ANNALES UMCS INFORMATICA

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: Q7/62/202603234519

DOI: 10.1515/umcsinfo-2015-0002

Inter-thread communication efficiency

Jarostaw Sagan!

! Institute of Computer Science, Maria Curie-Sklodowska University,
pl. M. Curie-Sklodowskiej 5, 20-031 Lublin, Poland

Abstract —

In this paper 1 compare inter-thread communication methods: blocking queue and LMAX

Disruptor without synchronization according to a number of threads (CPU cores) and consumer rate. The

research is carried out using a multiprocessor machine with Non Uniformed Memory and Oracle Java Runtime

Environment. I determine if processing on many multi-core CPUs with NUMA is faster than on single multi-

core CPU or vice versa.

Keywords: multi-threading, multi-thread processing

1 Introduction

A lot of computer systems use multi-thread processing.
In the thread and locks concurrency model threads com-
municate with each other. In most cases parallel process-
ing is much more efficient than single thread execution.
But when thread tasks are short (high frequency com-
puting), the thread communication time can be longer
than the task execution time.
thread execution time is longer or close to that of thread.
To solve the problem the LMAX Disruptor pattern can
be used. The LMAX Disruptor is a concurrent frame-
work created to improve multi-thread high frequency pro-
cessing efficiency. It dispose of synchronization which is
time consuming. The thread synchronization problem is

It causes that the multi-

greater when time of consumer execution is short and
there are many consumers. In this case, the time spent on
synchronizing threads is close to the consumer execution
time. Moreover, thread management by the operating
system kernel causes loss of time. The kernel switches ex-
ecution to another thread so CPU spends time on another
thread and replaces some cache lines with the preemptive
thread data. This causes that the total time of parallel
execution is longer than the single thread processing. The
disruptor was designed to be CPU cache-friendly [1].
The LMAX Disruptor technical paper contains compar-
ison of array blocking queue and the LMAX Disruptor on
a single CPU multi-core machine. There are five configu-
rations of producer consumer connection: one producer to
one consumer (unicast), one producer to pipeline of three
consumers (pipeline), three producers to one consumer
(sequencer), one producer to three consumers (multicast),
one producer to two consumers that produces data to
third consumer (diamond). In the LMAX Disruptor tech-
nical the paper are presented throughput results for the
above five configurations without time consuming opera-
tions inside of the consumer handling [1]. T compare com-
munication between producer and consumer via blocking

12

queue with the Disruptor pattern according to a number
of CPU cores. I focus on the total processing time, CPU
usage and impact of multiprocessor NUMA environment
on thread scaling. The research takes into account the
consumer execution time.

2 Other concurrency models

There are many known concurrency models, but in this
paper only one “threads and locks” implementation of pro-
ducer consumer pattern is described. For example, in-
stead of the “threads and locks” concurrency model one
of the models: actors, communicating sequential process,
data parallelism, map reduce can be used in concurrent
application [2].

2.1 Producer consumer pattern

The standard inter-thread communication method
commonly used in Java is the communication between
the producer and consumer via a blocking queue. Using
a blocking queue is simpler and less prone to bugs than
waiting and notifing inside the producer and consumer
[3].
Figure 1.

Using the blocking queue pattern is presented in
The producer thread calculates or obtains
data from a resource and puts it into a queue to perform
Consumer threads obtain
data from queue and process it. Each element from a
queue is processed by only one consumer thread.

further processing parallel.

The most efficient queue in adding and removing ele-

ments is the ArrayBlockingQueue. The ArrayBlockingQueue

size is fixed so queue internal object creation methods are
not used. In most of the applications queues are empty
This is due to the fact that producer thread
throughput is different from the total consumer threads
throughput.
thread call take element method consumer thread is
blocked until an element is added to the queue. When

or full.

When the queue is empty and consumer

ANNALES UMCS INFORMATICA

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: Q7/62/202603234519

DOI: 10.1515/umcsinfo-2015-0002

the queue is full and producer thread call put element,
producer thread is blocked until a consumer thread takes
an element from the queue. ArrayBlockingQueue uses a
lock to block taking and adding elements.

