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Abstract – We say that the sequence gn, n ≥ 3, n → ∞ of polynomial transformation bijective maps

of free module Kn over commutative ring K is a sequence of stable degree if the order of gn is growing

with n and the degree of each nonidentical polynomial map of kind gnk is an independent constant c.

Transformation b = τgnkτ−1, where τ is the affine bijection, n is large and k is relatively small, can

be used as a base of group theoretical Diffie-Hellman key exchange algorithm for the Cremona group

C(Kn) of all regular automorphisms of Kn. The specific feature of this method is that the order

of the base may be unknown for the adversary because of the complexity of its computation. The

exchange can be implemented by tools of Computer Algebra (symbolic computations). The adversary

can not use the degree of righthandside in bx = d to evaluate unknown x in this form for the discrete

logarithm problem.

In the paper we introduce the explicit constructions of sequences of elements of stable degree for the

cases c = 3 and c =
⌊
n+2
4

⌋
for each commutative ring K containing at least 3 regular elements and

discuss the implementation of related key exchange and multivariate map algorithms.

1 Introduction

The discrete logarithm problem can be formulated for a general finite group G.
Find a positive integer x satisfying condition gx = b where g ∈ G and b ∈ G. The
problem has reputation to be a difficult one. But even in the case of cyclic group
C there are many open questions. If C = Z∗

p−1 or C = Z∗
pq where p and q are
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64 On the key exchange and multivariate encryption with...

"sufficiently large" primes then the complexity of discrete logarithm problem justifies
the classical Diffie-Hellman key exchange algorithm and the RSA public key encryption,
respectively. In most of other cases complexity of discrete logarithm problem is not
properly investigated. The problem is very dependent on the choice of the base g and
the way of presentation the data on the group. The group can be defined via generators
and relations, as the automorphism group of algebraic variety, as the matrix group,
as the permutation group etc. In this paper we assume that G is a subgroup of Spn

which is a group of polynomial bijective transformation of the vector space Fp
n into

itself. Obviously |Spn | = (pn)!, it is known that each permutation π can be written
in the form x1 → f1(x1, x2, . . . xn), x2 → f2(x1, x2, . . . xn), . . . , xn → fn(x1, x2, . . . xn),
where fi are the multivariable polynomials from Fp[x1, x2, . . . , xn]. The presentation
of G as a subgroup of Spn is chosen because the Diffie-Hellman algorithm here will be
implemented by the tools of symbolic computations. Another reason is universality,
as it follows from the classical Cayley results, each finite group G can be embedded in
Spn for appropriate p and n in various ways.

Let Fp, where p is prime, be a finite field. Affine transformations x → Ax+ b, where
A is the invertible matrix and b ∈ (Fp)

n, form an affine group AGLn(Fp) acting on
Fp

n.
Affine transformations form an affine group AGLn(Fp) of the order pn(pn − 1)(pn −

p) . . . (pn−pn−1) in the symmetric group Spn of the order pn!. In [1] the maximality of
AGLn(Fp) in Spn was proven. So we can present each permutation π as a composition
of several "seed" maps of the kind τ1gτ2, where τ1, τ2 ∈ AGLn(Fp) and g is a fixed
map of degree ≥ 2.

We can choose the base of Fp
n and write each permutation g ∈ Spn as a "public

rule":
x1 → g1(x1, x2, . . . , xn), x2 → g2(x1, x2, . . . , xn), . . . , xn → gn(x1, x2, . . . , xn).
Let gk ∈ Spn be the new public rule obtained via iteration of g. We consider

Diffie-Hellman algorithm for Spn for the key exchange in the case of group. The cor-
respondents Alice and Bob establish g ∈ Spn via open communication channel, they
choose the positive integers nA and nB , respectively. They exchange the public rules
hA = gnA and hB = gnB via open channel. Finally, Alice and Bob compute the
common transformation T as hB

nA and hA
nB , respectively.

In practice they can establish a common vector v = (v1, v2, . . . , vn), vi ∈ Fp, i =

1, . . . , n via open channel and use the collision vector T (v) as a password for their
private key encryption algorithm.

This scheme of symbolic Diffie-Hellman algorithm can be secure, if the order of g is
"sufficiently large" and the adversary is not able to compute the number nA (or nB) as
functions from the degrees for g and hA. Obviously the bad example is the following:
g sends xi into xi

t for each i. In this case nA is just a ratio of deghA and degg.
To avoid such trouble one can look at the family of subgroups Gn of Spn , n → ∞

such that the maximal degree of its elements equals c, where c is a small independent
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Vasyl Ustimenko, Aneta Wroblewska 65

constant (groups of degree c or groups of stable degree). Our paper is devoted to
explicit constructions of such families.

We refer to a sequence of elements gn ∈ Gn such that all its nonidentical powers are
of degree c as the element of stable degree. This is equivalent to stability of families
of cyclic groups generated by gn. Of course, cyclic groups are important for the Diffie-
Hellman type protocols.

It is clear that the affine groups AGLn(Fp), n → ∞ form a family of subgroups of
stable degree for c = 1 and all nonidentical affine transformations are of stable degree.
Notice that if g is a linear diagonalisable element of AGLn(Fp), then the discrete
logarithm problem for base g is equivalent to the classical number theoretical problem.
Obviously, in this case we miss the flavour of symbolic computations. One can take
a subgroup H of AGLn(Fp) and consider its conjugation with the nonlinear bijective
polynomial map f . Of course, the group H ′ = f−1Hf will be also a stable group, but
for "most pairs" f and H group H ′ will be of degree degf × degf−1 ≥ 4 because of
nonlinearity f and f−1.

