Warm and Cold Waves in South-Eastern (V) Bioclimatic Region in Years 1981–2010
Abstract
In this paper, warm and cold waves are calculated by method elaborated by Wibig (2007), where waves are determined by maximum air temperature (warm and cold days) and minimum air temperature (warm and cold nights) based on standard deviation from the average, expressed in standard deviation. Days, where air temperature was higher than average by more than 1.28 standard deviation was regarded as very warm, and those with lower air temperature than average by more than 1.28 standard deviation was regarded as very cold (Wibig 2007).
For the purpose of this research, data from stations Lublin-Radawiec, Zamość and Tomaszów Lubelski were used, for the 1981–2010 period. During that time, short (3–5 days) waves of warm days occurred slightly more often than for waves of cold days, but in case of long waves (11–20 days) cold waves dominated, which is very characteristic for south-eastern (V) bioclimatic region. The waves of cold days were particularly long at Tomaszów Lubelski and Zamość stations. The average number of short (3–5 days) cold waves (night) on examined stations of south-eastern bioclimatic region was 3–4 waves per year and this was more than average number of short warm waves (night), which fluctuated between 2 to 3 waves per year (inversely to the case of waves of warm days). In the first decade of 21st century, the decrease in number of cold days is visible, but number of warm nights has increased during that time.
Keywords
Full Text:
PDF (Język Polski)References
Błażejczyk K., 2004: Bioklimatyczne uwarunkowania rekreacji i turystyki w Polsce, Prace Geograficzne, IGiPZ PAN, 192, Warszawa, 291.
Błażejczyk K., Kunert A., 2001: Bioklimatyczne uwarunkowania rekreacji i turystyki w Polsce, Monografie IGiPZ PAN 13, Warszawa, ss. 366.
Della-Marta P.M., Haylock M.R., Luterbacher J., Wannen H., 2007: Double length of western European summer heat waves since 1880, J Geophys. Res. 112, D15103.
Kozłowska-Szczęsna T., Błażejczyk K., Krawczyk B., 1997: Bioklimatologia człowieka. Metody i ich zastosowanie w badaniach bioklimatu Polski, Monografie IGiPZ PAN, 1, 200.
Kuchcik M., Błażejczyk K., Szmyd J., Milewski P., Błażejczyk A., Baranowski J., 2013: Potencjał leczniczy klimatu Polski, IGiPZ PAN, Warszawa, ss. 270.
Kysleý J., Huth R., 2008: Relationship of surface air temperature anomalies over Europe to persistence of atmospheric circulation patterns conductive to heat waves, Advances in geosciences 14, 243–249.
Warakomski W., 1994: Zarys klimatu Roztocza, [w:] T. Wilgat (red.), Roztoczański Park Narodowy, RPN, Kraków.
Wibig J., 2007: Fale ciepła i chłodu w środkowej Polsce na przykładzie Łodzi, Acta Universitatis Lodziensis, Folia Geograhica Physica 8, 27–61.
DOI: http://dx.doi.org/10.17951/b.2014.69.2.143
Date of publication: 2015-05-25 18:43:13
Date of submission: 2015-05-25 18:24:34
Statistics
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2015 Agnieszka Krzyżewska
This work is licensed under a Creative Commons Attribution 4.0 International License.