Verification of indirect methods used to define the precipitation phase
Abstract
The purpose of study is verification of three indirect methods used to define of the phase precipitation. There methods are based on empirical data of thermal conditions in the vertical profile and surface layer of troposphere. Three methods can be used to forecast of precipitation phase. Verification of selected methods was based on statistic attempt counting the 400 data. To define the precipitation phase in the methods there were used data from aerological station Legionowo and meteorological station Warszawa–Bielany. The same control was executed on the basis of data coming from reanalysis. Consistency of precipitation phase with criteria used in the selected methods is slightly weaker in case of data that come from reanalysis than in case of using data from aerological soundings. The consistency of indirect methods reached in case of rainfall up to 86% of cases, and in case of snow up to 99%.
Keywords
Full Text:
PDF (Język Polski)References
Feiccabrino J., Lundberg A., 2009: Precipitation phase discrimination in Sweden, [w:] Eastern Snow Conference, Proceedings of the 65th Eastern Snow Conference, 239–254.
Feiccabrino J., Lundberg A., Gustafsson D., 2012: Improving surface-based precipitation phase determination through air mass boundary identification, Hydrol Res, 43, 179–191.
Ghosh S., Jonas P.R., 1998: On the application of the Kessler and Barry schemes in Large Eddy Simulation models with a particular emphasis on cloud autoconversion, the onset time and droplet evaporation, Ann. Geophysicae, 16, 628–637.
Kessler, E., 1969: On the distribution and continuity of water substance in atmospheric circulation, Meteor. Monogr., 32, Amer. Meteor. Soc., 84 pp.
Lin Y-L., Farley R.D., Orville A.D., 1983: Bulk parametrization, of the snow field in a Cloud model, Journal of Climate and Applied Meteorology, 22, 1065–1091.
Meteorologia synoptyczna, 1990: t. 2. Dowództwo Wojsk Obrony Powietrznej Kraju.
Michalakes J., Dudhia J., Gill D., Henderson T., Klemp J., Skamarock W., Wang W., 2004: The Weather Research and Forecast Model: Software Architecture and Performance, to appear in Proceedings of the 11th ECMWF Workshop on the Use of High Performance Computing in Meteorology, 25–29.
Podręcznik krótkoterminowych prognoz pogody, 1969: cz. II, WKiŁ, Warszawa, 527.
Pomeroy J.W., Gray D.M., Brown T., Hedstrom N.R., Quinton W.L., Granger R.J., Carey S.K., 2007: The cold regions hydrological model: a platform for basing process representation and model structure on physical evidence, Hydrological Processes 21, 2650–2667.
Rutledge, S.A., Hobbs P.V., 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cloud-frontal rainbands, J. Atmos. Sci., 20, 2949–2972.
Ryan, B.F., 1996: On the global variation of precipitating layer clouds, Bull. Amer. Meteor. Soc., 77, 53–70.
Siedlecki M, 2011: Charakterystyka klimatologiczna chwiejności atmosfery nad Europą, Acta Universitatis Lodziensis. Folia Geographica Physica, 11.
Skamarock W.C.,Klemp J.B., Dudhia J., Gill D.O., Barker D.M., Duda M.G., Huang X-Y., Wang W., Powers J.G., 2008: A description of the advanced research WRF version 3. NCAR/TN-475+STR, NCAR TECHNICAL NOTE.
Worobjew W.I., 2006: Praktikum po sinopticzeskoj mietieorołogii. Rukowodstwo k łaboratornym rabotam po sinopticzeskoj mietieorołogii i atłas uczetnych sinopticzeskich matieriałow. Izd. RGTMU, Sankt Petersburg, 304.
Źródła internetowe
http://www.esrl.noaa.gov
www.ogimet.com
http://weather.uwyo.edu
DOI: http://dx.doi.org/10.17951/b.2017.72.1.63
Date of publication: 2018-03-07 10:57:43
Date of submission: 2016-11-22 08:32:49
Statistics
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 Piotr Jan Piotrowski
This work is licensed under a Creative Commons Attribution 4.0 International License.