe:

� (12)

Zgodnie z  (6) PV portfela  jest równe trójkątnej liczbie rozmytej  
. Wtedy rozmyta oczekiwana stopa zwrotu z portfela  jest jedno-

znacznie wyznaczona przez funkcję przynależności  opisaną 
za pomocą (8).

4. Numeryczna ilustracja modelu

W pracy Piaseckiego i Siwek [2017] portfel  złożono z instrumentów finan-
sowych  i  .

PV instrumentu  jest określona za pomocą trójkątnej liczby rozmytej 
. Przewidywana stopa zwrotu  z instrumentu  jest zmienną 

losową z rozkładem normalnym . Wtedy, zgodnie z (8), oczekiwana 
stopa zwrotu z instrumentu  jest liczbą rozmytą daną za pomocą funkcji przyna-
leżności:

� (13)

PV instrumentu  jest określona jako trójkątna liczba rozmyta . 
Przewidywana stopa  zwrotu z instrumentu  jest zmienną losową z roz-
kładem normalnym . Wtedy, zgodnie z (8), oczekiwana stopa zwrotu 
z instrumentu  jest liczbą rozmytą daną za pomocą swej funkcji przynależności:
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� (14)

Zgodnie z (9), (11), (12) PV portfela  jest trójkątną liczbą rozmytą:

� (15)

Zgodnie z (10) oczekiwana stopa zwrotu z portfela  jest równa:

� (17)

Wtedy, zgodnie z (8), oczekiwana stopa zwrotu z portfela  jest liczbą rozmytą 
daną za pomocą swej funkcji przynależności:

� (18)

W pracy Piaseckiego i Siwek [2017] wyznaczono oczekiwany czynnik dyskonta 
portfela  jako rozmytą liczbę trójkątną . Korzystając 
z tej wartości, wyznaczamy dla portfela  jego rozmytą oczekiwaną stopę zwrotu 
daną za pomocą funkcji przynależności:

� (19)

Jest wyraźnie widoczne, że w rozważanym przypadku oczekiwana stopa zwrotu 
wyznaczona w tym opracowaniu jest niemal równa oczekiwanej stopie zwrotu wy-
znaczonej za pomocą metody opisanej w pracy Piaseckiego i Siwek [2017]. Z punktu 
widzenia praktyki finansowej można stwierdzić, że obie oceny oczekiwanej stopy 
zwrotu są identyczne.

Podsumowanie

Zaprezentowana tutaj metoda wyznaczania nieprecyzyjnie oszacowanej oczeki-
wanej stopy zwrotu portfela charakteryzuje się dużą prostotą obliczeń. Ma to jednak 
swoją cenę. Zaproponowana metoda nie pozwala przedstawić oczekiwanej stopy 
zwrotu z portfela jako kombinacji liniowej oczekiwanych stóp zwrotu z jego poszcze-
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gólnych składników. W tej sytuacji zastosowanie rozmytego programu liniowego do 
wyboru składu portfela jest tutaj niemożliwe. Pozostaje jedynie zarządzanie składem 
portfela za pomocą oczekiwanego czynnika dyskonta [Piasecki, Siwek, 2017].

Z drugiej strony ustalony portfel instrumentów finansowych jest instrumentem 
finansowym. Zdecydowana większość strategii zarządzania instrumentem finanso-
wym wykorzystuje wartość oczekiwanej stopy zwrotu z zarządzanego instrumentu. 
W pracy Piaseckiego [2011b] pokazano, jak można te strategie adaptować dla przy-
padku instrumentu finansowego z rozmytą PV. W tej sytuacji korzystanie z rozmytej 
oczekiwanej stopy zwrotu, wyznaczonej metodą opisaną w niniejszym artykule, po-
zwoli w efektywny sposób adaptować wspomniane powyżej strategie do przypadku 
zarządzania portfelem z PV daną jako trójkątna liczba rozmyta.

Spostrzeżenia te prowadzą do sformułowania następujących zaleceń dla zarzą-
dzania portfelem instrumentów z PV danymi jako trójkątne liczby rozmyte:

−	 skład portfela określamy, stosując zadanie programowania liniowego mini-
malizujące rozmyty oczekiwany czynnik dyskonta portfela,

−	 ustalonym portfelem zarządzamy, stosując metody wykorzystujące rozmytą 
oczekiwaną stopę zwrotu z portfela.

W przedstawionym studium przypadku pokazano, że oczekiwana stopa zwrotu 
wyznaczona w tej pracy jest niemal identyczna z oczekiwaną stopą zwrotu wy-
znaczoną za pomocą metody opisanej w pracy Piaseckiego i Siwek [2017]. Jest to 
bardzo interesujące spostrzeżenie, które w trakcie dalszych badań formalnych należy 
potwierdzić i uogólnić.

Uzyskane tutaj wyniki badań zachęcają do ich kontynuacji. Sugerowanym kie-
runkiem przyszłych badań może być uogólnienie przedstawienia PV na przypadek 
rozmytej liczby trapezoidalnej.
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Expected Rate of Return from Financial Portfolio – the Case of Triangular 
Fuzzy Present Value

The main aim of this article is to present an uncomplicated method of estimating return rate on a port-
folio of securities with Present Values presented as triangular fuzzy numbers. Determined return rates on 
the securities are not triangular fuzzy numbers. Despite this, we achieved a solution that is based on the 
arithmetic of triangular fuzzy numbers. The whole considerations are illustrated by a numerical example.

Oczekiwana stopa zwrotu z portfela finansowego – przypadek trójkątnych rozmytych 
wartości bieżących

Głównym celem artykułu jest przedstawienie nieskomplikowanej metody szacowania stopy zwrotu 
z portfela instrumentów finansowych o wartościach bieżących przedstawionych jako trójkątne liczby roz-
myte. Wyznaczone stopy zwrotu z poszczególnych składników nie są trójkątnymi liczbami rozmytymi. 
Pomimo tego uzyskano takie rozwiązanie, które bazuje na arytmetyce trójkątnych liczb rozmytych. Całość 
rozważań zilustrowano przykładem numerycznym.
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