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Abstract – Watershed transformation frequently produces over-segmented images. The authors

propose a solution to this problem. It utilizes hierarchical cluster analysis for grouping watersheds

which are treated as objects characterized by a number of attributes. Initially the watershed merging

method was meant only for gray-scale images, but later it was adapted for colour images. This paper

presents further extension of the method that allows it to either automatically select the number

of classes or to provide a hint as to which numbers in a specified range should be considered first.

Segmentation quality assessment functions for colour images are presented. The results obtained using

an extended watershed merging method are discussed. The examples of segmentations selected by the

method, along with the graphs of assessment functions, are shown.

1 Introduction

Over-segmentation is the major concern when using watershed transformation.
In [1], the authors propose a method for merging watersheds in over-segmented
images. It consists in using hierarchical cluster analysis for grouping watersheds. The
method was tested on the gray-scale CT and MRI scans. In [2] its use was extended
to colour images. The hierarchical clustering methods are versatile because they can
be considered modular. It is possible to change, for example, the clustering strategy
without modifying any other component such as similarity coefficient. Such changes
can be made quickly and easily if the method is properly implemented. Additionally,
new clustering methods, similarity/dissimilarity measures and watershed attributes
can be introduced. This way our approach can be easily extended or adapted for a
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90 Semi-automatic watershed merging method

particular task. This paper focuses on a new addition to our method that provides
help with selecting the number of classes in the final segmentation.

2 Merging watersheds with hierarchical cluster analysis
methods

The following section provides a summary of our method including the new addition.
The approach consists in treating watersheds in an over-segmented image as objects
characterized by a set of attributes. A list of available attributes can be extended, how-
ever, in our tests the following attributes are used: size, mean value, variance, standard
deviation, value spread, minimal value and maximal value. In the case of colour im-
ages attributes are computed for each colour component separately (for example, three
average values were computed: one for each of the RGB colour components).

Attribute values may differ by orders of magnitude. That is why optionally they
are standardized in order to equalize their contribution to dissimilarity values. We
used four different methods: (1) standardization that causes attributes to have a mean
value of 0 and a standard deviation of 1, (2) linear scaling of the attribute values to the
range of [0,1], the lowest value corresponds to 0 and the highest to 1, (3) linear scaling
similar to (2) but only the highest value is guaranteed to be equal to 1 (the lowest is
not necessarily equal to 0), (4) linear scaling that causes the normalized data to sum up
to 1. The equations can be found in [1, 3]. It is important to note that attributes (for
example average values) computed for different colour components are standardized
together (i.e. treated as one attribute) in order to preserve colour information.

Watersheds’ resemblances are measured with a similarity or dissimilarity (distance)
coefficient. There are a number of coefficients that can be used. The authors imple-
mented the following dissimilarity measures: Euclidean distance, average Euclidean
distance, Canberra metric, Bray-Curtis coefficient and coefficient of shape difference.
Additionally, two similarity measures were used – namely: the cosine coefficient and
the correlation coefficient. Their values belong to the interval of [−1; 1]. However, in
order to simplify the implementation of the algorithm and to increase compatibility
with standardization methods [3], they are converted to dissimilarity measures that
attain values from the range of [0; 1]. The equations for the coefficients can be found
in [1, 3]. Using one of the mentioned measures, all possible (between all possible pairs
of objects) similarity values are computed and saved in the similarity matrix.

The watersheds are grouped using one of the clustering methods. These include:
complete linkage (CLINK), single linkage (SLINK), unweighted pair-group method
using the arithmetic averages (UPGMA) and the Ward’s minimum variance method
[1, 3, 4]. Regardless of the selected method, the result is a similarity hierarchy. It can
be represented as a tree in which a node represents merging of two clusters and has a
similarity measure associated with it. Once the similarity tree is available, obtaining a
given number of clusters is straightforward. It can be thought of as cutting the tree at
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a given level (of similarity). The tree is divided into two parts. The top part containing
the final clustering steps is discarded. The mergers in the bottom part are carried out.

The level at which the similarity hierarchy is cut determines the final number of
clusters and hence the number of classes in the segmentation. There are different
strategies as to how to select this level. They fall into two categories: general-purpose
and specific-purpose. One of the general methods selects the largest gap (in terms of
dissimilarity coefficient) between consecutive cluster mergers [3]. However, the authors
propose a specific method described in more detail in the following section.

3 Selecting the number of classes in final segmentation and
segmentation quality assessment

Our method is a specific-purpose solution for determining the level at which the
similarity tree is cut. It utilizes three different functions that are designed specifically
for segmentation quality assessment. The functions are described below.

In this section the following symbols are used: I – original image, Ia – image with
classes’ average values (colour components are denoted by a c superscript – for example,
Ica is the component c of the average values’ image), S – set containing all colour
components, x – a pixel, n – pixel count, k – number of different colours in the original
image, nc – number of classes in the final segmentation, Ai – number of pixels in ith

class, r(a) – number of classes with pixel count equal to a, ei – colour error of ith

class, Ri – ith class, Amax – the area of the largest class expressed in pixels (it can be
determined by finding the maximum of a histogram of the label image Il), N ,M – image
width/height expressed in pixels.

