ANNALES UMCS INFORMATICA

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 18/01/2026 19:03:18

DOLI: 10.17951/A1.2016.16.2.7

Heterogeneous Indexing Register for Object Database

Michat Chromiak
Institute of Computer Science
Maria Curie-Sktodowska University
Lublin, Poland
e-mail: mchromiak@umcs.pl

Abstract—Even though the object oriented persistent stores
has not gained large commercial adaptation rate, it still is an
interesting research field in many aspects including the data
integration. Persistent data integration is a very challenging goal
in modern computer systems. This paper presents a proposal for
application of effective indexing integration scheme for distributed
and heterogeneous data environment using an object database as
the central store.

Keywords—database; data integration; data; object database

I. INTRODUCTION

The problem of integrating data form distributed data
sources has forced the need for flexible and sound architecture
that could cover all of the integration issues. While such an
architecture could be implemented in numerous flavours and
ways, currently the predominant programming paradigm is the
object-oriented approach. While the object model is not
dominating in the world of persistent data stores, there are some
interesting prototypes that can be potentially interesting in
aspect of applying them towards integration solutions. In case of
central integration register based on idea of Qboid [1,2] such an
object-oriented store seems a natural and effective choice. This
paper discusses advantages of using the object store model (AS)
originated form ODRA prototypical database for implementing
central integrating register. It also presents a possible adaptation
and exemplary implementation of the Qboid-based integration
data model using object store model.

Il. THE INTEGRATION

The need for integration of resources forces, along many
others, a consideration of the heterogeneity problem. First the
heterogeneous term must be explained for the needs and scope
of this paper.

Let us assume we have an environment of multiple (remote)
heterogeneous (many vendor origin) database servers. There
are two different areas that need to be covered. The location
transparency and the distribution details. In other words this can
be referred to as an answer to questions “how the data can be
obtained and where from ? .

While considering integration in such conditions there is a
strong need for separation of global access interface from local
implementation of a data source. The first — “how”- issue

requires an approach that would make the access to piece of a
data possible in a common way regardless of its location. This
problem could be solved by building a broker mechanism that
would cover all the particularities regarding requirements for
remote access. A broker would hide the location of a resource
and the location specific access method from a client. Such
client request might be remote, out on the network somewhere,
but it also might be local, in the same process as the calling
client. Therefore this could be the solution to heterogeneous
access for numerous local data models.

Second issue can be addressed by dint of a resource
integrator. The integratior would have to be a storage area
supplying each request within environment containing an
unambiguous information about address of every piece of
requested resource form within the environment.

By dint of the distribution details from the resource
integrator the entire requested data portion can be assembled
into one resource map and then accessed separately,
respectively to their data model, thanks to the interfaces
provided by the broker mechanism. A resource map would
mean here a lookup table that “maps” an ID of the piece of
information to a value representing it unambiguously. The
model for this storage would have to cope with complex details
and behaviors required by the nature of integration metadata. In
the following section this kind of mechanism for object store
has been proposed.

I1l. MOTIVATION FOR OBJECT MODEL

The integration always requires means to persist the
integrated data or its metadata in some way. An object database
seems a good choice. This is not only to its flexibility, but
mainly due to lack of impedance mismatch issues. The object
nature presented by the ODMG standard [3] for object
databases or database-related Java technologies [4, 5, 6],
despite significant role of object-oriented solutions in the
remaining areas of software development, have not become
greatly important in the industry. However, an interesting
approach has been developed aside the general standards. The
Stack Based Approach (SBA), has introduced existing object-
oriented mechanisms (classes, encapsulation, inheritance,
polymorphism, objects) for database programming. Moreover
by applying the SBA, some additional mechanisms have been

introduced, like the dynamic object roles [8, 9] or interfaces on
the database views [10, 11].

Regarding the complex nature of integration metadata, its
retrieval and modification requires sound tools. The answer to
this need is a query language. It is the second argument for
utilizing the SBA, meaning its powerful query language
extended to a programming language i.e. SBQL (Stack Based
Query Language). As the most important feature of the ODRA
(Object Database for Rapid Application development)
prototype SBA implementation, SBQL alone makes it possible
to create fully fledged database-oriented applications. In the
case of such solution the development of database application
tasks with just one, very high level language, can greatly
improve programmers’ efficiency and software stability along
the development life cycle and supports complex queries.

