
 ANNALES UMCS INFORMATICA DOI: 10.17951/AI.2016.16.2.7

7

Heterogeneous Indexing Register for Object Database

Michał Chromiak

Institute of Computer Science

Maria Curie-Skłodowska University

Lublin, Poland

e-mail: mchromiak@umcs.pl

Abstract—Even though the object oriented persistent stores

has not gained large commercial adaptation rate, it still is an

interesting research field in many aspects including the data

integration. Persistent data integration is a very challenging goal

in modern computer systems. This paper presents a proposal for

application of effective indexing integration scheme for distributed

and heterogeneous data environment using an object database as

the central store.

Keywords—database; data integration; data; object database

I. INTRODUCTION

The problem of integrating data form distributed data
sources has forced the need for flexible and sound architecture
that could cover all of the integration issues. While such an
architecture could be implemented in numerous flavours and
ways, currently the predominant programming paradigm is the
object-oriented approach. While the object model is not
dominating in the world of persistent data stores, there are some
interesting prototypes that can be potentially interesting in
aspect of applying them towards integration solutions. In case of
central integration register based on idea of Qboid [1,2] such an
object-oriented store seems a natural and effective choice. This
paper discusses advantages of using the object store model (AS)
originated form ODRA prototypical database for implementing
central integrating register. It also presents a possible adaptation
and exemplary implementation of the Qboid-based integration
data model using object store model.

II. THE INTEGRATION

The need for integration of resources forces, along many

others, a consideration of the heterogeneity problem. First the

heterogeneous term must be explained for the needs and scope

of this paper.

Let us assume we have an environment of multiple (remote)

heterogeneous (many vendor origin) database servers. There

are two different areas that need to be covered. The location

transparency and the distribution details. In other words this can

be referred to as an answer to questions “how the data can be

obtained and where from ? ”.

While considering integration in such conditions there is a

strong need for separation of global access interface from local

implementation of a data source. The first – “how”- issue

requires an approach that would make the access to piece of a

data possible in a common way regardless of its location. This

problem could be solved by building a broker mechanism that

would cover all the particularities regarding requirements for

remote access. A broker would hide the location of a resource

and the location specific access method from a client. Such

client request might be remote, out on the network somewhere,

but it also might be local, in the same process as the calling

client. Therefore this could be the solution to heterogeneous

access for numerous local data models.

Second issue can be addressed by dint of a resource

integrator. The integratior would have to be a storage area

supplying each request within environment containing an

unambiguous information about address of every piece of

requested resource form within the environment.

By dint of the distribution details from the resource

integrator the entire requested data portion can be assembled

into one resource map and then accessed separately,

respectively to their data model, thanks to the interfaces

provided by the broker mechanism. A resource map would

mean here a lookup table that “maps” an ID of the piece of

information to a value representing it unambiguously. The

model for this storage would have to cope with complex details

and behaviors required by the nature of integration metadata. In

the following section this kind of mechanism for object store

has been proposed.

III. MOTIVATION FOR OBJECT MODEL

The integration always requires means to persist the

integrated data or its metadata in some way. An object database

seems a good choice. This is not only to its flexibility, but

mainly due to lack of impedance mismatch issues. The object

nature presented by the ODMG standard [3] for object

databases or database-related Java technologies [4, 5, 6],

despite significant role of object-oriented solutions in the

remaining areas of software development, have not become

greatly important in the industry. However, an interesting

approach has been developed aside the general standards. The

Stack Based Approach (SBA), has introduced existing object-

oriented mechanisms (classes, encapsulation, inheritance,

polymorphism, objects) for database programming. Moreover

by applying the SBA, some additional mechanisms have been

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 18/01/2026 19:03:18

UM
CS

8

introduced, like the dynamic object roles [8, 9] or interfaces on

the database views [10, 11].

Regarding the complex nature of integration metadata, its

retrieval and modification requires sound tools. The answer to

this need is a query language. It is the second argument for

utilizing the SBA, meaning its powerful query language

extended to a programming language i.e. SBQL (Stack Based

Query Language). As the most important feature of the ODRA

(Object Database for Rapid Application development)

prototype SBA implementation, SBQL alone makes it possible

to create fully fledged database-oriented applications. In the

case of such solution the development of database application

tasks with just one, very high level language, can greatly

improve programmers’ efficiency and software stability along

the development life cycle and supports complex queries.