So the problem of construction of infinite families of subgroups Gn in Spn of degrees
2 and 3 may attract some attention.

A general problem of construction of infinite families of stable subgroups Gn of Spn

of degree c satisfying some additional conditions (unbounded growth of minimal order
of nonidentical group elements, existence of well defined projective limit, etc) can be
also interesting because of possible applications in crypography.

Notice that even we conjugate nonlinear C with the invertible linear transformation
τ ∈ AGLn(Fp), some of important cryptographical parameters of C and C ′ = τ−1Cτ

can be different. Of course the conjugate generators g and g′ have the same number of
fixed points, same cyclic structure as permutations, but counting of equal coordinates
for the pairs (x, g(x)) and (x , g′(x)) may bring very different results.

So two conjugate families of stable degree are not quite equivalent because the cor-
responding cryptoanalitical problems may have different complexity.

We generalize the above problem for the case of Cremona group of the free module
Kn, where K is the arbitrary commutative ring K. For cryptography the case of
finite rings is the most important. The finite field Fpn , n ≥ 1 and the cyclic rings
Zm (especially m = 27 ( ASCII codes), m = 28 (binary codes), m = 216 (arithmetic),
m = 232 ( double precision arithmetic)) are especially popular. The case of infinite
rings K of characteristic zero (especially Z or C) is an interesting as well because of
Matijasevich multivariable prime approximation polynomials can be defined there (see,
for instance [2] and further references).

So it is natural to change a vector space Fp
n for the free module Kn (Cartesian

power of K) and the family and symmetric group Spn for the Cremona group C(n,K)

of all polynomial automorphisms of Kn.
We repeat our definition for a more general situation of commutative ring.
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66 On the key exchange and multivariate encryption with...

Let Gn, n ≥ 3, n → ∞ be a sequence of subgroups of C(n,K). We say that Gn is
a family of groups of stable degree (or subgroup of degree c) if the maximal degree of
representative g ∈ Gn is an independent constant c.

Recall, that the cases of degrees 2 and 3 are especially important.
The first family of stable subgroups of Cn(Fq), K = Fq with degree 3 was practically

established in [3], where the degrees of polynomial graph based public key maps were
evaluated. But the group theoretical language was not used there and the problem of
the key exchange was not considered.

So we reformulate the results of [3] in terms of Cremona group over a general ring
in Section 2 of this paper.

Additionally, we show the existence of cubic elements of large order in the case of
finite field.

Those results are based on the construction of the family D(n, q) of graphs with large
girth and the description of their connected components CD(n, q). The existence of
infinite families of graphs of large girth was proved by Paul Erdös’ (see [4]). Together
with famous Ramanujan graphs introduced by G. Margulis [5] and investigated in [6]
the graphs CD(n, q) are one of the first explicit constructions of such families with
unbounded degree. The graphs D(n, q) were used for the construction of LDPS codes
and turbocodes which were applied in real satellite communications (see [7], [8], [9],
[10]), for the development of private key encryption algorithms [11],[12], [13],[14], the
option to use them for public key cryptography was considered in [15], [16] and in [17]
, where the related dynamic system was introduced (see also surveys [18], [2]).

The computer simulation shows that stable subgroups related to D(n, q) contain
elements of very large order but our theoretical linear bounds on the order are relatively
weak. We hope to improve this gap in the future and justify the use of D(n, q) for the
key exchange.

In Section 4 we also will use graphs and related finite automata for the construction
of families of stable subgroups with degree 3 of Cremona group C(n,K) over general
ring K containing elements of large order (order is growing with the growth of n).
The first family of stable groups was obtained via studies of simple algebraic graphs
defined over Fq. For general construction of stable groups over commutative ring K

we use directed graphs with the special colouring. The main result of the paper is the
following statement.

Theorem 1. For each commutative ring K with at least 3 regular elements there
is a family Qn of Cremona group C(Kn) of degree 3 such that the projective limit Q

of Qn, n → ∞ is well defined, the group Q is of infinite order, it contains elements g

of infinite order, such that there exists a sequence gn ∈ Qn n → ∞ of stable elements
such that limgn = g.

The family Qn is obtained via explicit constructions. So we may use the sequence
equivalent to gn for the key exchange in the finite ring K with at least 3 regular
elements. We show that the growth of the order of gn when n is growing can be
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Vasyl Ustimenko, Aneta Wroblewska 67

bounded from below by a linear function α × n + β. In the case of such a sequence
of groups Gn = Qn we can modify a sequence gi of elements of stable degree by
conjugation with hi ∈ Gi. A new sequence di = hi

−1gihi can be also a sequence of
elements of stable degree.

Let us discuss the asymmetry of our modified Diffie-Hellman algorithms of the key
exchange in detail. The correspondents Alice and Bob are in different shoes. Alice
chooses the dimension n, element gn as in the theorem above, the element h ∈ Qn s
and affine transformation τ ∈ AGLn(K). So she obtains the base b = τ−1h−1gnhτ

and sends it in the form of standard polynomial map to Bob.
Our groups Qn are defined by the set of their generators and Alice can compute

the words h−1gnh, b and its powers very fast. So Alice chooses rather a large number
of nA computes cA = bnA and sends it to Bob. In his turn, Bob chooses the own
key nB computes cB = bnB . He and Alice get the collision map c as cA

nB and cB
nA

respectively.
Remark. Notice that the adversary is in the same shoes with the public user Bob.

He (or she) needs to solve one of the equations bx = cB or bx = cA. The algorithm is
implemented in the cases of finite fields and rings Zm for the family of groups Qn. We
present its time evaluation (generation of b and bnA by Alice and computation of bcB by
Bob) in the last section of paper. We continue the studies of orders of gi theoretically
and by computer simulation.

