
DOI: 10.17951/ai.2016.16.1.50

A N N A L E S
U N I V E R S I T A T I S M A R I A E C U R I E - S K L O D O W S K A

L U B L I N – P O L O N I A

VOL. XVI, 1 SECTIO AI 2016

A LOW-COST MULTICOMPUTER FOR SOLVING THE RCPSP

Grzegorz Pawiński 1, Krzysztof Sapiecha 1

1 Department of Computer Science,

Kielce University of Technology

KEY WORDS: RCPSP, multicomputer, distributed processing model

ABSTRACT: In the paper it is shown that time necessary to solve the NP-hard Resource-

Constrained Project Scheduling Problem (RCPSP) could be considerably reduced using a low-cost

multicomputer. We consider an extension of the problem when resources are only partially available

and a deadline is given but the cost of the project should be minimized. In such a case finding an

acceptable solution (optimal or even semi-optimal) is computationally very hard. To reduce this

complexity a distributed processing model of a metaheuristic algorithm, previously adapted by us

for working with human resources and the CCPM method, was developed. Then, a new

implementation of the model on a low-cost multicomputer built from PCs connected through a local

network was designed and compared with regular implementation of the model on a cluster.

Furthermore, to examine communication costs, an implementation of the model on a single multi-

core PC was tested, too. The comparative studies proved that the implementation is as efficient as

on more expensive cluster. Moreover, it has balanced load and scales well.

1. INTRODUCTION

Resource allocation, called the Resource-Constrained Project Scheduling Problem

(RCPSP), attempts to reschedule project tasks efficiently using limited renewable

resources minimising the maximal completion time of all activities [3 - 5]. A single project

consists of m tasks which are precedence-related by finish-start relationships with zero

time lags. The relationship means that all predecessors have to be finished before a task

can be started. To be processed, each task requires a human resource (HR). The

resources are limited to one unit and therefore have to perform different tasks

sequentially. RCPSP is an NP- hard problem. In most cases, branch-and-bound is the only

exact method which allows the generation of optimal solutions for scheduling rather small

projects (usually containing less than 60 tasks and not highly constrained) within

acceptable computational effort [1, 5]. Results of the Hartmann and Kolisch [8]

investigation showed that the best performing heuristics were the GA of Hartmann [7]

and the SA procedure of Bouleimen and Lecocq [2]. Their latest research revealed that

the forward-backward improvement technique applied to X-pass methods, metaheuristics

or other approaches produces good results and that the most popular metaheuristics

were GAs and TS methods.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 11:51:00

UM
CS

51

In our previous works, cost-efficient project management based on a critical chain

(CCPM) was investigated. The CCPM is one of the newest scheduling techniques

[19]. It was used to solve a variant of the RCPSP. A goal of the management was to

allocate resources in order to minimise the project total cost and complete it in a given

time. A sequential metaheuristic from Deniziak [6] was adapted to take into account

specific features of human resources participating in a project schedule. The research

showed high efficiency of this adaptation for resource allocation [12]. An extension of the

problem, where HRs are only partially available since they may be involved in many

projects, was also investigated [14]. The research proved that the adaptation is efficient

but the minimization was still time consuming and would require accelerating to cope with

bigger real-life problems

Our latest research showed that the algorithm has got an inherent parallelism. Hence,

a distributed processing model for solving the extension of the RCPSP was developed and

tested on a regular PCs [13]. It gave a time of scheduling even 10 times smaller than the

sequential processing. Therefore, in this research we present a new implementation of

the model, on a low-cost multicomputer built from PCs connected through a local

network Furthermore, we compare it with regular implementation of the model on a cluster

and show that it may be just as efficient, but not so expensive what might limit its practical

value.

The next section of the paper contains a brief overview of related work. Motivation

for the research is given in section 3. An implementation of the distributed processing

model for the algorithm is presented in section 4. Evaluation of the implementation in both

distributed and parallel environments is given in section 5. The paper ends with

conclusions.

2. RELATED WORK

Researchers studied the problem and suggested their own solutions which can be

divided into exact procedures and heuristics. Branch and bound methods are an

example of the exact procedures (see e.g. [3], [4]). In [11] another method, a tree search

algorithm, was presented. It is based on a new mathematical formulation that uses

lower bounds and dominance criteria. An in-depth study of the performance of the

latest RCPSP heuristics can be found in [10]. Heuristics described by the authors

include X-pass methods, also known as priority rule-based heuristics, classical

metaheuristics, such as Genetic Algorithms (GAs), Tabu search (TS), Simulated

annealing (SA), and Ant Colony Optimisation (ACO). Non-standard metaheuristics and

other methods were presented as well. The former consist of local search and population-

based approaches, which have been proposed to solve the RCPSP. The authors

investigated a heuristic which applies forward-backward and backward-forward

improvement passes. For detailed description of the heuristic schedule generation

schemes, priority rules, and representations refer to [8].