Obiject itself is an abstract entity representing or describing
some idea existing in a real world. Object is distinguishable
from other objects with its unique name and distinct limits.

Important aspect of an object is that it do not assume a need
for determining an attribute (or a set of attributes) that identifies
the object in an unambiguous way (so called “primary key”) as
it takes place in case of relational model. The object has its
identity — OID — unrelated to object’s state, content nor other
objects. However OID is unique across entire system.

Apart from unique OID object has name that is a handle to
this object. The name of an object does not have to be unique
(we can create multiple objects named Entity, Schema, Row,
Cell etc.).

According to ODMG model, this property name is a
collection of objects, where the name is the name of entire
collection not just the single element. In the discussed model
we will assume that each and every object has its hame e.g.
Row, but there will be possibility to group entire collection as
one object named Schema.

In aspect of Qboid-based integration it is very important that
object might constitute multiple states that depends on current
values combination due to dynamic nature of integrated sources
which change their state continuously. Those changes must be
reflected in the integration architecture in a sound, robust and
elastic manner. It is required for the integration perspective to
be an up-to-date view of the integrated resource grid.

Every object has state represented as a combination of its
components, mainly values of all attributes and references to
other objects. The state of an object can change in time. In our
approach to represent the integration characteristics and nature
of dynamically changed environment, we will discuss below
some of the attributes that can be utilized to make the standards
describing each course fit the store model.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 18/01/2026 19:03:18

e Atomic attribute: such as the integration pattern
symbolic name. It includes exactly one value, which is
indivisible from the point of view of a user byt states a
role of e.g. unique discriminator for integration model
entities

e Complex attribute: such as each record/row. It includes
many atomic values. It has hierarchic structure where
each branch of the hierarchy has its name (e.g. data
source address, database name id, schema of origin)

e Pointer attribute: contains a value pointing to the
adequate OID of referenced object which in integration
domain can be a replica of an object or a different
fragmentation pattern, still representing the same
information value of the pointing object

e Repetitive attribute: it include a variable in time number
of values. Those values can be of atomic, complex or
pointer type (e.g. list of replicas that state the same
semantic value)

e Optional attribute: in a particular instance of an object it
can have a value but it is not mandatory this is when a
potential replica for e.g. record can be replicated but the
replication is not required along the integrated grid

e Derivative attribute: value that derives from other
attributes; such as back-referencing, when a object refers
back to the object that points it but is on the other hand,
higher In object hierarchy

e Class attribute: value that is common to a set of objects
belonging to the same class e.g. representing the same
data schema

This list is not complete. However the rule of object relativity
mentions that every object can be composed out of unlimited
number of sub-objects. This way every attribute is an object.
Moreover, each attribute has its type. Therefore, the
combination of attributes' types is the type of an object

A. Abstract Store Model

To introduce the integration data information to object-
oriented manner store, working with the SBA prototype
implementation there is a need for adopting at least the simplest
store model i.e. ASO [5]. In contrast to relational model, object
model require to use far more concepts. There is also different
understanding for many terms. Therefore, it is hard to introduce
a model that can be simple and at the same time applicable for
all cases equally. The SBA includes the whole hierarchical
family of store models each responsible for extending the
possibilities of the predecessor but all basing on the same
semantic base. For the purpose of this paper we mention only
the most basic but sufficient for this appliance model — ASO.

The ASO can cover arbitrarily connected hierarchical data
structures. However, it does not include the aspects of the class,
inheritance or interface. It was originally designed to express
the semantics of relational query languages. What is the
essential part of it, is the possibility of representing
semistructural data in general and the XML data structures in
particular.

Regarding this store model we will assume the object
relativity rule and related to it rule for the inner identification.
First one has already been mentioned in previous section.
Second rule states that every object that can be a component of
different object has to include its own unique inner identifier.

Let us explain some basic terms:

e Inner identifier of an object. It is given automatically
by the system and cannot be used in the semantics of
the outer manipulation of the objects. Its purpose is to
identify objects stored in memory.

e Outer object name. In contrast to inner identifier this
name is created by the system designer, administrator
or a programmer. It is linked to conceptual model of
The application working with ASO based store.
Moreover, it involves the use of informal semantics for
the outer processes e.g. The name can be Row or
Tuple. The outer object name such as Row does not
have to be unique.

e Atomic value. It is a kind of object value that is
Indivisible from the point of view of the creator Hence
not including any parts.

Identifiers are marked as i, the names as n and the atomic
values with the letter v.