The computer simulation shows that the number of monomial expressions of the kind
xi1xi2xi3 with the nonzero coefficient is rather close to the binomial coefficient Cn

3.
So the time of computation bnB , cBnA and cA

nB can be evaluated via the complexity
of computation of the composition of several general cubical polynomial maps in n

variable.

2 Walks on infinite forest D(q) and corresponding groups

2.1 Graphs and incidence system

The missing definitions of graph-theoretical concepts which appear in this paper can
be found in [4]. All graphs considered are simple, i.e. undirected without loops and
multiple edges. Let V (G) and E(G) denote the set of vertices and the set of edges of
G, respectively. Then |V (G)| is called the order of G, and |E(G)| is called the size of
G. A path in G is called simple if all its vertices are distinct. When it is convenient,
we shall identify G with the corresponding anti-reflexive binary relation on V (G), i.e.
E(G) is a subset of V (G) × V (G) and write vGu for the adjacent vertices u and v

(or neighbours). The sequence of distinct vertices v1, . . . , vt, such that viGvi+1 for
i = 1, . . . , t− 1 is the pass in the graph. The length of a pass is a number of its edges.
The distance dist(u, v) between two vertices is the length of the shortest pass between
them. The diameter of the graph is the maximal distance between two vertices u and v

of the graph. Let Cm denote the cycle of length m i.e. the sequence of distinct vertices
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68 On the key exchange and multivariate encryption with...

v1, . . . , vm such that viGvi+1, i = 1, . . . ,m − 1 and vmGv1. The girth of a graph G,
denoted by g = g(G), is the length of the shortest cycle in G. The degree of vertex v

is the number of its neighbours (see [19] or [4]).
The incidence structure is the set V with the partition sets P (points) and L (lines)

and the symmetric binary relation I such that the incidence of two elements implies that
one of them is a point and another is a line. We shall identify I with the simple graph
of this incidence relation (bipartite graph). If the number of neighbours of each element
is finite and depends only on its type (point or line), then the incidence structure is a
tactical configuration in the sense of Moore (see [1]). The graph is k-regular if each of
its vertices has the degree k, where k is a constant. In this section we reformulate the
results of [20], [21] where the q-regular tree was described in terms of equations over
the finite field Fq.

Let q be a prime power, and let P and L be two countably infinite dimensional
vector spaces over Fq. The elements of P will be called points and those of L lines. To
distinguish points from lines we use parentheses and brackets: If x ∈ V , then (x) ∈ P

and [x] ∈ L. It will also be advantageous to adopt the notation for the coordinates of
points and lines introduced in [5]:

(p) = (p1, p11, p12, p21, p22, p
′
22, p23, . . . , pii, p

′
ii, pi,i+1, pi+1,i, . . .),

[l] = [l1, l11, l12, l21, l22, l
′
22, l23, . . . , lii, l

′
ii, li,i+1, li+1,i, . . .).

We now define an incidence structure (P,L, I) as follows. We say the point (p) is
incident with the line [l], and we write (p)I[l], if the following relations between their
coordinates hold:

l11 − p11 = l1p1

l12 − p12 = l11p1

l21 − p21 = l1p11 (1)

lii − pii = l1pi−1,i

l′ii − p′ii = li,i−1p1

li,i+1 − pi,i+1 = liip1

li+1,i − pi+1,i = l1p
′
ii

(The last four relations are defined for i ≥ 2.) We denote this incidence structure

(P,L, I) as D(q). We speak now of the incidence graph of (P,L, I), which has the
vertex set P ∪ L and the edge set consisting of all pairs {(p), [l]} for which (p)I[l].

To facilitate notation in future results, it will be convenient for us to define p−1,0 =

l0,−1 = p1,0 = l0,1 = 0, p0,0 = l0,0 = −1, p′0,0 = l′0,0 = 1, p0,1 = p1, l1,0 = l1, l′1,1 = l1,1,
p′1,1 = p1,1, and to rewrite (1) in the form :

lii − pii = l1pi−1,i

l′ii − p′ii = li,i−1p1
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Vasyl Ustimenko, Aneta Wroblewska 69

li,i+1 − pi,i+1 = liip1

li+1,i − pi+1,i = l1p
′
ii

for i = 0, 1, 2, . . .

Notice that for i = 0, the four conditions (1) are satisfied by every point and line,
and, for i = 1, the first two equations coincide and give l1,1 − p1,1 = l1p1.

For each positive integer k ≥ 2 we obtain an incidence structure (Pk, Lk, Ik) as
follows. First, Pk and Lk are obtained from P and L, respectively, by simply projecting
each vector onto its k initial coordinates. The incidence Ik is then defined by imposing
the first k−1 incidence relations and ignoring all others. For fixed q, the incidence graph
corresponding to the structure (Pk, Lk, Ik) is denoted by D(k, q). It is convenient to
define D(1, q) to be equal to D(2, q). The properties of the graphs D(k, q), that we are
concerned with are described in the following theorem.

Theorem 2. [21] Let q be a prime power, and k ≥ 2. Then
(i) D(k, q) is a q-regular edge-transitive bipartite graph of the order 2qk ;
(ii) for odd k, g(D(k, q)) ≥ k + 5, for even k, g(D(k, q)) ≥ k + 4

We have a natural one to one correspondence between the coordinates 2,3, . . ., n,
. . . of tuples (points or lines) and equations. It is convenient for us to rename by i+2

the coordinate which corresponds to the equation with the number i and write [l] =

[l1, l2, . . . , ln, . . .] and (p) = (p1, p2, . . . , pn, . . .) (line and point in ”natural coordinates”).
Let ηi be the map ”deleting all coordinates with the numbers > i” from D(q) to

D(i, q), and ηi,j be the map "deleting all coordinates with the numbers > i " from
D(j, q), j > i into D(i, q).

