ANNALES UMCS INFORMATICA

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 18/01/2026 15:01:56

DOI: 10.17951/A1.2016.16.2.32

FLC control for tuning exploration phase
In bio-inspired metaheuristic

Kazimierz Kietkowicz

Department of Computer Science,
Faculty of Electrical and Computer Engineering,
Cracow University of Technology, Cracow, Poland

Growing popularity of the Bat Algorithm has encouraged
researchers to focus their work on its further improvements. Most
work has been done within the area of hybridization of Bat
Algorithm with other metaheuristics or local search methods.
Unfortunately, most of these modifications not only improves the
quality of obtained solutions, but also increases the number of
control parameters that are needed to be set in order to obtain
solutions of expected quality. This makes such solutions quite
impractical. What more, there is no clear indication what these
parameters do in term of a search process.

In this paper authors are trying to incorporate Mamdani type
Fuzzy Logic Controller (FLC) to tackle some of these mentioned
shortcomings by using the FLC to control the exploration phase of
a bio-inspired metaheuristic. FLC also allows us to incorporate
expert knowledge about the problem at hand and define expected
behaviors of system here process of searching in
multidimensional search space by modeling the process of bats
hunting for their prey.

Bat algorithm, swarm intelligence, metaheuristics, optimization,
fuzzy logic, Mamdami-Type inference system

I. INTRODUCTION

In general metaheuristics algorithms can be divided into few
groups, e.g. algorithms based on evolutionary approach that
models evolutionary process or algorithms exploring
phenomena of a Swarm Intelligence [1]. Others approach for
evolutionary metaheuristic, such as algorithms for modeling
response of a human immune system (e.g. Artificial Immune
System algorithms) might be considered as separate category
due to their multiplicity of proposed solutions.

Metaheuristics methods which are focused on exploring
models of a natural evolution are (mostly but not limited to) as
follows: Genetic Algorithms (GA) [2], Genetic Programming
(GP) and Differential Evolution (DE) [3]. Algorithms based on
Swarm Intelligence are broadly presented by Particle Swarm
Optimization (PSO) [4], Ant Colony Optimization (ACO) [5] or
some of its modifications.

Recently introduced method, based on population of
solutions which explore phenomena of Swarm Intelligence was
presented by Yang [6] in 2010 and it is called Bat Algorithm
(BA). In [6] by modeling the behavior of bats hunting for prey
and by exploring phenomena of their echolocation capabilities,
author managed to incorporate methods for balancing the
exploration phase as well as exploitation phase of a modern
Swarm Based Algorithms.
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Bat Algorithms had already been applied to solve numerous
hard optimization problems such as multi-criteria optimization
[7] or optimization of topology of microelectronic circuits [8].

Growing popularity of the Bat Algorithm has encouraged
researchers to focus their work on its further improvements.
Most work has been done within the area of hybridization of Bat
Algorithm with other metaheuristics or local search methods [9].
Some other solutions were involved within the area of adding
self-adaptability capabilities to algorithm [10]. Some works has
also been in area of adaptation of standard Bat Algorithm for
binary problems [11].

Unfortunately, most of these modifications not only
improves the quality of obtained solutions, but also increases the
number of control parameters that are needed to be set to obtain
solutions of expected quality. This makes such solutions quite
impractical.

This paper introduces fuzzy logic control system build on
Mamdami-Type inference method to control the exploration and
exploitation phase of an evolutionary system based on modified
Bat Algorithm [12]. Application of fuzzy logic to control the
exploration and exploitation phase frees the user from explicit
specifying control parameters and only require to define
expected behavior of an algorithm in human readable knowledge
base form of if-then sentence.

Paper is organized as follows, in Section 2 basic scheme of
the Bat Algorithm and some custom modifications are
introduced and briefly discussed, Section 3 discuss the use of a
fuzzy inference system to dynamically change algorithm
parameters, Section 4 presents simulation experiments. Section
5 summarize presented results and discuss some concluding
remarks.

Il. BAT ALGORITHM AND ITS MODIFICATION

Bat Algorithm is recently proposed bio-inspired
metaheuristics method for solving hard real valued optimization
tasks. It tries to mimic behavior of bats hunting for their prey.
Algorithm was introduced by Yang in 2010 [6]. Bat Algorithm
is based on population of bats, which by flying thru solution
search space explore it in order to find interesting areas. Each
single bat represents one solution in n-dimensional search space.
Solutions are evaluated in terms of their fit value by provided fit
function.