The effectiveness of scheduling methods can be further improved using parallel

processing. Some implementations of parallel TS [15 17] and SA [18] algorithms for

different combinatorial problems have already been proposed. The most common one is

based on dividing (partitioning) the problem such that several partitions could be run in

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 11:51:00

UM
CS

52

parallel and then merged. Parallelism in GAs can be achieved at the level of single

individuals, the fitness functions or independent runs [21, 22]. All of the parallel

approaches fall into three categories: the first uses a global model, the second uses a

coarse-grained (island) model and the third uses a fine-grained (grid, cellular) model

[20]. In the global model, a master process manages the whole population by assigning

subsets of individuals to slave processes. In the island model a population is divided into

sub-populations that are evolved separately. During evolution, some individuals are

exchanged periodically between them. In the grid model a population is represented as a

network of interconnected individuals where only neighbors may interact. It was

observed that parallel GAs (PGAs) usually provide better efficiency than sequential ones

[20]. The same parallel approaches can be applied for ACO. In [23] five strategies of

parallel processing are described, which are mainly based on the well-known master/slave

approach [24].

3. MOTIVATION

The sequential algorithms are time consuming, what considerably limits their

usefulness. Speeding up the calculations would be desirable for project managers because

it may allow managing complex projects in acceptable time. Parallel models offer the

advantage of reducing the execution time and give an opportunity to solve new problems

which have been unreachable in case of sequential models. The most popular parallel

strategies are based on master/slave approach [24] with centralized management of

distributing tasks and gathering results. The master can efficiently coordinate the system,

avoiding potential conflicts before they take place, and react on failures of the slaves.

However, global gathering and re-broadcasting of large configurations can be time-

consuming. Costs of synchronization between slaves have to be considered, also. Some

slaves may have to wait for completing other tasks, which is necessary to retain data

integrity. More-over, the master is the weakest point of the system. The system will slow

down if the master cannot handle incoming requests. If the master crashes, the whole

system will also crash. Another problem is load imbalance caused by unpredictable

processing time of each slave. Summarizing, the gain coming from parallelization of the

algorithm may be significantly reduced.

 From our research it also follows that parallel processing could reduce efficiently the

amount of the time consumed by the metaheuristic algorithm [13]. Usually, such reduction

requires a use of a cluster and hence is expensive what may limit its popularity. The key

idea to overcome this inconvenience is to make use of multi-core architecture of low-cost

PCs, instead of the cluster. Such a multi-multi computer is cheap, easily assembled

and might be very useful for practical reasons. However, it should be proven that the

implementation is as efficient as on the cluster, and that it has balanced load and scales

well.

4. OPTIMIZATION ALGORITHM

The metaheuristic algorithm starts with the initial point and searches for the cheapest

solution satisfying given time constraints. The initial schedule is generated by greedy

procedures that try to find a resource for each task basing upon to the smallest increase of

the project duration or the project total cost. It is a suboptimal solution which the

algorithm tries to enhance. In each pass of the iterative process, the current project

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 11:51:00

UM
CS

53

schedule is being modified in order to get closer to the optimum. In the first add stage a

new HR which is not in the schedule is attached to it. Tasks of HRs which have already

been engaged in the schedule are moved to the HR but only when a positive gain is

achieved. Afterwards, if there are HRs without allocated tasks, they are removed from the

schedule. The best schedule goes to the next stage

and the proceeding is repeated until no more free HRs are available. In the second

rem stage all tasks allocated to the HR are moved onto other HRs, still remaining in the

schedule, but only when a positive gain is achieved. Then again, HRs without allocated

tasks are removed from the schedule. Finally, the best project schedule coming from

all stages is chosen. The iterative process is repeated for every resource from the

resource library until no improvement can be found. At the very end, project tasks

may be shifted right to the latest feasible position into their forward free slack by

means of As Late As Possible (ALAP) schedule.

4.1. Distributed processing model

The distributed processing model is shown in Figure 1.