The following statement follows directly from the definitions:

Proposition 1. (see, [21]) The projective limit of D(i, q), ηi,j , i → ∞ is an infinite
forest D(q).

Let us consider the description of connected components of the graphs.
Let k ≥ 6, t = [(k + 2)/4], and let u = (u1, u11, · · · , utt, u

′
tt, ut,t+1, ut+1,t, · · · ) be a

vertex of D(k, q). (It does not matter whether u is a point or a line). For every r,
2 ≤ r ≤ t, let

ar = ar(u) =

m∑
i=0

(uiiu
′
r−i,r−i − ui,i+1ur−i,r−i−1),

and a = a(u) = (a2, a3, · · · , at). (Here we define
p−1,0 = l0,−1 = p1,0 = l0,1 = 0, p00 = l00 = −1, p0,1 = p1, l1,0 = l1, p′00 = l′00 = 1

l′11 = l11, p′1,1 = p1,1).
In [20] the following statement was proved.
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Proposition 2. Let u and v be vertices from the same component of D(k, q). Then
a(u) = a(v). Moreover, for any t− 1 field elements xi ∈ Fq, 2 ≤ t ≤ [(k + 2)/4], there
exists a vertex v of D(k, q) for which
a(v) = (x2, . . . , xt) = (x).

Let us consider the following equivalence relation τ : uτv iff a(u) = a(v) on the
set P ∪ L of vertices of D(k, q) (D(q)). The equivalence class of τ containing the
vertex v satisfying a(v) = (x) can be considered as the set of vertices for the induced
subgraph EQ(x)(k, q) (EQ(x)(q)) of the graph D(k, q) (respectively, D(q)). When
(x) = (0, · · · , 0), we will omit the index v and write simply EQ(k, q).

Let CD(q) be the connected component of D(q) which contains (0, 0, . . .). Let τ ′

be an equivalence relation on V (D(k, q)) (V (D(q))) such that the equivalence classes
are the totality of connected components of this graph. Obviously uτv implies uτ ′v.
If char Fq is an odd number, the converse of the last proposition is true (see [2] and
further references).

Proposition 3. Let q be an odd number. Vertices u and v of D(q) (D(k, q)) belong
to the same connected component iff a(u) = a(v), i.e., τ = τ ′ and EQ(q) = CD(q)

(EQ(k, q) = CD(k, q)).

The condition charFq �= 2 in the last proposition is essential. For instance, the graph
EQ(k, 4)), k > 3, contains 2 isomorphic connected components. Clearly EQ(k, 2) is a
union of cycles CD(k, 2). Thus neither EQ(k, 2) nor CD(k, 2) is an interesting family
of graphs of high girth. But the case of graphs EQ(k, q), q is a power of 2, q > 2 is
very important for coding theory.

Corollary 1. Let us consider a general vertex

x = (x1, x1,1, x2,1, x1,2 · · · , xi,i, x
′
i,i, xi+1,i, xi,i+1, · · · ),

i = 2, 3, · · · of the connected component CD(k, Fq), which contains a chosen vertex v.
Then the coordinates xi,i, xi,i+1, xi+1,i can be chosen independently as “free param-
eters” from Fq and x′

i,i could be computed successively as the unique solution of the
equations ai(x) = ai(v), i = 1, . . ..

2.2 Geometrical interpretation of the algorithm

We can change Fq for the integral domain K and introduce the graph D(K) as the
graph given by equations (1) over K and repeat all results of the previous section. If
we assume that K is the general commutative ring then we will lose just the bounds
on the girth.

The graph D(K), where K is the integral domain is a forest consisting of isomorphic
edge-transitive trees (see [11] or [17]).

Notice that each tree is a bipartite graph. We may choose a vertex x and refer to all
vertices on even distance from it as points. So all remaining vertices are lines.
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We may identify all vertices from P = K∞ with the union of point-sets for all trees
from D(K). Another copy L of K∞ we will treat as totality of all lines in our forest.

For our Diffie-Hellman key exchange protocol Alice has to go to infinite magic forest
D(K) and do the following lumberjack’s business

1) Truncate all trees there by deleting all components with the number ≥ n+ 1. So
Alice gets a finite dimensional graph D(n,K) which is a union of isomorphic connected
components CD(n,K)- truncated trees.

Notice, if you plant a truncated tree CD(n,K) and let n → ∞ then it will grow to
a projective limit of CD(n,K), which is an infinite regular tree.

2) We define a special colouring of graph D(n,K) (or D(K)) in the following way.
Let us identify our simple graph with the directed graph of corresponding symmetric
binary relation. We introduce the colour of the directed arrow between two ordered
vertices of our graph v1 and v2 as the difference of their first coordinates. It is l0,1−p0,1
if v1 is a point (p) and −(l0,1 − p0,1) if v1 is a line [l].

Let X(α, β) be the operator on the vertices of the graph D(K) moving point (p) to
its neighbor alongside the edge of colour α and moving line l to its neighbor alongside
the edge of colour β. It is clear that X(α, β)X(−β,−α) is an identity map e. So
X(α, β)−1 = X(−β,−α). We assume, that Nα = X(α, α).