Consumer 1

Consumer n

consumer

Producer

FiGure 1. Producer in-
threads

ArrayBlockingQueue

ter communication using

2.2 LMAX Disruptor

Programming inter-thread communication with the
LMAX Disruptor is completely different from that using
the standard method. Instead of ArrayBlockingQueue
Disruptor uses Ring buffer. The Ring buffer consists of
Object array with the fixed size. The ring buffer size
should be an power of 2 to make faster modulo operation
on array index calculation. Ring buffer array elements
are preinitialized on the disruptor start up. Array ele-
ments are created to increase the chance of continuity
of data in memory. If sequentially processing data are
continuous in memory, CPU cache is able to pre-fetch
data to processing by CPU. The disruptor processing
schema is presented on figure 2 [1].

Ring buffer

Producer

™
I Producer fills element
with data in event

| translator
e ———— — —

B
Consumer n | Customers process data when :

' are invoked by disruptor

FIGURE 2. Producer consumer inter
thread communication using the disrup-

tor.

Implementation of producer using the disruptor pattern
requires change of programmer thinking. The producer
thread does not create data and pushes it into the queue.
The producer call publish event with a given event trans-
lator. Than the even translator is called by disruptor to
fill element data with new values. The event translator
does not create a new object but only fills existing one

13

with new data. This strategy reduces garbage creation
(temporary objects to be removed by Garbage Collector
in the future). It causes that the ring buffer data remain
consistent in memory independent of producer call times
[1].

The event consuming method (consumer) is also called
by disruptor. The programmer must implement work
handler. Work handler receives in the parameter data an
element to be processed and the element sequence num-
ber. The consumer method should not create many local
objects because of Garbage Collector. But when data
are processing, other library methods are called. Those
libraries may produce objects in young generation mem-
ory. In this research I created a worker that generates
object in young generation memory.

3 Material and methods

The research is carried out on the scientific cluster node
with two Intel(R) Xeon(R) CPU X5650 2.67GHz proces-
sor with Hyper Threading technology. Two processors
are two NUMA nodes. Threads task does not perform 10
operation. For each element received from the producer
consumer threads creates a new local integer array with
100 consecutive numbers and sort it 1 or 15 or 300 times
depending on configuration. It causes that this data must
be swept by Java Garbage Collector. Local thread data
are stored in young generation of Java Heap Space. These
data should not be moved to old gen.

The research is carried out for 1 (high frequency), 15
(medium frequency) and 300 (low frequency) array sort
times for both LMAX Disruptor, blocking queue and se-
quential. Sequential processing is single thread processing
where the producer creates event and executes the con-
sumer. The number of consumer threads increases from 1
to 11. Each thread is bound to next core. The producer
When the consumer
thread count is in the range from 1 to 5 only one NUMA
node is used. When consumer thread count is larger than
5 processing is performed on two NUMA nodes. To bind
threads to CPUs I use Java-Thread-Affinity library [4].
Hyper Threading technology creates two logical proces-
sors for each core. It provides increase of efficiency when
threads perform I/O operation. In this research I/O oper-
ations are reduced so I use only one virtual CPU per core.

thread is also bound to one core.

Using one thread per core makes results analysis simpler.
Measured values are wall-time and CPU usage. The CPU
usage is a system plus user time divided by wall-time. In
all configuration producer creates 40 000 000 events.

ANNALES UMCS INFORMATICA

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: Q7/62/202603234519

DOI: 10.1515/umcsinfo-2015-0002

3.1 Results

In the Figure 3 execution time is compared for dis-
ruptor, standard and sequential for high frequency pro-
cessing. High frequency processing using the standard
blocking queue is less efficient than sequential process-
ing. Processing using the LMAX disruptor is much faster
than sequential and uses as many whole cores as threads.
The blocking queue method can not use whole the CPU
power, which is shown on Figure 6. Processing using one
NUMA node is more efficient than using both nodes for
the standard method and LMAX disruptor. The total
processing time increases when processing on two NUMA
nodes compared to processing on a single node. When
processing on a single node all data or most of data are
stored in the CPU cache. When processing on two nodes,
data are shared between two processors. Processors may
invalidate their cash lines mutually so they must fetch
data from memory, which is time consuming, especially
on NUMA.

High frequency processing execution time

@ LMAX disruptor
80 | 4 Standard
- Sequential (reference)
E 70 | .
g o * .
< sof ¢
S wf °* ¢ ¢
3
g 30F o *
] . *
L] °
L]
10 * o o
0 1 L 1 1 1 L 1 1 1 1 1

0o 1 2 3 4 5 6 7 8 9 10 1
Consumer thread count

FicUureE 3. High frequency processing
execution time comparison.