The first assessment function is one introduced by Liu and Yang [5]. Its value is
usually normalized by the image size and a constant factor of 1/1000. It is given by:

F (I) =
1

1000 ·N ·M · √nc ·
nc∑
i=1

e2i√
Ai

(1)

The colour error ei is given by ei =
∑

x∈Ri

√∑
c∈S(I

c(x)− Ica(x))
2 [5, 6]. The function

F consists of three factors. The first normalizes the function value. The second
√
nc

penalizes over-segmentation. The third factor favours uniform regions and worsens the
score of segmentations which have classes with a large colour error ei.

M. Borsotti, P. Campadelli and R. Schettini in [7] criticized F (equation 1) and
proposed an alternative function F ′ that according to them performs better. It is
given by:

F ′(I) =
1

10000(N ·M)
·
√√√√Amax∑

a=1

[r(a)]
1+1/a ·

nc∑
i=1

e2i√
Ai

(2)

It replaces the
√
nc with

√∑Amax

a=1 [r(a)]
1+1/a which puts more emphasis on penalizing

segmentations that have many small regions. Additionally, M. Borsotti et.al. proposed
another assessment function whose values, in their opinion, reflect the differences in
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segmentation quality better that those of F ′. The new function – Q is given by the
following equation:

Q(I) =
1

10000(N ·M)
· √nc ·

nc∑
i=1

[
e2i

1 + logAi
+

(
r(Ai)

Ai

)2
]

(3)

The all aforementioned functions have built-in factors that penalize segmentations
containing too many classes. This makes them well suited for determining the optimal
number of classes and determining the level at which the similarity hierarchy should
be cut.

In our solution look-up tables are generated for all possible cutting thresholds based
on the information saved during clustering. The look-up tables allow generating final
segmentation from the over-segmented image almost instantly. Using the tables, the
watershed merging algorithm automatically searches the range, specified by the user,
in which the desired number of classes lies. It does so by generating segmentations for
all possible thresholds and computing values of selected quality assessment functions.
As shown in section 4 the functions usually have multiple local minima. If the range
containing the desired number of classes is narrow (and contains one local minimum)
the algorithm can quickly find the optimal number of classes. If the range is wider,
the algorithm can look for a global minimum or provide hints as to which tree division
levels are significant (these are the levels corresponding to the local minima of the
assessment function). Since generating segmentations (using look-up tables) is a fast
process, they can be browsed in an interactive manner.

Additionally, quality assessment functions give the user the ability to evaluate the
segmentation not only qualitatively but also quantitatively.

Below a complete outline of our method is provided: (1) The clustering parame-
ters are specified. The parameters include: set of attributes, optional standardization
method, dissimilarity measure and clustering strategy. Additionally, the range contain-
ing the desired number of classes and segmentation assessment function needs to be
specified. (2) For each watershed attribute values are computed. In the case of colour
images, each attribute produces as many values as there are colour components. They
are calculated separately for each colour component. (3) If required, the attributes are
standardized. All values produced by a particular attribute are standardized together
in order to prevent colour information from being distorted. (4) Selected dissimilarity
measure is used to construct the dissimilarity matrix. (5) The two most similar clus-
ters are found (clusters with the minimal dissimilarity measure). Initially, each cluster
consists of a single watershed. (6) The two clusters are merged. (7) The dissimilarity
matrix is updated, according to the selected clustering strategy, in order to reflect the
most recent merger. (8) A new node is added to the similarity tree. The node repre-
sents the most recent merger. (9) If there is more than one cluster left, the algorithm
returns to step 5. (10) The fact that all the watersheds are in one cluster means that
the complete similarity hierarchy is available. (11) The algorithm starts generating
segmentations based on the similarity hierarchy. The selected level at which the tree is
divided corresponds to the smallest number of classes in the specified range. (12) The
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(a) (b) (c) (d)

original image
flower_3

(384× 384 pixels)

number of
regions: 1965

original image
building_1

(384× 384 pixels)

number of
regions: 1873

Fig. 1. The test images and their over-segmented versions. The fol-
lowing parameters were used for preparing the over-segmented image –
flower_3 : gradient function sum-of-squares-gradient, threshold 5%,
merging level 10%, building_1 : gradient function pca-gradient, thresh-
old 0%, merging level 9%.

similarity tree is divided into two parts. The top part of the tree is left out. All cluster
mergers that are recorded in the bottom part of the tree are carried out on the corre-
sponding watersheds – that is, the watersheds are grouped into final clusters. (13) The
algorithm iterates through all clusters. Pixels that constitute watersheds belonging to
a particular cluster are given a label unique to that cluster. This way image segmen-
tation is obtained. (14) The value of the selected segmentation assessment function is
computed. (15) Unless all segmentations in the specified range have been generated,
the algorithm proceeds to generate a segmentation containing larger (by 1) number of
classes. It selects the appropriate tree division level and returns to step 12. (16) The
segmentation with the best assessment value is selected to produce the final segmenta-
tion. Alternatively, segmentations corresponding to the local minima of the assessment
are presented to the human observer who then selects the best segmentation.