Figure 1 Distributed processing model

In general, there are 𝑅 ∙ (1 + 𝑅𝑟) schedule modifications that have to be calculated, where

R is the number of HRs and Rr is the number of HRs that have left after particular add

stage. However, not all of them can be performed at the same time. At the beginning,

only R attempts to add a new HR to the schedule may be calculated. Each of the add stages

could be performed simultaneously. Afterwards, if any of them is finished, Rr attempts in

the rem stage may be started. The attempts to move all tasks from each of HRs may also

be calculated separately. Thus, the maximal number of simultaneous modifications is 𝑅 ∙
𝑅𝑟, when all the add stages finish at the same time. The process iteration ends after

finishing all of the second stages.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 11:51:00

UM
CS

54

4.2. Implementation of the model

The distributed processing model (Figure 2) was implemented in Java. One application,

which is a tasks dispatcher (D), manages a pool of threads responsible for

communication with other worker applications, located on remote computers.

Figure 2 Implementation of the distributed processing model

 (D - tasks dispatcher, T - thread, C - remote computer, P - process, RMI - remote method

invocation)

At the beginning, workers notify the dispatcher about their readiness to execute tasks.

The tasks dispatcher creates a new thread for each worker and joins it to the pool. The

pool contains as many threads as needed, but will reuse previously constructed threads

when they are available. On the remote computers, workers run as independent processes,

what makes them available for direct communication. Therefore, the tasks dispatcher may

uniformly split the computational tasks, so as to workload could easily be balanced. Each

remote computer runs as many processes as the number of processor cores, in order to use

the whole computing power of multi-core machines. During executing an iteration of the

algorithm, the tasks dispatcher sends schedule modification requests to the first free

worker. To this end, it uses Remote Method Invocation (RMI) for communication. If a

worker is not responding, it will be removed from the pool and the request will be sent to

another free worker. Workers receive project data and the searching parameters so as to

invoke a method, in order to perform the add or the rem stage. Afterwards, results of

modifications are sent back to the dispatcher and then the thread can be reused.

Synchronization occurs at the end of each of the iterations because all the rem stages have

to be finished in order to choose the best schedule.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 11:51:00

UM
CS

55

5. COMPARATIVE STUDIES

The efficiency of the algorithm described in the paper was estimated on 100 randomly

generated project plans containing from 30 to 60 tasks, and from 8 to 16 HRs with

random data. Each project plan was scheduled several times and results were averaged.

Tasks in the project plan may have at most 4 precedence relationships with probability

0,35. They can be easily scheduled because they have few predecessors or none. If the

probability of inserting the precedence relationships were lower, the project plan would

contain mostly unconnected tasks. On the other hand, tasks with two or more predecessors

significantly decrease the search space. In each project, resource availability was reduced

by allocating 30 tasks from PSPLIB, developed by Kolisch and Sprecher [9]. The set with

30 non-dummy activities currently is the hardest standard set of RCPSP-instances

for which all optimal solutions are known [4]. However, we considered an extension of

RCPSP where resources have already got their own schedule and a cost of the project, but

not the project duration, should be minimized. So even though we take the project

instances from PSPLIB, the results cannot be compared. The initial schedule was

generated by two greedy procedures mentioned at the beginning of section 4.

Implementation of the distributed model was run on two distributed systems:

• multicomputer built from PCs (ClusterPCs) that comprises 10 multi-core

computers with Intel Core i5-760 Processor (8M Cache, 2,80 GHz) and 2 GB

of RAM memory, connected via a Gigabit Ethernet TCP/IP local network,

• regular cluster that comprises 1 head node with Intel Xeon E5410@2,33GHz,

16GB of RAM memory and 10 processing nodes with Intel Xeon

E5205@1,86GHz, 6GB of RAM memory, connected via a Gigabit Ethernet

TCP/IP local network.

Furthermore, to examine communication costs, an implementation of the model on a

single multi-core PC was tested, too.