For example, we can consider n-dimensional, real valued
solution space in which optimization takes place. Each solution,



represented as a bat, is evaluated with provided fit function.
There are also two real valued n-dimensional vectors associated
with each bat in population. First vector is real valued vector
representing position of a bat in solution search space. Second
vector is real valued vector representing velocity in each of n-
dimensional directions. Usually position vector and velocity
vector are initialized randomly at the beginning of the algorithm.
Main loop of the algorithm consists of iterative improvement in
founded solution. At each iteration step fit value is calculated for
every member of population of bats by provided fit function, and
new velocity vector is calculated based on relative distance from
best and current solution in population. Next, position of every
bat is updated accordingly to its velocity vector. At the end of
each iteration best solution is founded and used as new reference
point. Exploring search space continues until some termination
conditions are satisfied. Usually these conditions are the
maximum number of iterations or improvements in the best
solution. As a result, after satisfied stop conditions, the best
solution is returned. Pseudo code for Bat Algorithm is listed in
Fig.1.

1: Randomly initialize position x; and velocity v; of i-th bat in
population
2: Initialize pulsation frequency Q; € [Qmin, @max], PUlsation
r; and loudness A; of i-th bat in population
3 while not termination conditions are satisfied:
4: for_each bat in population:
5. vi(0) =vi(t -1+ Qi(x(t—1) —x)
xi(0) = x;(t = 1) + v;(0)
6: if randn(0,1) >r:
Generate new solution around current bests solutions
7: Generate new solution by flying randomly
8: if randn(0,1) < A and f(x;) < f(x*):
Accept new solution and update pulsation and loudness
factors rf and A! as:
At e Al T e rf (1 — exp(—yt)
9: Evaluate bats population using fit function f
10: Find best bat in population and mark him as x*
Fig. 1. Bat Algorithm.
where:

v;(t) - real valued velocity vector of i-th bat,
x;(t) - real valued position vector of i-th bat,
Q; - pulsation frequency of i-th bat,

@, ¥, Qumin» Qmax - CONStant.

Equations used for bat position and velocity update, used in
algorithm 1 step 5, were introduced in [6].

A. Modification to Bat Algorithm

An important aspect of a population-based metaheuristic is
balance between exploration and exploitation phase of a search
process. Exploration (sometimes called diversification) is
responsible for global search capability. While, in contrast,
exploitation (sometimes called intensification) is responsible for
local search ability of algorithm. As it was pointed out in [13]
Bat algorithm is powerful at exploitation but has some
insufficiency at exploration phase. In our opinion Bat Algorithm
also suffer from lack of memory of best solution found during
the time of optimization what in effect sometimes cause bats to
escape from promising area of solutions search space. Bat
Algorithm also tends to direct bats outside of the solution search
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space box. Yang in [6] proposed to use upper bound limits on
position vector to overcome these limitations. Bat Algorithm
also too often tends to accept solution of worse fit value.

Few modifications to Bat Algorithm has been proposed in
literature. In [14] Inertia Weight Factor Modification relative to
current iteration and max iteration and Adaptive Frequency
Modification based on relative bat distance to best solution has
been introduced. In [15] dynamic and adaptively adjustment of
a bat speed and flight direction has been examined. Self-adaptive
capability has also been examined in [10].

Bat Algorithm has also been hybridized with Harmony
Search Algorithm [13] or with Differential Evaluation
Algorithm [9]. In [16] Bat Algorithm with self-adaptation of
control parameters has been hybridized with different DE
strategies as local search heuristics. However there are no
systematic solutions to previously mentioned problem hence
proposed modifications.

Modifications to Bat Algorithm introduced by Kietkowicz
and Grela in [12] are twofold: scheme of acceptance of a new
solution, and velocity equation is modified to overcome some
mentioned limitation. Introduced modifications are summarized
in pseudo code listing in Fig.2. Memory of best solution found
during the process of optimization by the algorithm is also
introduced.

1: Randomly initialize position x; and velocity v; of i-th bat in

population
2: Initialize pulsation frequency Q; € [Qmin, @max], PUlsation

r; and loudness A; of i-th bat in population
3: | while not termination conditions are satisfied:

Q=fuzzylnferenceSystem(diversity, error, iteration)
4: for_each bat in population:
5 vi(®) = a(t - D+ Q(x" —x(t - 1) +
+ Qi(x;ver - xi(t - 1))
xi(0) = x; (6 = 1) + v (1)
6: if randn(0,1) > r}:
x; <« generate new solution around current bat x;
7 if f(x)) < f(x;) or randn(0,1) < A%:
X < X;
Update values of pulsation and loudness, respectively

rf and A} as:

AP < adl; 1T < (1 - exp(—y)
8: Evaluate bats population using fit function f
9: Find best bat in population and mark him as x*
10: if f(x") < f(xever):
11: Xeper < X

Fig. 2. Modification of Bat Algorithm.