Object itself is an abstract entity representing or describing

some idea existing in a real world. Object is distinguishable

from other objects with its unique name and distinct limits.

Important aspect of an object is that it do not assume a need

for determining an attribute (or a set of attributes) that identifies

the object in an unambiguous way (so called “primary key”) as

it takes place in case of relational model. The object has its

identity – OID – unrelated to object’s state, content nor other

objects. However OID is unique across entire system.

Apart from unique OID object has name that is a handle to

this object. The name of an object does not have to be unique

(we can create multiple objects named Entity, Schema, Row,

Cell etc.).

According to ODMG model, this property name is a

collection of objects, where the name is the name of entire

collection not just the single element. In the discussed model

we will assume that each and every object has its name e.g.

Row, but there will be possibility to group entire collection as

one object named Schema.

In aspect of Qboid-based integration it is very important that

object might constitute multiple states that depends on current

values combination due to dynamic nature of integrated sources

which change their state continuously. Those changes must be

reflected in the integration architecture in a sound, robust and

elastic manner. It is required for the integration perspective to

be an up-to-date view of the integrated resource grid.

Every object has state represented as a combination of its

components, mainly values of all attributes and references to

other objects. The state of an object can change in time. In our

approach to represent the integration characteristics and nature

of dynamically changed environment, we will discuss below

some of the attributes that can be utilized to make the standards

describing each course fit the store model.

• Atomic attribute: such as the integration pattern

symbolic name. It includes exactly one value, which is

indivisible from the point of view of a user byt states a

role of e.g. unique discriminator for integration model

entities

• Complex attribute: such as each record/row. It includes

many atomic values. It has hierarchic structure where

each branch of the hierarchy has its name (e.g. data

source address, database name id, schema of origin)

• Pointer attribute: contains a value pointing to the

adequate OID of referenced object which in integration

domain can be a replica of an object or a different

fragmentation pattern, still representing the same

information value of the pointing object

• Repetitive attribute: it include a variable in time number

of values. Those values can be of atomic, complex or

pointer type (e.g. list of replicas that state the same

semantic value)

• Optional attribute: in a particular instance of an object it

can have a value but it is not mandatory this is when a

potential replica for e.g. record can be replicated but the

replication is not required along the integrated grid

• Derivative attribute: value that derives from other

attributes; such as back-referencing, when a object refers

back to the object that points it but is on the other hand,

higher In object hierarchy

• Class attribute: value that is common to a set of objects

belonging to the same class e.g. representing the same

data schema

This list is not complete. However the rule of object relativity

mentions that every object can be composed out of unlimited

number of sub-objects. This way every attribute is an object.

Moreover, each attribute has its type. Therefore, the

combination of attributes' types is the type of an object

A. Abstract Store Model

To introduce the integration data information to object-

oriented manner store, working with the SBA prototype

implementation there is a need for adopting at least the simplest

store model i.e. AS0 [5]. In contrast to relational model, object

model require to use far more concepts. There is also different

understanding for many terms. Therefore, it is hard to introduce

a model that can be simple and at the same time applicable for

all cases equally. The SBA includes the whole hierarchical

family of store models each responsible for extending the

possibilities of the predecessor but all basing on the same

semantic base. For the purpose of this paper we mention only

the most basic but sufficient for this appliance model – AS0.

The AS0 can cover arbitrarily connected hierarchical data

structures. However, it does not include the aspects of the class,

inheritance or interface. It was originally designed to express

the semantics of relational query languages. What is the

essential part of it, is the possibility of representing

semistructural data in general and the XML data structures in

particular.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 18/01/2026 19:03:18

UM
CS

9

Regarding this store model we will assume the object

relativity rule and related to it rule for the inner identification.

First one has already been mentioned in previous section.

Second rule states that every object that can be a component of

different object has to include its own unique inner identifier.

Let us explain some basic terms:

• Inner identifier of an object. It is given automatically

by the system and cannot be used in the semantics of

the outer manipulation of the objects. Its purpose is to

identify objects stored in memory.

• Outer object name. In contrast to inner identifier this

name is created by the system designer, administrator

or a programmer. It is linked to conceptual model of

The application working with AS0 based store.

Moreover, it involves the use of informal semantics for

the outer processes e.g. The name can be Row or

Tuple. The outer object name such as Row does not

have to be unique.