5.1. Tests which examine implementation of the model in distributed environments

The algorithm scalability depends on the number of HRs because it is related to the number

of schedule modifications. The number of independent requests, and consequently the

need for workers, increases along with the increase of the number of HRs. Influence of

changing the number of workers on the computation time towards the number of tasks is

shown in Figure 3. In both distributed environments, the computation time significantly

falls as the number of workers grows. Decline is particularly visible when only few

workers are used. Finally, the computation time exceeds its minimum, no matter how

many workers is used. In both environments, also the increase of the number of tasks

influences the drop of the scheduling time. However, the cluster, despite slower CPUs,

copes better along with the increase of the number of tasks. In the cluster, the growth

of the scheduling time in more complex projects is slower, especially when only few

workers are used. In general, a reduction of the computation time looks similar in both

environments. It is worth noticing that, the computation time was reduced even to 6% of

sequential computation time for the project with 60 tasks and 12 HRs (Figure 3b, left

column).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 11:51:00

UM
CS

56

Figure 3 Computation times compared with the number of workers for constant number of HRs

(left column – ClusterPCs, right column – theCluster)

A CPU usage in ClusterPCs during scheduling of a project with 35 tasks and 16 HRs was

examined (Figure 4). The CPU usage was monitored every 50 ms and the reads were

averaged at the end of calculations. More frequent reads could influence the processor

load. The number of HRs was chosen so that enough simultaneous attempts were provided

to make workers busy. PCs were running 4 workers each (one worker was assigned to

every core).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 11:51:00

UM
CS

57

Figure 4 CPU usage in ClusterPCs [%]

Figure 4 illustrates how the schedule modification requests spread over the available

PCs. CPU usage on PC #1 is almost 100% but only when 4 workers are used. If the number

of workers increases, the load is balanced by the use of the other PCs. The distributed

algorithm scales well because the computational tasks may be uniformly splitted among

workers. Summing up the cores usage (counted in 100%), it grows from 3,7 cores for

4 workers to 9,48 cores for 36 workers. The total core usage together with the tasks

dispatcher was 10,02. Hence, the scheduling time was reduced 10 times by the use of 40

cores on 10 PCs.

5.2. Tests which examine the in uence of the communication cost on algorithm

performance

Distributed tests were executed in order to examine how the network latency influences

the algorithm performance. To that end, 4 workers were run on the ClusterPCs that

comprises 2 multi-core PCs and compared with 4 workers on 2 processing nodes in the

cluster and 4 workers on a single PC (so called LocalPC). All workers were using RMI

for communication. At first, the number of modification requests was counted with

respect to the number of resources and the number of tasks (Table 1).

Table 1 The number of modification requests

 No. task

No. resources 30 35 40

10 634 755 480

12 765 930 869

14 1009 694 1492

16 1412 1412 1564

The number of requests increases as the number of resources increases and varies

along with the increase of the number of tasks. However, the more requests are sent, the

greater will be the impact of communication cost on the performance. The average

scheduling time for a project with 30 tasks is shown in Table 2.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 11:51:00

UM
CS

58

Table 2 Average time of transferring data between the tasks dispatcher and workers for a project

with 30 tasks [ms] (Remote - workers located on 2 remote computers, Local - workers located on

the same machine, Resnum - No. resources).

Resnum

No. tasks

cluster ClusterPCs LocalPC Threads

2 3 4 2 3 4 2 3 4 2 3 4

10 5587 3922 2949 3961 2603 1846 3355 2261 1963 2058 1350 996

12 7242 4825 3827 4660 3191 2300 4016 2876 2494 2419 1684 1311

14 9677 6427 5137 6187 4213 3042 5190 3718 3260 3128 2163 1671

16 12911 8548 6555 7745 5311 4010 6730 4787 4173 4371 3016 2360

It is clear that the scheduling time decreases when the number of workers grows.

Yet, the decline is very low between 3 and 4 workers in the LocalPC because computer

resources start to be overloaded when 4 workers and the tasks dispatcher run on the same

machine. On average, the LocalPC is about 13% faster than the corresponding ClusterPCs

(for less than 4 workers), due to low communication costs. On the other hand the

ClusterPCs is better when the number of workersexceeds the number of processor

cores. It is also not limited to the number of workers. But even the usage of 4

workers reduced the scheduling time by 54% in the ClusterPCs and by 48% in the

cluster, in the project with 30 tasks and 10 HRs. However, the reduction ratio in the

former decreases along with the increasing number of resources and does not change in

the latter. It means that the cluster copes better than PCs also with the increase of

the number of resources.

The average time of transferring data between the tasks dispatcher and 3 workers is

shown in Table 3. It increases when the number of tasks increases because more data

needs to be transferred. It also increases when the number of resources increases due

to increased number of requests that the tasks dispatcher has to handle.

Table 3 Average time of transferring data between the tasks dispatcher and workers for a project

with 30 tasks [ms] (Remote - workers located on 2 remote computers, Local - workers located on

the same machine, Resnum - No. resources).