Modifications introduced in [12] also change bat position
and velocity update equations. In comparison with equations
presented in [6], use of an archive component to help direct bats
towards area where good solutions were used to be known; and
concept of cognition coefficients instead of using upper bounds
limits is used in [12]. Finally, equations (1) and (2) shows
introduced modification:

vi(0) = avi(t— 1D+ Q(x" —x(t—1)) +

+ Qi(xzver - xi(t - 1)) (1)



o+p =y
(1) (1)
x;(t) = x;(t — 1) + v; () 2

where:

a; - cognition coefficient of i-th bat,
x* — x;(t — 1) - social component,
Xiver — X;(t — 1) - archive component,
Q; - pulsation frequency of i-th bat.

In comparison to equations proposed by Yang in [6]
modified velocity equation (1) is using cognition coefficients to
limit the influence of past direction (taken at time t-1) at the
decision taken at current t iteration. There is also archive
component that helps bats build social knowledge of the
previously, globally found best solution.

Proposed modification to the scheme of acceptance of new
solutions are tend to limit the probability of acceptance of worse
solution. Comparing original Bat Algorithm with modification
in [12] the worse solution is accepted with probability A; where
in modified algorithm worse solution is accepted only with
probability (1 — r;)A;. There is obvious relation that, satisfying
that ; > 0 and A; > 0, the following relation is true (1 —
1;)A; < A;. Moreover, modifications introduced in [12] also
includes form of memory x;,., of a best solution ever found.

It is important that introduced modifications doesn’t change
computation complexity of the algorithm in the context of big O
notation since these modifications are linear in nature and are
not based on additional computation or evaluation of a fitness
function.

I1l. PARAMETER ADAPTATION WITH FUZZY LOGIC

The dynamic of Modified Bat Algorithm is defined by
position and velocity update equations (1) and (2). Pulsation
frequency Q; was chosen to be adjusted using fuzzy logic
Mamdami-Type inference type system since this parameter has
an influence on the movement of bats in the flock. Dynamical
changes of parameter can improve overall performance of
algorithm. However, it is not always possible to derive clear
mathematical formula describing how parameters should be
adopted during optimization process. However it is easier to
describe expected behavior of an algorithm in form of an if-then

sentence describing situation and expected behavior, e.g.: “If

iteration is small, then explore is intensive” or “if diversity is
small and iteration is big, then explore is less”.

The goal of these paper is to explore possibility of using
fuzzy logic Mamdami-Type inference system to control
exploration/exploitation phase of a Bat Algorithm. To build
Mamdami-Type inference system it is required to: define input
values (and their fuzzification methods), define linguistic
variable and knowledge base in form of an if-then sentence and
define output values (and their defuzzification method). In these
paper as it was introduced in [17] we also use diversity of the
flock, the error of the flock and the iterations themselves as input
parameters. As our output parameter, we choose Q4. We
expect our input and output parameters to be in [0, 1].
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The diversity (dispersion) of the flock is defined by
following equation (3):

2
diversity(t) = % ?:1\/2?:1 (xl-j @) - xj*(t)) 3)
It can be considered as an average Euclidean distance
between each bat and bat representing best solution at the i-th
iteration. Diversity measure degree of dispersion in the flock.
When bats are close to each other the diversity is small.
Diversity to be considered as input to fuzzy inference system
needs to be normalized before, since input must be in [0, 1].
Equation (4) was used to normalize diversity:

normalizedDiversity(t) =
if minDiversity = maxDiversity, 0

(4)

a+B =y
(1)

. . . . . . diversity(t)—minDiversity
if minDiversity # maxDiversity, ——————————

maxDiversity—minDiversity

)

The error of the flock measures the difference between the
flock and the best bat, by averaging the difference between the
fitness of each bat and the fitness of the best bat. It is defined by
following equation (5):

error(t) =% * . (fitness(x;) — fitness(x*)) %)
o +pB =y
(1) (1)

Error in the flock to be considered as input to fuzzy inference
system needs to be normalized, since we expect it to be in [0, 1].
Equation (6) was used to normalize error in the flock:

normalizedError(t) =
if minFitness = maxFitness, 1
if minFitness # maxFitness,w (6)
maxFitness—minFitness
o +pB =y
1) e)
From now on normalizedDiversity(t) and

normalizedError(t) will be referred simply as diversity(t) and
error(t) respectively and Q.4 as Q.