• Atomic value. It is a kind of object value that is

Indivisible from the point of view of the creator Hence

not including any parts.

Identifiers are marked as i, the names as n and the atomic

values with the letter v.

In AS0 every object contains unique inner identifier, outer

name and the value that can be atomic, pointer or complex. We

will the objects by the following definition. The object is a

triple:

• <i, n, v> - when the object is going to be atomic

• <i1, n, i2> - when the object is going to be a pointer or

a reference object. This object is identified thanks to i1

where the i2 is the pointer value of the object being a

reference to other object.

• <i, n, T> where the T is a set of any type of objects.

This object we will call a complex object. This rule is

recursive, therefore enabling building objects with

unlimited complexity and number of hierarchy levels

In AS0 the data store is defined as pair <S, R> where the S

is a set of objects and the R is a set of object ids also named as

the staring identifiers.

The R set sets the starting points for the data store i.e. those

objects that can be a starting point for the navigation in the

entire set of objects. Most often those objects would be just

simply the ones that are in the main level of the object hierarchy

i.e. those that are not included as part of the other objects

There are few rules regarding the data store that has to be

complied:

• each and every object, sub-object, etc. in data store has

its unique identifier

• if there is a pointer object <i1, n, i2>, then the pointed

object i2 has to exist.

• each and every identifier from the R set is an identifier

of some object located in store

IV. THE ARCHITECTURE

Integration is a very complex and multilevel challenge. It

requires an effective and elastic approach that must conform

some unified workflows and strict rules. Thus, mechanism

needed for managing this infrastructure needs a creation of a

dedicated architecture.

There are a couple of issues that has been considered to

satisfy such a challenging requirements to provide the solution

of the problem.

• Server-based integration, is something that would

involve centralized management, based on some kind of

broker, and at the same time an integrator, while

dedicating the server for the purpose of routing requests

from clients to data resource

• The initial integration scheme must be applicable and

elastic to fit more than one dedicated data source server

• The central instance of integration should be able to

become decomposed into a multi-node infrastructure,

possibly a cloud, or a microservice based central

instance

• The architecture involving integrator and broker in each

location node though seems the most challenging since

the reduction of flaws regarding the centralized or only

partially distributed environment (e.g. low fault

tolerance and traffic overhead). In this case the

architecture would have to be multiclient/multi-server

like, so that each machine could be a client and a server

relatively to the status of a request i.e. sending or

receiving.

While focusing on database area, the problem can still be

considered valid regarding integration of BigData unstructured

sources. The goal is to enable easy access to such a

heterogeneous environment’s data from within ODRA-based

integration server using its object-oriented query language –

SBQL- indistinguishably of the data model and location.

Therefore, let us start from centralized, ODRA side

management of the distributed databases.

A. The solution

At first, let us presume, we have a simple communication

scheme i.e. an ODRA server and one legacy database to

represent its data in integration view. We have to face the

problem of data model of a legacy DB. This problem can be

handled by object-relational wrapper. Nevertheless, while the

number of legacy databases increases, the communication

scheme becomes more complex. Therefore, there is a need for

a integration mechanism. In this case, the ODRA is assumed to

be a client i.e. a process that makes calls to objects located on a

remote, legacy DB server or within the ODRA client.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 18/01/2026 19:03:18

UM
CS

10

B. General Idea

In this section the general architecture components and their

role is explained and motivated. Let us introduce the basic

facilities utilized in distributed, heterogeneous environment

(see Fig.1.):

• Object Location Integrator (OLI) – is a component

that is responsible for collecting and storing

information about data fragmentation and replication

across the integrated legacy data sources. Moreover, it

enables access to the Broker and would also be

responsible for storing unified index representation

• Broker - facility storing the fast, native access

methods for each grid integrated data source objects

• Client – is the party sending requests to OLI for

integrated data entities form within the index present

in OLI. The part of the client responsible for sending

those requests would be a module compatible with

OLI.

o In this case the client could be any human or

software party calling the integration REST

API available at ODRA-based integration

facility. However, any DBMS could be

plugged in the OLI as long as they contain

dedicated compatibility module. As the OLI

would store the universal index

representation, dedicated module would have

to be responsible for transforming this

representation into a native ODRA index.