Resnum

No. tasks

cluster ClusterPCs LocalPC Threads

30 35 40 30 35 40 30 35 40 30 35 40

10 5,62 6,41 6,22 5,84 6,29 6,87 3,33 3,36 3,72 0,24 0,48 0,5

12 5,62 6,41 6,22 5,96 6,76 7,23 3,34 3,63 3,89 0,2 0,25 0,44

14 5,66 5,66 6,29 6,06 7,03 7,48 3,38 3,78 4,03 0,14 0,29 0,37

16 5,77 5,72 6,31 6,49 6,73 7,33 3,49 3,8 4,13 0,24 0,33 0,48

Yet, the increase of the time is much faster in the ClusterPCs, than in the cluster.

Consequently, the data transfer in the ClusterPCs gets slower in the projects with more

than 35 tasks and 10 HRs. On average, the data transfer is about 2,2 times slower in the

ClusterPCs than within a single multi-core PC. On a single machine, it may be

further reduced to less than 0,5 ms by the use of threads instead of processes in LocalPC

(so called Threads). Threads are much lighter than processes and share the process'

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 11:51:00

UM
CS

59

resources. Thus, even if only one multi-core machine is available, the scheduling

time with the use of 4 workers may be reduced by about 47%. The scheduling time on a

single machine with the use of 4 threads is relevant to the scheduling in ClusterPCs on 2

multi-core PCs with 4 workers on each. But still, if the need for workers is greater, the

ClusterPCs is better. Moreover, running more threads than 5 on a 4-core processor is not

so efficient. Comparison results of time needed to transfer data between the tasks

dispatcher and 3 workers, averaged from all attempts, are shown on Figure 5.

Figure 5 Comparison results of time needed to transferring data

between the tasks dispatcher and 3 workers averaged from all attempts

[ms]

6. CONCLUSIONS

In the research, a distributed model was used in order to reduce the computation time for

a solution of the RCPSP when resources are partially available. An implementation of the

model on a multicomputer built from PCs was tested and compared with regular

implementation of the model on a cluster. The tasks dispatcher and workers were

connected through a local network and were using RMI for communication. The tasks

dispatcher was using multithreading for spreading and gathering data while, at the same

time, workers were calculating different schedule modifications and sending back the

results. The workers were run on remote computers as independent processes and hence

did not have to be synchronized. Workers were gathered in a pool managed by the tasks

dispatcher and were available for a direct use. The best efficiency was obtained when

there were as many processes running as the number of computer cores. Hence, the more

cores inside the computer, the more workers can run on it and fewer PCs are needed.

Consequently, the more workers the shorter the computation time, but only when there

is enough work to do for the workers. Too few workers cannot handle rapidly growing

calculation requests after the first stage of the algorithm. The maximum number of

workers depends on the number of HRs because it is related to the number of schedule

modifications Thus, the project scheduling cannot be speed up if there is a lot of resources

and not enough workers and vice versa.

The research showed that the multicomputer built from multi-core PCs may be

successfully used for reduction of the scheduling time. Obtained results are comparable

with the cluster. In both environments the reduction of time looks similar. However, the

cluster copes better along with the increase of the number of tasks and the number of

resources. In the cluster the communication cost is lower than in the ClusterPCs, in the

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 11:51:00

UM
CS

60

projects with more than 35 tasks and 10 HRs. On a single machine, the scheduling time

is about 13%, faster than through a local network (for less than 4 workers) due to lack of

the network latency. It can be further reduced by about 47% by the use of threads instead

of processes. However, the computer resources start to be overloaded when the tasks

dispatcher and more than 3 processes or more than 5 threads run on the same 4-core

processor. Therefore, the ClusterPCs outperforms the LocalPC when more than 3 workers

and the usage of threads when more than 7 workers are used.

The experimental results showed that the distributed model is well-balanced. The

computational tasks are uniformly splitted among workers. If the number of workers

increases, the load spreads over the available PCs. The distributed algorithm scales well,

adjusting to the number of workers. Moreover, if any of the workers crashes, its task will

be taken over by another worker and the proceeding will be continued. Various

complexities of the projects were tested. However in each, the scheduling time was

significantly reduced by the distributed calculations, even up to 6% of sequential time. In

comparison to the sequential computing, the number of used cores (counted in 100%)

was 10 times higher, during scheduling of a project with 30 tasks and 16 HRs by 36

workers.

LITERATURE

[1] Alcaraz J., Maroto C., A robust genetic algorithm for resource allocation in project

scheduling, Annals of Operations Research 102 (2001): 83 109.