In ASO every object contains unique inner identifier, outer
name and the value that can be atomic, pointer or complex. We
will the objects by the following definition. The object is a
triple:

e <i, n,v>-when the object is going to be atomic

e <iy, n, iz> - when the object is going to be a pointer or
a reference object. This object is identified thanks to i1
where the i is the pointer value of the object being a
reference to other object.

e <i, n, T> where the T is a set of any type of objects.
This object we will call a complex object. This rule is
recursive, therefore enabling building objects with
unlimited complexity and number of hierarchy levels

In ASO the data store is defined as pair <S, R> where the S
is a set of objects and the R is a set of object ids also named as
the staring identifiers.

The R set sets the starting points for the data store i.e. those
objects that can be a starting point for the navigation in the
entire set of objects. Most often those objects would be just
simply the ones that are in the main level of the object hierarchy
i.e. those that are not included as part of the other objects

There are few rules regarding the data store that has to be
complied:

e each and every object, sub-object, etc. in data store has
its unique identifier
o if there is a pointer object <iy, n, i.>, then the pointed
object iy has to exist.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 18/01/2026 19:03:18

e each and every identifier from the R set is an identifier
of some object located in store

IVV. THE ARCHITECTURE

Integration is a very complex and multilevel challenge. It
requires an effective and elastic approach that must conform
some unified workflows and strict rules. Thus, mechanism
needed for managing this infrastructure needs a creation of a
dedicated architecture.

There are a couple of issues that has been considered to
satisfy such a challenging requirements to provide the solution
of the problem.

e Server-based integration, is something that would
involve centralized management, based on some kind of
broker, and at the same time an integrator, while
dedicating the server for the purpose of routing requests
from clients to data resource

e The initial integration scheme must be applicable and
elastic to fit more than one dedicated data source server

e The central instance of integration should be able to
become decomposed into a multi-node infrastructure,
possibly a cloud, or a microservice based central
instance

e The architecture involving integrator and broker in each
location node though seems the most challenging since
the reduction of flaws regarding the centralized or only
partially distributed environment (e.g. low fault
tolerance and traffic overhead). In this case the
architecture would have to be multiclient/multi-server
like, so that each machine could be a client and a server
relatively to the status of a request i.e. sending or
receiving.

While focusing on database area, the problem can still be
considered valid regarding integration of BigData unstructured
sources. The goal is to enable easy access to such a
heterogeneous environment’s data from within ODRA-based
integration server using its object-oriented query language —
SBQL- indistinguishably of the data model and location.
Therefore, let us start from centralized, ODRA side
management of the distributed databases.

A. The solution

At first, let us presume, we have a simple communication
scheme i.e. an ODRA server and one legacy database to
represent its data in integration view. We have to face the
problem of data model of a legacy DB. This problem can be
handled by object-relational wrapper. Nevertheless, while the
number of legacy databases increases, the communication
scheme becomes more complex. Therefore, there is a need for
a integration mechanism. In this case, the ODRA is assumed to
be a client i.e. a process that makes calls to objects located on a
remote, legacy DB server or within the ODRA client.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 18/01/2026 19:03:18

B. General Idea

In this section the general architecture components and their
role is explained and motivated. Let us introduce the basic
facilities utilized in distributed, heterogeneous environment
(see Fig.1.):

Object Location Integrator (OLI) —is a component
that is responsible for collecting and storing
information about data fragmentation and replication
across the integrated legacy data sources. Moreover, it
enables access to the Broker and would also be
responsible for storing unified index representation
Broker - facility storing the fast, native access
methods for each grid integrated data source objects
Client — is the party sending requests to OLI for
integrated data entities form within the index present
in OLI. The part of the client responsible for sending
those requests would be a module compatible with
OLl.
o Inthis case the client could be any human or
software party calling the integration REST
APl available at ODRA-based integration
facility. However, any DBMS could be
plugged in the OLI as long as they contain
dedicated compatibility module. As the OLI
would store the universal index
representation, dedicated module would have
to be responsible for transforming this
representation into a native ODRA index.
One should be aware that ODRA is an
example of an object-oriented database
which on specification change can freely be
swapped with other database engine with
different paradigm. Obviously in such case,
the new paradigm particularities must be
considered for a well designed index to work.
o The transformation into ODRA index would
have to face two problems:
= how to transform the structure of the
universal index into the native
clientmanageable form (utilize the
native ODRA index structure)
= provide the facility for interpreting
and sending the grid integrated
legacy DB access methods for
reaching the specific data source
objects and then receiving the
results. This results would be
composed into native client index
form, according to the index
scheme, build out of the universal
OLI index.