For iteration to be considered as input to fuzzy logic
inference system it needs to be normalized, we used formula (7):

currentlteration

Iteration = — ‘ (7
maximumNumberOflIteration

o +pB =y

)] (1)

Knowledge base for Mamdami-Type inference is in form of
a set of an if-then sentence, where if part is a premise and then
part is conclusion. Each sentence is constructed using linguistic
variables and (possibly) “and/or” connectors and hedges. In
these paper, we consider three linguistic variables diversity,
error and iteration as input to inference system and one output
linguistic variable Q. Each variable can take linguistic values
from set {small, big}. Input and output linguistic values are



fuzzy sets defined on interval [0, 1]. Hence, we expect crisp
input values and output to be in interval [0, 1].

IVV. SIMULATION EXPERIMENTS

To examine how exploration and exploitation phase can be
controlled with fuzzy logic controller in bio-inspired
metaheuristic few simulation experiments were performed.

Parameters of the algorithm were dynamically controlled by
fuzzy Mamdami-Type inference system. First, we examine how
exploration and exploitation can be controlled with knowledge-
base and different input linguistic variable. It was done by
examining how diversity in the flock change over time. More
diversity means algorithm is in exploration phase, where less
diversity in the flock can be determined as exploitation phase.
To reduce influence of local search (line 7, algorithm 2) during
experiments no local search (r!=1)was conducted.
Simulations were performed on well-known test functions, with
computer running on Intel Core i5 class processor, with 8GB of
RAM. Algorithm has been implemented in Java, using
FuzzyL.ite [18] library. Section IV.A briefly introduce used test
functions, section IV.B reports obtained results.

A. Test Functions

Experiments were performed on three well known and
wildly accepted test function for continues real-valued
optimization problems. Used test functions are: Sphere,
Rastrigin and Rosenbrock [16]. In every equation, D will stand
for dimension of the function and X is real valued vector in
search space, ¥ € R”.

First function was standard test function called Sphere. It is
convex, unimodal simple test function for metaheuristics (8),
with global solution at the point ¥ = (0,0, ...,0).

fSphere(f) = %)=1xi2 (®)
oa+p =y
(1) (1)

Second function was Rastrigin’s function. It iS based on
Sphere function (8) by adding sinusoidal modulation what
results as Rastrigin function (9). It is multimodal non-linear
function with global minimum at point ¥ = (0,0, ...,0).

fRastrigin(f) = 10D + Z?:l(xiz — 10cos(2mx;) ©)
o +p =y
(1) (1)

Last was Rosenbrock’s function (10) which has its global
solution at point ¥ = (0,0, ...,0). Rosenbrock’s solution is
located in wide parabolic shaped valley. This makes it very
complicated point to reach by evolutionary methods.
Rosenbrock function is unimodal for D=2,3 while it is
multimodal for more dimensions [19]

fRosenbrock(f) = Z?=_11 100(x;41 — xiz)z +(x; — 1)2
(10)

o +p =7 (1)

(1
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B. Experiments

To examine how exploration and exploitation phase can be
affected by knowledge-base of the inference system and input
variable we execute our algorithm on different test function with
different knowledge-base, each time starting from the same
initial population for one test function. Each time diversity and
average population fit at iteration were reported.

Input linguistic variable iteration, diversity and error were
defined accordingly with terms {big, small} as depicted in Fig.3-
5:

iteration

A small & big

Membership

0.00
0.00

0.10 0.20

0.30

Fig. 3. lteration input variable
diversity
Y & small & big
0.90
0.80
0.70
e
= 0.60
2
2 0.50
E
o
= 940
0.30
0.20
0.10
0.00
£0.20 p.10 0.00 0.10 020 030 040 050 060 0.70 0.80 090 1.00 110 1.20
X
Fig. 4. Diversity input variable
error
o A small & big

Membership

020 .10 0.00 0.10 0.20 030 040 050 060 070 0.80 090 100 1.10 120
X

Fig. 5. Error input variable

Input linguistic variable Q was defined accordingly with
terms {big, small} as depicted in Fig. 6:
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Fig. 6. Q output variable

Four Knowledge-base were examined:

KBI1:= if iteration is small then Q is big”,
,.if iteration is big then Q is small”

KB2:=,.if iteration is small then Q is small”,
,if iteration is big then Q is big”

KB3:= if iteration is small or diversity is small then
Q is big”, ,.if iteration is big or diversity is big

then Q is small”

KB4:= ,,if diversity is small or error is small then Q is big”,
,.if diversity is big or error is big then Q is small”

Corresponding control surface are depicted on Fig. 7.