[2] Bouleimen K., Lecocq H., A new efficient simulated annealing algorithm for the

resource-constrained project scheduling problem and its multiple modes version,

European Journal of Operational Research 149 (2003): 268 28,

[3] Brucker, P., Knust, S., Schoo, A., Thiele, O., A branch-and-bound algorithm for the

resource-constrained project scheduling problem, European Journal of Operational

Research 107 (1998):272 - 288.

[4] Demeulemeester, E. L., Herroelen, W. S., New benchmark results for the resource-

constrained project scheduling problem, Management Science 43 (1997): 1485 - 1492.

[5] Demeulemeester, E. L., Herroelen, W. S., Project Scheduling. A Research Handbook,

Springer (2002).

[6] Deniziak, S., Cost-efficient synthesis of multiprocessor heterogeneous systems,

Control and Cybernetics 33 (2004): 341 355.

[7] Hartmann, S., A Competitive Genetic Algorithm for Resource Constrained Project

Scheduling, Naval Research Logistics 45 (1998): 733 750.

[8] Hartmann, S., Kolisch, R., Experimental evaluation of state-of-the-art heuristics for

the resource-constrained project scheduling problem, European Journal of

Operational Research 127 (2000): 394 407

[9] Kolish R., Sprecher A., PSPLIB - A project scheduling library, European Journal of

Operational Research 96 1996: 205-216.

[10] Kolisch R., Hartmann S., Experimental investigation of heuristics for resource-

constrained project scheduling: An update, European Journal of Operational Research

174 (2006): 23 - 37.

[11] Mingozzi, A., Maniezzo, V., Ricciardelli, S., Bianco, L., An exact algorithm for the

resource-constrained project scheduling problem based on a new mathematical

formulation, Management Science 44 (1998): 714 - 729.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 11:51:00

UM
CS

61

[12] Pawiński G., Sapiecha K., Resource allocation optimization in Critical Chain

Method, Annales Universitatis Mariae Curie-Sklodowska sectio Informaticales 12(1)

(2012): 17 - 29.

[13] Pawiński G., Sapiecha K., Cost-efficient Project Management Based on Distributed

Processing Model, Proceedings of the 21th International Euromicro Conference on

Parallel, Distributed and Network-Based Processing, IEEE Computer Society (2013):

157 - 163.

[14] Pawiński G., Sapiecha K., Cost-efficient project management based on critical chain

method with partial availability of resources, Control and Cybernetics 43 (2014): 95

109.

[15] Niar, S., Freville, A., A parallel tabu search algorithm for the 0-1 multidimensional

knapsack problem, Proceedings of the 11th International Parallel Processing

Symposium (1997): 512- 516.

[16] Randall, M. Abramson, D., A General Parallel Tabu Search Algorithm for

Combinatorial Optimization Problems, Proceedings of the 6th Australasian

Conference on Parallel and Real Time Systems, Cheng, W. and Sajeev, A. (eds),

Springer-Verlag (1999): 68-79.

[17] He,Y., Qiu, Y., Liu, G. Lei, K., A parallel adaptive tabu search approach for

traveling salesman problems, Proceedings of 2005 IEEE International Conference on

Natural Language Processing and Knowledge Engineering (2005): 796 801.

[18] Malek M., Guruswamy M., Pandya M., Owens H., Serial and parallel simulated

annealing and tabu search algorithms for the traveling salesman problem, Annals of

Operations Research 21 (1989): 59 84.

[19] Steyn, H., An investigation into the fundamentals of critical chain project

management, International Journal of Project Management 19 (2000): 363-369.

[20] Tomassini M., Parallel and distributed evolutionary algorithms: A review, In P.

Neittaanmki K. Miettinen, M. Mkel and J. Periaux, editors, Evolutionary Algorithms

in Engineering and Computer Science, J. Wiley and Sons, Chichester (1999): 113 133.

[21] Koza J.R., Genetic Programming: On the Programming of Computers by Means of

Natural Selection, The MIT Press, Sixth printing (1998).

[22] Koza J.R., Keane M.A., Streeter M.J., Mydlowec W., Yu J.,Lanza G., Gentic

Programming IV, Kluwer Academic Publishers (2003).

[23] Randall M., Lewis A., A Parallel Implementation of Ant Colony Optimization, Journal

of Parallel and Distributed Computing 62(9) (2002): 1421 1432.

[24] Foster, I., Designing and building parallel programs: concepts and tools for parallel

software engineering, Addison Wesley: Reading, MA (1995).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 11:51:00

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