Let us define the infinite group GD(K) generated by the elements of the kind g =

Nα1
Nα2

. . . Nα2s−1
Nα2s

(x), s = 1, 2 . . . corresponding to walks of even length within
the tree starting in the general vertex x. It is a transformation group of variety P ∪L.
It acts transitively on P (or L). (GD(K), P ) is a subgroup of Cremona group for the
variety K∞.

The computation of g = Nα1Nα2 . . . Nα2s−1Nα2s(x) in the transformation group
(GD(K), P ) corresponds to walk in D(K) of even length within the tree starting with
the point x. So the group G is the totality of all point to point walks in our forest.

The composition of g1 and g2 from the variable x is the walk corresponding to g1
with the starting point x combined with the walk corresponding to g2 with the starting
point g1(x) and the final point g2(g1(x)),

Each pass of even length in the graph starting from a point (p) can be obtained as
a sequence (p), v1 = Nα1

(p), v2 = Nα2
(v1), . . . , v2k = Nα2k

(v2k−1).
Each element of GD(K) has an infinite order because our forest does not contain

cycles.
Let us consider our symbolic Diffie -Hellman protocol for the infinite transformation

group GD(K), P .
a) In the case of this group Alice hides a general point x by the "quasi random"

affine transformation T and sends g(T (x)) to Bob.
b) Further Bob chooses his key kB and computes the transformation hb = g(T (x))kB

of the point set for the tree. He makes this computation root in "darkness" because
he has no information on the forest, he has to apply standard tools for symbolic com-
putations.
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72 On the key exchange and multivariate encryption with...

c) Alice computes hA = g(T (x))kA . She can make it fast because via the repetition
of the walk g from the vertex T (x) several times.

d) Alice and Bob get the collision vector as hB
k
A and hA

k
B respectively.

2.3 Truncated trees and corresponding stable group

Now we change the forest D(K) into the bunch of truncated trees from D(n,K).
The computation g = Nα1

Nα2
. . . Nα2s−1

Nα2s
(x) generates the group (GD(n,K), P∪L)

corresponding all walks in D(n,K) of even length starting in the vertex x.
Each pass of even length in the graph starting from a point (p) can be obtained as

a sequence (p), v1 = Nα1(p), v2 = Nα2(v1), . . . , v2k = Nα2k
(v2k−1).

Now Alice and Bob can do the key exchange similarly to the case of GD(K) but in
the finite group GD(n,K), where K is a finite ring

REMARK. The generalised graph D(n,K) can be defined on the vertex set Kn∪Kn

in the case of arbitrary ring K by equations (1). Notice that if K contains zero divisors
then girth dropps, it is bounded by the constant.

The next result follows instantly from [3] .

Theorem 3. Let K be a commutative ring containing at least 3 regular elements.
The sequence of subgroups GD(n,K) of the Cremona group C(n,K) forms a family
of stable subgroups of degree 3.

We refer to the element g = Nα1Nα2 . . . Nα2s−1Nα2s for which αi �= αi+1, i =

1, 2 . . . , 2s− 1 as an irreducible element of length s.
Let φn be a canonical homomorphism of GD(K) onto GD(n,K).
The following proposition follows from the results on the girth of the previous section.

Now it is very important that K = Fq

Proposition 4. The order of each nonidentical element of GD(Fq) is an infinity.
Let g ∈ GD(Fq) be a regular element of length l(g) = k, then the order of gn = φn(g),
where k ≤ [n + 5]/2, is bounded below by [n + 5]/4k The sequence gn is a family of
stable elements.

So element h = τ−1h−1gnhτ , where τ ∈ AGLn(K), h ∈ DG(n,K) is an element
for which h−1gnh is a cubical map, can be used as the base for the Diffie-Hellman
algorithm as above for K = Fq.

3 On the regular directed graph with special colouring

The directed graph is an irreflexive binary relation φ ⊂ V × V , where V is the set of
vertices.

Let us introduce two sets

id(v) = {x ∈ V |(a, x) ∈ φ},
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od(v) = {x ∈ V |(x, a) ∈ φ}
as the sets of inputs and outputs of vertex v. Regularity means the cardinality of these
two sets (input or output degree) are the same for each vertex.

Let Γ be the regular directed graph, E(Γ) be the set of arrows of graph Γ. Let us
assume that additionally, we have a colouring function i.e. the map π : E → M onto
the set of colours M such that for each vertex v ∈ V and α ∈ M there exists a unique
neighbour u ∈ V with the property π((v, u)) = α and the operator Nα(v) := N(α, v)

of taking the neighbour u of a vertex v within the arrow v → u of colour α and a
bijection. In this case we refer to Γ as the rainbow-like graph.

For each string of colours (α1, α2, . . . , αm), αi ∈ M we can generate a permutation
π which is a composition Nα1

×Nα2
×· · ·×Nαm

of bijective maps Nαi
: V (Γ) → V (Γ).

Let us assume that the map u → Nα(u) is a bijection. For a given vertex v ∈ V (Γ) the
computation π corresponds to the chain in the graph:

v → v1 = N(α1, v) → v2 = N(α2, v1) → · · · → vn = N(αm, vm−1) = v′.

Let GΓ be the group generated by permutations π as above.
E. Moore [1] used the term tactical configuration of order (s, t) for the biregular

bipartite simple graphs with the bidegrees s + 1 and r + 1. It corresponds to the
incidence structure with the point set P , line set L and symmetric incidence relation
I. Its size can be computed as |P |(s+ 1) or |L|(t+ 1).

Let F = {(p, l)|p ∈ P, l ∈ L, pIl} be the totality of flags for the tactical configuration
with the partition sets P (point set) and L (line set) and the incidence relation I.
We define the following irreflexive binary relation φ on the set F : Let (P,L, I) be the
incidence structure corresponding to the regular tactical configuration of the order t.