Legacy data source — the grid node providing partial
data for the global OLI data integration scheme. It
would have to include the data source specific access
wrapper and the mediator capable of maintain
communication between the grid node and the OLI.

o Wrapper — data source dedicated software
process combining the legacy data model and
interface of the integrated data source to the
mediator level of integration

o Mediator - responsible for integrating
multiple data source wrappers per each
machine. Mediators would be responsible for
sending the registration information of the
underlying data sources, monitoring their
up/down state. Moreover, the mediator take
part in passing client requests for particular
data records from each of its underlying data
sources. Those requests would be partial
client requests for distributed and indexed
data

What requires explanation is the description of this process
along its lifecycle:

1.

OLI/Broker initialization - could be considered as
ODRA heterogeneous index (H-Index) module(s) or
as standalone processes.

Each network data source that is to be integrated into
grid, continues with the process of registration:

a. [Each machine needs to start the mediator
infrastructure i.e. equip the Mediator with the
underlying data schemata and its fast access
methods.

b. (Fig. 1. pos.1) In the beginning, establishing
connection between OLI and Mediator takes
place. Next the Mediator sends the
underlying data sources schemes and fast
access methods (FAMSs) for accessing each
data scheme part.

c. (Fig. 1. pos.2) The received schemes are
stored at OLI and the database object
reference (DORs) (including the native fast
access method — FAM) are moved to Broker
which is treated as a DOR1* store. OLI would
store only DOR reference to broker named
rDOR.

(Fig. 1 pos. 3-5.) Along the registration, at a time when
a data entity (e.g. DB table) in OLI occurs to be a
complete snapshot of its present state in the grid22 (i.e.
all its records has been registered within the OLI), the
indexing towards this snapshot can be evaluated.

! Database Object Reference a structure for introducing
distributed data access method

2 This information is available thanks to administrative
configuration (horizontal fragmentation; administrator could
point the grid nodes to participate in the data entity horizontal

10

integration) and data definition scheme (vertical fragmentation)
present in the Qboids. When vertical fragmentation matches the
data definitions and all the of the pointed nodes are involved
then the index creation can be conducted.

The index creation selects the right parts of the
integrated data scheme i.e. those that carries the index
information and forms table consisting of the indexed
values, their unique records’ ids (i.e. best record ids —
BRIs) and access methods. Transformation of such
sequence of triplets, yields the list of records with their
access methods combined with BRIs, grouped
together per each indexed value/range. As already
mentioned in 2c) OLI would have store only rDORs.
However, for the purpose of forming universal index
and reaching for actual values, they would have to be
replaced by DORs (storing the detailed data) from the
broker. In this phase we acquire an universal index
structure for a client requested type of index i.e. dense,
range etc.

(Fig. 1. pos.6.) At this stage, the clients’ heterogeneous
index (or, H-Index) module can use the universal
index to incorporate its information into native index.
The process however, is not over yet, because the
client will only possess the information about the
index’s grid details and DORs, but it will still not
include the indexed records explicitly (pos.7.).

This part could be
standalone imlpementation | =
Legey DB
~type 1
I rec

i
T store DORs 9. Quary|for index resull record

"G | Regstatons ¥ Mediator L?g;‘y)eOZB

duery for index result record

Mediator

‘LegcyDBx
{ Mediator |
(("l(| -Iype3

9. Query for index result record

10. Resuit object
-
i T
B call
RA ”~hde’l;
"H Return
Ty index

call
result

heterogeneous index creation and utilization

Fig. 1 General schema of

Storing the grid details of the data distribution in the native
index will force the native index, while reaching for a record,
to call for a procedure that can return the explicit values
presented in such record (pos. 8.). Therefore, before making the
native index available for use in native client requests, all of the
DORs found in such index would have to be send to a remote
process able to transform each record and hand it over to native
index in form of a complete and explicit database record, that
can be further utilized by regular index mechanisms. This is the
responsibility of the H-Index module. It would send (pos. 9.)
the access queries to the appropriate grid nodes mediators.
Next, according to the possessed implicit index structure
scheme, the received results (pos. 10.) would have been utilized
to build each record. In case of ODRA it would have been a
regular ODRA database object. Fig.1. General schema of
heterogeneous index creation and utilization. This object can be

11

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 18/01/2026 19:03:18

incorporated into ODRA index as a part of the ultimate native
index, composed out of the H-Index received results.