One should be aware that ODRA is an

example of an object-oriented database

which on specification change can freely be

swapped with other database engine with

different paradigm. Obviously in such case,

the new paradigm particularities must be

considered for a well designed index to work.

o The transformation into ODRA index would

have to face two problems:

▪ how to transform the structure of the

universal index into the native

clientmanageable form (utilize the

native ODRA index structure)

▪ provide the facility for interpreting

and sending the grid integrated

legacy DB access methods for

reaching the specific data source

objects and then receiving the

results. This results would be

composed into native client index

form, according to the index

scheme, build out of the universal

OLI index.

1 Database Object Reference a structure for introducing

distributed data access method
2 This information is available thanks to administrative

configuration (horizontal fragmentation; administrator could

point the grid nodes to participate in the data entity horizontal

• Legacy data source – the grid node providing partial

data for the global OLI data integration scheme. It

would have to include the data source specific access

wrapper and the mediator capable of maintain

communication between the grid node and the OLI.

o Wrapper – data source dedicated software

process combining the legacy data model and

interface of the integrated data source to the

mediator level of integration

o Mediator - responsible for integrating

multiple data source wrappers per each

machine. Mediators would be responsible for

sending the registration information of the

underlying data sources, monitoring their

up/down state. Moreover, the mediator take

part in passing client requests for particular

data records from each of its underlying data

sources. Those requests would be partial

client requests for distributed and indexed

data

What requires explanation is the description of this process

along its lifecycle:

1. OLI/Broker initialization - could be considered as

ODRA heterogeneous index (H-Index) module(s) or

as standalone processes.

2. Each network data source that is to be integrated into

grid, continues with the process of registration:

a. Each machine needs to start the mediator

infrastructure i.e. equip the Mediator with the

underlying data schemata and its fast access

methods.

b. (Fig. 1. pos.1) In the beginning, establishing

connection between OLI and Mediator takes

place. Next the Mediator sends the

underlying data sources schemes and fast

access methods (FAMs) for accessing each

data scheme part.

c. (Fig. 1. pos.2) The received schemes are

stored at OLI and the database object

reference (DORs) (including the native fast

access method – FAM) are moved to Broker

which is treated as a DOR11 store. OLI would

store only DOR reference to broker named

rDOR.

3. (Fig. 1 pos. 3-5.) Along the registration, at a time when

a data entity (e.g. DB table) in OLI occurs to be a

complete snapshot of its present state in the grid22 (i.e.

all its records has been registered within the OLI), the

indexing towards this snapshot can be evaluated.

integration) and data definition scheme (vertical fragmentation)

present in the Qboids. When vertical fragmentation matches the

data definitions and all the of the pointed nodes are involved

then the index creation can be conducted.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 18/01/2026 19:03:18

UM
CS

11

4. The index creation selects the right parts of the

integrated data scheme i.e. those that carries the index

information and forms table consisting of the indexed

values, their unique records’ ids (i.e. best record ids –

BRIs) and access methods. Transformation of such

sequence of triplets, yields the list of records with their

access methods combined with BRIs, grouped

together per each indexed value/range. As already

mentioned in 2c) OLI would have store only rDORs.

However, for the purpose of forming universal index

and reaching for actual values, they would have to be

replaced by DORs (storing the detailed data) from the

broker. In this phase we acquire an universal index

structure for a client requested type of index i.e. dense,

range etc.

5. (Fig. 1. pos.6.) At this stage, the clients’ heterogeneous

index (or, H-Index) module can use the universal

index to incorporate its information into native index.

The process however, is not over yet, because the

client will only possess the information about the

index’s grid details and DORs, but it will still not

include the indexed records explicitly (pos.7.).

Fig. 1 General schema of heterogeneous index creation and utilization

Storing the grid details of the data distribution in the native

index will force the native index, while reaching for a record,

to call for a procedure that can return the explicit values

presented in such record (pos. 8.). Therefore, before making the

native index available for use in native client requests, all of the

DORs found in such index would have to be send to a remote

process able to transform each record and hand it over to native

index in form of a complete and explicit database record, that

can be further utilized by regular index mechanisms. This is the

responsibility of the H-Index module. It would send (pos. 9.)

the access queries to the appropriate grid nodes mediators.

Next, according to the possessed implicit index structure

scheme, the received results (pos. 10.) would have been utilized

to build each record. In case of ODRA it would have been a

regular ODRA database object. Fig.1. General schema of

heterogeneous index creation and utilization. This object can be

incorporated into ODRA index as a part of the ultimate native

index, composed out of the H-Index received results.