Let F1 = {(l, p)|l ∈ L, p ∈ P, lIp} and F2 = {[l, p]|l ∈ L, p ∈ P, lIp} be two copies
of the totality of flags for (P,L, I). Brackets and parenthese allow us to distinguish
elements from F1 and F2. Let DF (I) be the directed graph (double directed flag graph)
on the disjoint union of F1 with F2 defined by the following rules
(l1, p1) → [l2, p2] if and only if p1 = p2 and l1 �= l2,
[l2, p2] → (l1, p1) if and only if l1 = l2 and p1 �= p2.

4 Construction of new stable groups corresponding to the
rainbow like graphs

Let us consider a double directed graph DD(n,K) for the bipartite graph D(n,K)

and an infinite double directed flag graph DD(K) for D(K)(DD(K)) defined over
the commutative ring K, Let N = Nα,β(v) be the operator of taking the neighbour
alongside the output arrows of colours α, β ∈ Reg(K) of the vertex v ∈ F1 ∪ F2 by the
following rule. If v =< (p), [l] >∈ F1 then N(v) = v′ = [[l], (p′)] ∈ F2, where the colour
of v′ is α = p′1,0 − p1,0, if v = [[l], (p)] ∈ F2 then N(v) = v′ =< (p), [l′] >∈ F1, where
the colour of v′ is β = l′1,0 − l1,0.
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Let us consider the elements Z(α, β) = Nα,0N0,β . It moves v ∈ F1 into v′ ∈ F1 at
the distance two from v and fixes each u ∈ F2. Notice that Z(α, β)Z(−α,−β) is an
identity map.

We consider the group GF (n+ 1,K) (GF (K), respectively) generated by all trans-
formations Z(α, β) for nonzero α, β ∈ K acting on the variety F1 = Kn+1 (K∞).

Theorem 4. Sequence of the subgroups GF (n,K) of the Cremona group C(n,K)

form a family of subgroups of degree 3.

Proof
In the first step we connect a point with a line to get two sets of vertices of the new

graph:

F = {〈(p), [l]〉 | (p)I[l]} ∼= Kn+1

F
′
= {{[l], (p)} | [l]I(p)} ∼= Kn+1.

Now we define the following relation between vertices of the new graph:

〈(p), [l]〉R{[l′ ], (p′
)} ⇔ [l] = [l

′
] & p1 − p

′
1 ∈ K

{[l′ ], (p′
)}R〈(p), [l]〉 ⇔ (p

′
) = (p) & l

′
1 − l1 ∈ K

Our key will be α1, α2, . . . , αn, such that αi ∈ RegK.
As the first vertex we take

{[l], (p)} = (l1, l1,1, l1,2, . . . , li,j , p1)

(our variables) . Using the above relation we get the next vertex:

〈(p)(1), [l](2)〉 = (p1, p
(1)
1,1, . . . , p

(1)
i,j , l1 + α1)

with the coefficients of degree 2 or 3, where

p
(1)
1,1 = l1,1 − l1p1, deg = 2

p
(1)
1,2 = l1,2 − l1,1p1 deg = 2

p
(1)
2,1 = l2,1 − l1(l1,1 − l1p1) deg = 3

p
′(1)
i,i = l

′
i,i − p1li,i−1 deg = 2

p
(1)
i,i+1 = li,i+1 − p1li,i deg = 2

p
(1)
i,i = li,i − l1(li−1,i − p1li−1,i−1) deg = 3

p
(1)
i+1,i = li+1,i − l1(l

′
i,i − p1li,i−1) deg = 3

Similarly we get the third vertex:

{[l](2), (p)(3)} = (l1 + α1, l1,1, . . . , li,j , p1 + α2)
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also with the coefficients of degree 2 or 3, where

l
(2)
1,1 = l1,1 + l1p1, deg = 2

l
(2)
1,2 = l1,2 + α1p

2
1 deg = 2

l
(2)
2,1 = l2,1 + α1p

(1)
1,1 deg = 2

l
(2)
i,i = li,i + α1p

(1)
i−1,i deg = 2

l
(2)
i+1,i = li+1,i + α1p

′(1)
i,i deg = 2

l
′(2)
i,i = l

′
i,i + α1p1p

′(1)
i−1,i−1 deg = 3

l
(2)
i,i+1 = li,i+1 + α1p1p

(1)
i−1,i deg = 3

Let us represent:

p
(2k−1)
1 = p1 + α2 + α4 + . . .+ α(2k−2) = p

(2k−3)
1 + α(2k−2)

l
(2k)
1 = l1 + α1 + α3 + . . .+ α(2k−1) = l

(2k−2)
1 + α(2k−1)

Assume that the following vertices:

〈(p)(2k−1), [l](2k)〉 = (p
(2k−1)
1 , p

(2k−1)
1,1 , . . . , p

(2k−1)
i,j , l

(2k)
1 )

{[l](2k), (p)(2k+1)} = (l
(2k)
1 , l

(2k)
1,1 , . . . , l

(2k)
i,j , p

(2k+1)
1 )

have the degrees:

deg p
(2k−1)
i,j (l1, l2, . . . , lk, p1) =

{
2, (i, j) = (i, i)

′
or (i, j) = (i, i+ 1),

3, (i, j) = (i, i) or (i, j) = (i+ 1, i)

deg l
(2k)
i,j (l1, l2, . . . , lk, p1) =

{
3, (i, j) = (i, i)

′
or (i, j) = (i, i+ 1),

2, (i, j) = (i, i) or (i, j) = (i+ 1, i).