V. OBJECTS FOR INTEGRATION

The general goal of integration must conform some way of
unification for integrated resources’ data. To use the ASO model
for the purpose of storing integration data let us adopt the
schema proposed in [2] for ASO model.

A. Distributed Data Structure Map

Each legacy data source intuition and general schema would
have to be devised. In [2] the distributed resource universal map
has been introduced to represent three basic issues of
integration — namely replication, vertical and horizontal
fragmentation. Basing on some technical best row id (BRI) each
record that is to be considered information equivalent in terms
of semantic meaning along integration view assumptions shares
the same BRI.

Conceptually each data source might get its own
representation of record while still sharing BRI. This way one
BRI might reflect multiple replications, and as the record might
be arbitrary composed, also vertical fragmentations. The
horizontal fragmentation in considered in record groups as the
higher orders of composition within the Qboid concept.

Cuboid ID |
BRI Attr 1 | Atir 2 | Atr 3

S
PSS ca—

i B ' 1
[Sl - -
o o — _}

——
L
—
it

Fig. 2 Qboid build based on BRI matching

B. Example

Let us assume that the object-oriented model ASO is going
to store information on users. The general schema contains
name, email address and age. Now this information is expected
to be scattered across multiple data sources. In Listing 1. an
exemplary schema for integrating such information is being
exemplified:

<el, entity, {
<ul, users, {
<recGrl, recGr, rDOR 1tol0O DBl > # ID 1tolO
<recGr2, recGr, { # ID 13
<nl3, name, rDOR DB2 13 name>
<eml3, emailAddress, {
<113, login, rDOR DB20 13 login>

<d13, domain, rDOR DB21 13 domain>

}

>
<al3, age, rDOR _DB2_ 13 age>
}

>
<u2, users, {

<recGr3, recGr, rDOR 1tol0 DB100 >
<recGr4,

}

recGr, recGr2 >

>
<u3, users, {

<recGr3, recGr, {recGrl, recGr2 } >

}

<u4, users, recGr2>

>

Listing 1. Exemplary ASO utilization to represent the integrated data

We can observe here the exemplary schema being configured
according to the system integrating specification. The general
top level object, according to ASO, is representing the entity.
Entity is a general purpose instance in integration scheme that
represents conceptually equivalent term as a table might be.
However, entity is also responsible for storing potential replicas
and mixed fragmentation patterns of the integration
perspective. In the presenting Listingl. The entity represents
users as an domain entity that covers thirteen users. The entity
is designed as a complex object with id, name and a set of
objects representing entity, which in this case are users. Each
user is also represented by a complex object with its unique id,
name and list of complete user characteristics. In case of ul
object it is responsible for representing users form mixed
fragmentation pattern; one horizontal, and one vertical
fragmentation pattern. The first — horizontal — pattern is
represented by recGrl and recGr2 object. The recGrl object is
an atomic object storing only the requested rDOR for ten users
stored at the data source DB1, while the recGr2 object is a
complex object representing additionally vertical fragmentation
within the emailAddress complex object for use with id 13.
Even though the recGr2 represent a single entity record, it is
still required to bound the wvertical but also horizontal
fragmentation of the specific user data. For user with id 13 one
can easily find the horizontal fragmentation due to its name and
email address being stored in a completely different data
sources (DB2 and DB20, DB21). Additionally the email
address itself must be bind with use of vertical fragmentation
pattern, which in this case states that the user login is stored at
DB20 while the adequate domain must be reached form data
source referenced as DB21. Additionally the age attribute as a

12

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 18/01/2026 19:03:18

third field of the recGr2 complex object is also stored at the
same database as its name, i.e. DB2.

What is more, the user pattern is not the only integration
challenge that need to be faced. Along the integration process
one has to be aware of the replications that can occur on
multiple integrated sources regardless of their physical
independence. For instance one can easily imagine that the
same company's employee is present in HR database, IT
department database and the JIRA database. While still being
the same employee for the company the context of the data
source is completely different in this case. Therefore. The
additional entity instances are represented along the Listingl.