V. OBJECTS FOR INTEGRATION

The general goal of integration must conform some way of

unification for integrated resources’ data. To use the AS0 model

for the purpose of storing integration data let us adopt the

schema proposed in [2] for AS0 model.

A. Distributed Data Structure Map

Each legacy data source intuition and general schema would

have to be devised. In [2] the distributed resource universal map

has been introduced to represent three basic issues of

integration – namely replication, vertical and horizontal

fragmentation. Basing on some technical best row id (BRI) each

record that is to be considered information equivalent in terms

of semantic meaning along integration view assumptions shares

the same BRI.

Conceptually each data source might get its own

representation of record while still sharing BRI. This way one

BRI might reflect multiple replications, and as the record might

be arbitrary composed, also vertical fragmentations. The

horizontal fragmentation in considered in record groups as the

higher orders of composition within the Qboid concept.

Fig. 2 Qboid build based on BRI matching

B. Example

Let us assume that the object-oriented model AS0 is going
to store information on users. The general schema contains
name, email address and age. Now this information is expected
to be scattered across multiple data sources. In Listing 1. an
exemplary schema for integrating such information is being
exemplified:

<e1, entity, {

 <u1, users, {

 <recGr1, recGr, rDOR_1to10_DB1 > # ID_1to10

 <recGr2, recGr, { # ID_13

 <n13, name, rDOR_DB2_13_name>

 <em13, emailAddress, {

 <l13, login, rDOR_DB20_13_login>

 <d13, domain, rDOR_DB21_13_domain>

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 18/01/2026 19:03:18

UM
CS

12

 }

 >

 <a13, age, rDOR_DB2_13_age>

 }

 >

 }

 >

 <u2, users, {

 <recGr3, recGr, rDOR_1to10_DB100 >

 <recGr4, recGr, recGr2 >

 }

 >

 <u3, users, {

 <recGr3, recGr, {recGr1, recGr2 } >

 }

 >

 <u4, users, recGr2>

 }

>

Listing 1. Exemplary AS0 utilization to represent the integrated data

We can observe here the exemplary schema being configured

according to the system integrating specification. The general

top level object, according to AS0, is representing the entity.

Entity is a general purpose instance in integration scheme that

represents conceptually equivalent term as a table might be.

However, entity is also responsible for storing potential replicas

and mixed fragmentation patterns of the integration

perspective. In the presenting Listing1. The entity represents

users as an domain entity that covers thirteen users. The entity

is designed as a complex object with id, name and a set of

objects representing entity, which in this case are users. Each

user is also represented by a complex object with its unique id,

name and list of complete user characteristics. In case of u1

object it is responsible for representing users form mixed

fragmentation pattern; one horizontal, and one vertical

fragmentation pattern. The first – horizontal – pattern is

represented by recGr1 and recGr2 object. The recGr1 object is

an atomic object storing only the requested rDOR for ten users

stored at the data source DB1, while the recGr2 object is a

complex object representing additionally vertical fragmentation

within the emailAddress complex object for use with id 13.

Even though the recGr2 represent a single entity record, it is

still required to bound the vertical but also horizontal

fragmentation of the specific user data. For user with id 13 one

can easily find the horizontal fragmentation due to its name and

email address being stored in a completely different data

sources (DB2 and DB20, DB21). Additionally the email

address itself must be bind with use of vertical fragmentation

pattern, which in this case states that the user login is stored at

DB20 while the adequate domain must be reached form data

source referenced as DB21. Additionally the age attribute as a

third field of the recGr2 complex object is also stored at the

same database as its name, i.e. DB2.

What is more, the user pattern is not the only integration

challenge that need to be faced. Along the integration process

one has to be aware of the replications that can occur on

multiple integrated sources regardless of their physical

independence. For instance one can easily imagine that the

same company's employee is present in HR database, IT

department database and the JIRA database. While still being

the same employee for the company the context of the data

source is completely different in this case. Therefore. The

additional entity instances are represented along the Listing1.

The u2 and u3 represent the same, or almost the same set of

information on the users. However, the nature of replication is

somewhat different. While in case of u2 object it is a complex

object representing the same data as u1, however the u2 has

different data source (DB100) for users with id 1-10 while the

recGr2 becomes a reference object (recGr4) pointing to the

recGr2, meaning that there is the same algorithm to combine its

content. This design enable future proofing towards enabling

future load balancing while accessing users with id 1-10 which

in this case can be retrieved from two different sources

automatically and transparently.