Now we would like to find out degrees of polynomials of the vertices 〈(p)(2k+1), [l](2k+2)〉
and {[l](2k+2), (p)(2k+3)}.

We have the components of the vertices with the corresponding degrees: :

p
′(2k+1)
i,i = p

′(2k−1)
i,i − α2kl

(2k)
i,i−1 deg = 2

p
(2k+1)
i,i+1 = p

(2k−1)
i,i+1 − α2kl

(2k)
i,i deg = 2

p
(2k+1)
i,i = p

(2k−1)
i,i + α2kl

(2k)
1 li−1,i−1)

(2k) deg = 3

p
(2k+1)
i+1,i = p

(2k−1)
i+1,i + α2kl

(2k)
1 l

(2k)
i,i−1 deg = 3

and
l
(2k+2)
i,i = l

(2k)
i,i + α2k+1p

(2k+1)
i−1,i deg = 2

l
(2+2)
i+1,i = l

(2k)
i+1,i + α2k+1p

′(2k+1)
i,i deg = 2

l
′(2+2)
i,i = l

′(2k)
i,i + α2k+1p

(2k+1)
1 p

′(2k+1)
i−1,i−1 deg = 3

l
(2+2)
i,i+1 = l

(2k)
i,i+1 + α2k+1p

(2k+1)
1 p

(2k+1)
i−1,i deg = 3

Hence using the induction we get:

deg p
(2k+1)
i,j (l1, l2, . . . , lk, p1) =

{
2, (i, j) = (i, i)

′
or (i, j) = (i, i+ 1),

3, (i, j) = (i, i) or (i, j) = (i+ 1, i)
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deg l
(2k+2)
i,j (l1, l2, . . . , lk, p1) =

{
3, (i, j) = (i, i)

′
or (i, j) = (i, i+ 1),

2, (i, j) = (i, i) or (i, j) = (i+ 1, i).

Finally, using the affine transformation in the same way as in [3], independently of
the length of the password we get the polynomials of degree 3.

The canonical graph homomorphisms ωn : DD(n,K) → DD(n − 1,K) can be nat-
urally expanded to the group homomorphism GF (n + 1,K) onto GFn(K). It means
that the group GF (K) is a projective limit of GF (n,K). Let δn be a canonical homo-
morphism of GF (K) onto GF (n,K).

Let Reg(K) be the totality of regular elements of K i. e. non zero divisors. We may
consider the restriction ˜DD(n,K) of the graph DD(n,K) via the following additional
condition.

〈(p), [l]〉R{[l′ ], (p′
)} ⇔ [l] = [l

′
] & p1 − p

′
1 ∈ Reg(K)

{[l′ ], (p′
)}R〈(p), [l]〉 ⇔ (p

′
) = (p) & l

′
1 − l1 ∈ Reg(K)

. We restrict the operators Nα,β and Z(α, β) simply by adding the restrictions α, β ∈
Reg(K). Let Qn = Q(n,K) be the restricted group and Q = Q(K) a projective limit
of Q(n,K), n → ∞.

In [16], [15] it was shown that the projective limit of the graphs ˜DD(n,K) is an
acyclic graph and the length of the minimal directed cycle in ˜DD(n,K) is bounded
below by [n+ 5]/2. It means that we get the following statement.

Proposition 5. The order of each nonidentical element of Q(K) is infinity. Let
g ∈ Q(K) be an element of length l(g) = k, then the order of its projection gn =

δn(g) ∈ Qn, where k ≤ [n + 5]/2, is bounded below by [n + 5]/2k The sequence gn
forms a family of stable elements of the increasing order.

Theorem 1 follows immediately from theorem 4 and proposition 5.

5 Operators L and P

Let LD,n,βk
be the operator of taking the neighbour of point:

(p)2k−2 = (p0,1, p1,1, p1,2, p2,1, p2,2, p
′
2,2, p2,3, . . . , pi,i, p

′
i,i, pi,i+1, pi+1,i, . . .),

of a kind

[l]2k−1 = [βk, l1,1, l1,2, l2,1, l2,2, l
′
2,2, l2,3, . . . , li,i, l

′
i,i, li,i+1, li+1,i, . . .],

where the parameters l1,1, l1,2, l1,2, l2,2, . . . , li,i, li,i+1, li+1,i, . . . are computed conse-
quently from the equations in the definition of D(n,K) and all l′i,i for i = 2, 3, . . .

are computed using the equation describing the connected component.
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Similarly, PD,n,αk
is the operator of taking the neighbour of line

[l]2k−1 = [l1,0, l1,1, l1,2, l2,1, l2,2, . . . , li,i, li,i+1, l
′
i,i, li+1,i, . . .],

of a kind

(p)2k = (p2k−2
0,1 + αk, p1,1, p1,2, p2,1, p2,2, . . . , pi,i, p

′
i,i, pi,i+1, pi+1,i, . . .),

where the parameters p1,1, p1,2, p2,1, p2,2,. . ., pi,i, pi,i+1, pi+1,i, . . . are computed
consequently from the equations in the definition of D(n,K) and all p′i,i for i = 2, 3, . . .

are computed using the equation describing the connected component.
Given the vector (p)0 = (p0,1, p1,1, p1,2, p2,1, p2,2, p

′
2,2, p2,3, . . . , pi,i, p

′
i,i, pi,i+1, pi+1,i, . . .),

(of length n) let us take the elements α = (α1, α2, . . . , αk) and β = (β1, β2, . . . , βk) from
Qk and the composition Fn,α,β = LD,n,β1PD,n,α1LD,n,β2PD,n,α2 . . . LD,n,βk

PD,n,αk
.