4 Results

Figures 1a and 1c show two test images: flower_3 and builting_1 (they are available
at http://pluton.pol.lublin.pl/~jsmolka/2012_annales.

The test images were preprocessed with the use of a curvature anisotropic diffusion
filter [8, 9] (there were used the following parameters: conductance = 0.3, ΔT = 0.12

and 5 iterations). Filtering reduced noise is presented in the images.
The edges were extracted using two different gradient filters. In the case of the

flower_3 image a filter that finds gradient magnitude as the square-root of the sum of
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94 Semi-automatic watershed merging method

Fig. 2. Graph showing the dependence of the functions F and Q on
the number of classes for the flower_3 image. Function values were
scaled to the interval of [0; 1]. The chart shows only the [0; 0, 6] range
in order to make local minima more visible.

squared partial derivatives of the individual image components [9] was used (sum-of-
squares-gradient). The gradient image of building_1 was computed using pca-gradient
– an approach that defines gradient magnitude as the difference between the two largest
eigenvalues in principal component analysis of the partial derivatives of the colour
components [10, 11, 12].

The gradient image of flower_3 test image was thresholded in order to reduce over-
segmentation. The gradient image of building_1 was not modified. After thresholding,
the watershed transformation was performed. Then shallow catchment basins were
merged with their neighbours if their depth did not exceed a value called merging
level [9]. This allowed us to further reduce the over-segmentation. Values of both the
merging level and the threshold that were used are specified as a percentage of maximal
brightness in the gradient image. While selecting these values, special care needs to be
taken to prevent thresholding and merging from removing important features in images
(that is, from merging catchment basins belonging to different objects). It is worth
noting that the preliminary over-segmentation reduction usually significantly speeds
up the clustering process. The results of watershed transformation and preliminary
over-segmentation reduction are shown in Figs 1b and 1d.

Watersheds in the over-segmented images were grouped using cluster analysis. The
parameters used for the test images are specified in the captions of Figs 3 and 5.

Once the clustering was finished, segmentations containing from 2 to 20 classes were
generated. Then the values of the functions F , F ′ and Q for each segmentation were
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6 classes 11 classes 19 classes

Fig. 3. Segmentations of flower_3 test image chosen based on the F

and Q function values. The following parameters were used during the
over-segmentation reduction – clustering method: Ward’s minimum
variance, watershed attributes: average and standard deviation, stan-
dardization: none.

calculated. Figure 2 shows a graph of the F and Q functions obtained for segmen-
tations of the building_1 test image and Figure 4 shows the analogous graph for the
flower_3 image. The function values were scaled to the interval [0, 1] for presentation
purposes. Scaling makes the comparison between the functions easier. The F ′ was
omitted because it turned out that after scaling its shape did not visibly differ from
the F function. This was the case for both test images. With the F , F ′ and Q func-
tions smaller values correspond to better segmentations. As shown in Figures 2 and 4,
these functions can have multiple local minima. Finding the global minimum can be
lengthy, because it would require generating all possible segmentations (typically the
number of all possible segmentations is in the magnitude of thousands). That is why
the range containing the expected number of classes is required by our segmentation
method. Fortunately, because the goal of the method is to provide images that are not
over-segmented, this range is usually small.

For the flower_3 test image assessment the functions F , F ′ and Q have three local
minima in the considered range. They are attained for 7, 11 and 19 classes. For the
building_1 all the functions have minima corresponding to 6, 11 and 19 classes but,
additionally, the Q function has a less significant minimum corresponding to 9 classes.
Segmentations selected by all three quality assessment functions are shown in Figures
3 and 5.

The graphs in Figures 2 and 4 show that segmentation quality assessment functions
can provide clear hint as to what number of classes should be selected. They also
show that increasing the number of classes does not always significantly increase the
accuracy of the segmented image. This happens when, while travelling down through
the similarity hierarchy, small classes are disjoined from larger clusters. The penalty
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96 Semi-automatic watershed merging method

Fig. 4. Graph showing the dependence of the functions F and Q on
the number of classes for the building_1 image. The function values
were scaled to the interval of [0; 1]. The chart shows only the [0; 0, 1]

range in order to make local minima more visible.

7 classes 11 classes 19 classes

Fig. 5. Segmentations of building_1 test image chosen based on the
F and Q function values. The following parameters were used dur-
ing the over-segmentation – clustering method: CLINK, watershed at-
tributes: average and variance, standardization: none.

factor in the assessment function increases, but the colour error does not significantly
decrease.
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5 Conclusions

The results presented above show that the segmentation quality assessment func-
tions can be used for selecting the optimal level at which to cut watershed similarity
hierarchies generated by cluster analysis. The level determines the number of classes
in the final segmentation. If the range of the desired number of classes is narrow, then
the assessment functions can be used to select the optimal number of classes. If the
range is wider, then the local minima provide a hint as to which segmentations should
be assessed by a human observer: in other words they help to select the significant
levels in the similarity hierarchy. The three assessment functions shown in section 3
provide coherent results. In most cases they attain local minima for the same number of
classes. Like other elements of our watershed merging method, the quality assessment
functions can easily be exchanged or replaced.
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