KB1

KB2

Fig. 7. KB{1,2,3,4} control surface

During the experiments, standard max function was chosen
as “or” operator and Centroid method was chosen as

defuzzification.

Results for Rastrigin function are presented in Fig.8-11.
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Fig. 8. Normalized diversity in the flock and average solution for KB1
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Fig. 10. Normalized diversity in the flock

and average solution for KB3
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Fig. 11. Normalized diversity in the flock

and average solution for KB4

Results for Rosenbrock function are presented in Fig.12-15.

0.60 Normalized divercity in the flock

0.50
0.40

0.30

Value

-
2

0.20

0.10

0‘000 100 200 300 400 500 600 700 800 900 1000

Iteration

Average solution at iteration
3600k
3200k
2800k
2400k

£ 20004
£ Joo0k
1200k
800K
400k

DD 100 200 300 400 500 600 700 800 900 1000
Iteration

Fig. 12. Normalized diversity in the flock and average solution for KB1 for

Rosenbrock function.
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Analyzing figures 8, 12, 16 that shows influence of
knowledge-base KB1 on tested function let us see that flock, as
iteration times go, tend to fly closer together. That behavior is
coherent with our intuitive analysis and understanding of KB.
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Results for Sphere function are presented in Fig.16-19.
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Figures 10, 14, 18 and 11, 15, 19 shows how KB3 and KB4
respectively affect the diversity as iteration time goes.
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0.08 400k
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Rosenbrock | 28.096 5.5234 35.916 6.0601
TABLE II. MEAN AND STANDARD DEVIATION FOR SPHERE, RASTRIGIN
AND ROSENBROCK FUNCTION USING KB3, KB4

KB3 KB4
Function
mean std mean std
Sphere 0.01657 0.01986 0.01744 0.02736
Rastrigin 37.525 8.3211 31.417 6.0132
Rosenbrock | 35.704 6.5570 30.861 5.9652

Analyzing Table 1 and 2 it can be seen that KB1 generate
solutions with less standard deviation within, where solutions
found using KB2 vary from another. The biggest diversity in
reported solutions were generated by KB3.

V. CONCLUSIONS

This paper examines usage of a Knowledge-base Mamdami-
Type inference system to dynamically modify configuration
parameters of a bio-inspired metaheuristic. Four Knowledge-
base build using standard if-then sentence were considered and
their effect on exploration and exploitation phase of the modified
Bat Algorithm has been tested. This paper considers three
linguistic variables as input: diversity, error and iteration in the
flock to fuzzy inference system and one linguistic output Q.
Each linguistic variable can take {small, big} as linguistic
variable. Input and output linguistic variable are defined as fuzzy
sets, with membership functions depicted as it is shown in
Figures 3, 4, 5 and 6. Four different knowledge-base are
considered and corresponding control surface is shown in Figure
7. Three well known and wildly accepted test function for
continues real-valued optimization problems has been used to
test how algorithm behave under different Knowledge-base.
Used test functions are Sphere, Rastrigin and Rosenbrock [15].
Simulation experiments shows that it is possible to incorporate
expert knowledge about the problem at hand and define
expected behaviors of system in form of an if-then sentence. For
example, if operator want (or need) algorithm to have
exploration phase at the beginning and exploitation at the end,
can use KB1. Figure 8, 12 and 16 depict how diversity of the
flock (found solutions) changes during iteration under KB1. For
each different test function (Rastrigin, Rosenbrock, Sphere)
similar behavior can be observed. Initially (iteration is small)
there is big changes in diversity of the solutions pool — which
reflect exploration phase of an algorithm. As iteration times goes
(iteration is big) diversity getting smaller — algorithm starts
exploitation phase. Analyzing Table | and Il with statistical
properties of an algorithm (obtained after 50 rerun of an
algorithm starting with different randomly initialed population),
it can be seen that when search process is controlled with KB1
there is a less deviation in found solution than using KB2. It can
be explained that KB1, as times goes, emphasize exploitation
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phase of a search process, where KB2, as times goes, emphasize
exploration phase — hence bigger deviation within found
solutions. Similar analysis can be conducted for KB3 and KB4
where algorithm dynamically change emphasizes of exploration
or exploitation phase -back and for- during search process as
needed accordingly to provided knowledge-base.
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