Medium frequency processing execution time

@ LMAX disruptor
40F 4 Standard
350F e ~= Sequential (reference)
z
o 300 |
£
= 250
c
2 200} .
3 .
g 150 .
w o
100 F3 : ; e e v 4 e
50 |- * . o .
0 1 1 1 1 1 1 1 1 1 1 1
0o 1 2 3 4 5 6 7 8 9 10 1

Consumer thread count

FIGURE 4. Medium frequency process-
ing execution time compariso.

Medium frequency processing using the standard block-
ing queue is more efficient than sequential processing if
only there is more than one consumer which is presented
in Figure 4. Processing using the LMAX disruptor is a

14

Low frequency processing execution time

8000

@ LMAX disruptor

4 Standard
7000 ¢ ~— Sequential (reference)
2 go00 | ©
3
E s000
c
S 4000 |
3 H
© 3000 -
3 °
W 2000

(]
®

°
1000 ° o o o o
0 'l 1 '} 1 'l 'l '} 1 1 'l

0 1 2 3 4 5 6 7 8 9 10 1
Consumer thread count

FI1GURE 5. Low frequency processing ex-
ecution time comparison.

High frequency CPU usage

12F °
@ LMAX disruptor .
'E 10k 4 Standard .
1
° .
S sf .
Q
‘2' L]
o 6 .
o
© .
[Z]
S 4F e
=)
.
% 2+ * * * * * PS
$ * e 4 .
0 1 1 1 1 '} 1 1 1 'l '} 1
0 1 2 3 4 5 6 7 8 9 10 11
Consumer thread count
FIGURE 6. High frequency processing
CPU usage.
Medium frequency CPU usage
122 °
@ LMAX disruptor °
-E- 10k @ Standard .
g .
a 8k °
[C * L, * .
o 6F o ¢ R
S 4f o *
2 .
O 2L o *
*
o '} 1 'l 'l '} 1 1 'l '} L 1
0 1 2 3 4 5 6 7 8 9 10 11

Consumer thread count

FIGURE 7. Medium frequency process-
ing CPU usage.

little more efficient than the standard method and uses as
many whole cores as threads. The blocking queue method
can not use the whole CPU power when processing on
both NUMA nodes, as shown in Figure 7. When process-
ing on one NUMA node the standard CPU usage method
is as high as the disruptor one. Low frequency process-
ing using the standard blocking queue is more efficient
than the sequential processing if only there is more than
one consumer as presented in Figure 5. Processing using
the blocking queue is as that using the LMAX disruptor.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: Q765202602 34519 ANNALES UMCS INFORMATICA DOI: 10.1515/umcsinfo-2015-0002

Low frequency CPU usage

12 .
@ LMAX disruptor o *
z 10f @ Standard o ¢
S 8fF °
g . o
o 6 *
g o o
®
3 4 [} *
2 o o
O 2 o o
*
0 1 'l L L 1 1 'l L L 1 'l
0 1 2 3 4 5 6 7 8 9 10 11

Consumer thread count

F1GURE 8. Low frequency processing
CPU usage.

The standard method CPU usage is as high as disruptor
(Figure 8).

4 Conclusions

Performance tests in this research are performed on two
multi-core processors NUMA machine. Nowadays NUMA
is a very popular architecture but it is worth performing
similar tests on the uniform memory access multi-core
multiprocessor machine.

For high frequency processing parallelization using the
standard method is not as efficient as sequential process-
ing or disruptor. The LMAX Disruptor is very efficient
in high frequency processing. Binding all threads to only
one NUMA node is more efficient than processing on two
nodes. Processing using the LMAX Disruptor exploits as
many whole CPU cores as threads. High frequency pro-
cessing using the blocking queue does not exploit th CPU
power. The LMAX Disruptor always uses as many whole
cores as threads. The LMAX disruptor is better in high
frequency processing. Medium and low frequency pro-
cessing using the LMAX Disruptor is comparable to the
blocking queue. Also in this case the LMAX Disruptor is
slightly faster.

References

[1] Thompson Martin, Farley Dave, Barker Michael, and Gee Patri-
cia andStewart Andrew. Disruptor: High performance alterna-
tive to bounded queues for exchanging data between concurrent
threads. 2011.

[2] Butcher Paul. Seven Concurrency Models in Seven Weeks:
When Threads Unravel. Pragmatic Programmers, LLC, 2014.

[3] Eckel Bruce. Thinking in Java. Fourth Edition. Prentice Hall
PTR Upper Saddle River, 2005.

[4] Java thread affinity https://github.com/peter-lawrey/java-
thread-affinity.

15

http://www.tcpdf.org