The object u3 is a complex object with reference types

towards u1 components. The u3 object here provides the u1

functionality and at the same time without replicating nor

disclosing the u1 details.

On the other hand the case of u4 is quite different. In this

case we can see that while it enables referring to the users,

however it provides only data only for one user with id 13.

Additionally the details of this user access methods are not

disclosed towards the requesting party. This specific behavior

provides two benefits. Firstly the entity designer might decide

to disclose only the u4 limited user database access, secondly

due to reference object the contact details for the actual object

are not disclosed and are only available for the party with

privileges sufficient to disclose the recGr2 user details

originating in u1.

VI. CONCLUSIONS

The goal for this paper was to enable a prototype object

oriented integration scheme based on AS0 object model

originating from prototypical object-oriented database. It has

been proven that even relatively simple object model can be

adapted and successfully used for representing integration

metadata for Qboid based integration architecture. However,

one can easily proceed with extending the AS0, which covers

relational, nested-relational and XML-oriented databases. AS0

assumes hierarchical objects with no limitations concerning the

nesting of objects and collections, pointer links (relationships)

between objects. Moreover, in case the AS0 if model is to be

considered insufficient additional research can be done to

provide all of the goodness of the complete objectoriented

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 18/01/2026 19:03:18

UM
CS

13

model including classes and static inheritance, object roles and

dynamic inheritance, or encapsulation. The SBA assumes just

right store models in form of AS1, AS2 and AS3 to provide this

complete set of object related features. Additionally, such an

extension would give not only all of the possibilities of a object

oriented approach, but also gains that a database engine provide

towards data storing, such as persistence, durability, high

availability, reliability with transactions.

REFERENCES

[1] Michal Chromiak, Piotr Wisniewski i Krzysztof Stencel. “A

Universal Cuboid-Based Integration Architecture for

Polyglotic Querying of Heterogeneous Datasources”. W:

Beyond Databases, Architectures and Structures - 11th

International Conference, BDAS 2015, Ustroń, Poland,

May 26-29, 2015, Proceedings. 2015, s. 170–179. doi:

10.1007/978-3- 319-18422-7_15

[2] Michal Chromiak i Krzysztof Stencel. “A Data Model for

Heterogeneous Data Integration Architecture”. W: Beyond

Databases, Architectures, and Structures - 10th

International Conference, BDAS 2014, Ustron, Poland,

May 27-30, 2014. Proceedings. 2014, s. 547–556.

doi:10.1007/978-3-319-06932-6_53.

[3] Cattell R. G. G., Barry D. K., The Object Data Standard:

ODMG 3.0. Morgan

[4] Cook W. R., Rosenberger C., Native Queries for Persistent

Objects A Design White Paper (2006);

http://www.db4o.com/about/productinformation/whitepape

rs/Native %20Queries%20Whitepaper.pdf

[5] Lentner M., Subieta K., ODRA: A Next Generation Object-

Oriented Environment for Rapid Database Application

Development Advances in Databases and Information

Systems, 11th East European Conference, ADBIS 2007,

September 29-October 3, 2007, Proceedings., LNCS 4690,

Springer, ISBN 978-3-540-75184-7 (2007): 130

[6] Hibernate - Relational Persistence for Java and .NET.

http://www.hibernate.org/ (2006).

[7] Subieta K., Theory and Construction of Object-Oriented

Query Languages. PJIIT – Publishing House, ISBN 83-

89244-28-4 (2004), 522 pages (in Polish).

[8] Albano A., Bergamini R., Ghelli G, Orsini R., An Object

Data Model with Roles. Proc. VLDB Conf. (1993): 39.

[9] Jodlowski A., Habela P., Plodzien J., Subieta K., Objects

and Roles in the Stack-Based Approach.Proc. DEXA Conf.,

Springer LNCS 2453 (2002).

[10] Kozankiewicz H., Updateable Object Views. PhD Thesis

(2005);

[11] Kozankiewicz H., Leszczylowski J., Subieta K.,

Updateable XML Views. Proc. of ADBIS’03, Springer

LNCS 2798 (2003): 385.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 18/01/2026 19:03:18

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