The u2 and u3 represent the same, or almost the same set of
information on the users. However, the nature of replication is
somewhat different. While in case of u2 object it is a complex
object representing the same data as ul, however the u2 has
different data source (DB100) for users with id 1-10 while the
recGr2 becomes a reference object (recGr4) pointing to the
recGr2, meaning that there is the same algorithm to combine its
content. This design enable future proofing towards enabling
future load balancing while accessing users with id 1-10 which
in this case can be retrieved from two different sources
automatically and transparently.

The object u3 is a complex object with reference types
towards ul components. The u3 object here provides the ul
functionality and at the same time without replicating nor
disclosing the ul details.

On the other hand the case of u4 is quite different. In this
case we can see that while it enables referring to the users,
however it provides only data only for one user with id 13.
Additionally the details of this user access methods are not
disclosed towards the requesting party. This specific behavior
provides two benefits. Firstly the entity designer might decide
to disclose only the u4 limited user database access, secondly
due to reference object the contact details for the actual object
are not disclosed and are only available for the party with
privileges sufficient to disclose the recGr2 user details
originating in ul.

VI. CONCLUSIONS

The goal for this paper was to enable a prototype object
oriented integration scheme based on ASO object model
originating from prototypical object-oriented database. It has
been proven that even relatively simple object model can be
adapted and successfully used for representing integration
metadata for Qboid based integration architecture. However,
one can easily proceed with extending the ASO, which covers
relational, nested-relational and XML-oriented databases. ASO
assumes hierarchical objects with no limitations concerning the
nesting of objects and collections, pointer links (relationships)
between objects. Moreover, in case the ASO if model is to be
considered insufficient additional research can be done to
provide all of the goodness of the complete objectoriented

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 18/01/2026 19:03:18

model including classes and static inheritance, object roles and
dynamic inheritance, or encapsulation. The SBA assumes just
right store models in form of AS1, AS2 and AS3 to provide this
complete set of object related features. Additionally, such an
extension would give not only all of the possibilities of a object
oriented approach, but also gains that a database engine provide
towards data storing, such as persistence, durability, high
availability, reliability with transactions.

REFERENCES

[1] Michal Chromiak, Piotr Wisniewski i Krzysztof Stencel. “A
Universal Cuboid-Based Integration Architecture for
Polyglotic Querying of Heterogeneous Datasources”. W:
Beyond Databases, Architectures and Structures - 11th
International Conference, BDAS 2015, Ustron, Poland,
May 26-29, 2015, Proceedings. 2015, s. 170-179. doi:
10.1007/978-3- 319-18422-7_15

[2] Michal Chromiak i Krzysztof Stencel. “A Data Model for
Heterogeneous Data Integration Architecture”. W: Beyond
Databases, Architectures, and Structures - 10th
International Conference, BDAS 2014, Ustron, Poland,
May 27-30, 2014. Proceedings. 2014, s. 547-556.
d0i:10.1007/978-3-319-06932-6_53.

[3] Cattell R. G. G., Barry D. K., The Object Data Standard:
ODMG 3.0. Morgan

[4] Cook W. R., Rosenberger C., Native Queries for Persistent
Objects A Design White Paper (2006);
http://www.db40.com/about/productinformation/whitepape
rs/Native %20Queries%20Whitepaper.pdf

[5] Lentner M., Subieta K., ODRA: A Next Generation Object-
Oriented Environment for Rapid Database Application
Development Advances in Databases and Information
Systems, 11th East European Conference, ADBIS 2007,
September 29-October 3, 2007, Proceedings., LNCS 4690,
Springer, ISBN 978-3-540-75184-7 (2007): 130

[6] Hibernate - Relational Persistence for Java and .NET.
http://www.hibernate.org/ (2006).

[7] Subieta K., Theory and Construction of Object-Oriented
Query Languages. PJIIT — Publishing House, ISBN 83-
89244-28-4 (2004), 522 pages (in Polish).

[8] Albano A., Bergamini R., Ghelli G, Orsini R., An Object
Data Model with Roles. Proc. VLDB Conf. (1993): 39.

[9] Jodlowski A., Habela P., Plodzien J., Subieta K., Objects
and Roles in the Stack-Based Approach.Proc. DEXA Conf.,
Springer LNCS 2453 (2002).

[10] Kozankiewicz H., Updateable Object Views. PhD Thesis
(2005);

[11] Kozankiewicz H., Leszczylowski J., Subieta K.,
Updateable XML Views. Proc. of ADBIS’03, Springer
LNCS 2798 (2003): 385.

13

http://www.tcpdf.org