Theorem 5. (A. Wroblewska) Independently of the choice of α = (α1, α2, . . . , αk) ∈
Qk and β = (β1, β2, . . . , βk) ∈ Qk, the map Fn,α,β of free module Kn−�n+2

4 � is a
bijective map with the degree

⌊
n+2
4

⌋
.

Theorem 6. (V. Ustimenko) The order Fn,α,β tends to ∞ when n → ∞

6 Application

6.1 Multivariate Diffie-Hellman key exchange protocol

We consider the Diffie-Hellman algorithm for C(Kn) for the key exchange in the case
of a group. Let AGLn(Fq) be the group of affine transformation of the vector space Fn

q ,
i.e. the maps τA,b : x̃ → x̃A+ b, where x̃ = (x1, x2, . . . , xn), b = (b1, b2, . . . , bn) and A

is the invertible sparse matrix with detA �= 0. Let hk
n be the new public rule obtained

via k iterations of hn = Fn,α,β = LD,n,β1
PD,n,α1

LD,n,β2
PD,n,α2

. . . LD,n,βk
PD,n,αk

.
The correspondents Alice and Bob have different information for making computation.
Alice chooses the dimension n, the element hn as above, the affine transformation
τ ∈ AGLn(K). So she obtains the base b = τhk

nτ
−1 and sends it in the form of

standard polynomial map to Bob.
So Alice chooses rather large number nA computes cA = bnA and sends it to Bob.

In his turn, Bob chooses his own key nB and computes cB = bnB . He and Alice get
the collision map c as cA

nB and cB
nA respectively.

Notice that the position of adversary is similar to Bob’s position. He (or she) needs
to solve one of the equations bx = cB or bx = cA. The algorithm is implemented in the
cases of finite fields and rings Zm for the family of groups C(Kn).

6.2 Multivariate map cryptography

The composition of maps PD,n,α1
PD,n,α2

. . . PD,n,αk
and its usage in cryptography

were investigated in detail in [3], where it was proved that polynomial maps have
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degree 3 but unfortunately, finding an inverse map of this map takes the polynomial
map O(n10).

Good strengthening of the public rule is the usage of the following idea:
Let τ be the linear transformation τ : x → Ax, where A is the sparse matrix with

thecondition detA �= 0 Map τFn,α,βτ
−1 written as a multivariate public rule:

x1 → h1(x1, x2, . . . , xn)

x2 → h2(x1, x2, . . . , xn)

. . .

xn → hn(x1, x2, . . . , xn),

can be used in public key cryptography. Alice - the holder of the key - keeps linear
transformation and (β1, α1, β2, α2, . . . , βk, αk) secret. Bob (public user) has the above
map.

Combining the transformation Fn,α,β with two linear transformations, Bob gets a
formula:

y = (h1(x1, . . . , xn), . . . , hn(x1, . . . , xn)),

where hi(x1, . . . , xn) are the polynomials of n variables of the degree
⌊
n+2
4

⌋
.

Let us count the number of monomial expressions for xi → hi(x1, . . . , xn). We know
that before elimination of x′

ii for i = 2, 3, . . . , n the degree of hi(x1, . . . , xn) is ≤ 2.
We can write hi(x1, . . . , xn) in the form gi(xi1 , xi2 , . . . , xin) + x′

iil(xj1 , xj2 , . . . , xjn),
where a list of variables xi1 , xi2 , . . . , xin does not contain variables of the kind x′

ii

and deg l(xj1 , xj2 , . . . , xjn) ≤ 1. We have to conduct a specialization x′
ii = xii + ai,

where ai, deg ai = 2 contain ≤ n quadratic monomial expressions. So the expression
(xii + ai)l(xj1 , xj2 , . . . , xjn) contains ≤ n2 monomial expressions. It means that a new
public rule xi → hi(x1, . . . , xn) will contain O(n3) monomials. The degree of our
multivariate map will be cn (c-constant) and the number of expressions hi is n, so the
computation of the map costs O(n4) operation. Notice that if x → Ax is a monomial
linear transformation, then it can not change the total cost of computation because
the number of monomial expression will be the same. The degree of inverse map is
also cn, so linearisation attacks are not feasible for sufficiently large n. Therefore the
algorithm can be used as a public key

6.3 Private key cryptography

Map τFn,α,βτ
−1, where τ is the affine transformation, can be used as a private key

for Alice. Alice and Bob share τ and the sequence (β1, α1, β2, α2, . . . , βk, αk), where
αi+1 − αi ∈ Q as well as βi+1 − βi ∈ Q. For k < n+5

2 a different password produces a
different ciphertext.
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6.4 Multivariate private-key algorithm for multiusers’ network.

Let us assume that Alice administers a large multiusers’ information system (e-
parllament, university quality support system, etc). The system is used by many pairs
(Jk, Bk) , k = 1, 2, . . . of users (or groups of users, B and J stand for Brad and
Jennifer). Alice has to develop symmetric tools for communication of each pair of the
users (Jk, Bk) involved in the activities of the information system.

Alice makes a decision to work with the graph T (n,K)J , |J | = s. She takes string
α1, α2, . . . , αr in Kr. For simplicity we assume that r is even.

We assume that αi + αi+1 ∈ M(K) for i = 1, 2, . . . .
Additionally, she takes the affine transformation τ1, τ2 = τ1

−1 and forms the map
fB = τ1Nα1Nα2 . . . Nαrτ

−1
1 of degree s + 3 in a symbolic way (She can use "Maple",

"Sage" or "Mathematica"). Here B stands for the pair b = (α1, α2, . . . , αr), τ1.
She gets the encryption map as a nonlinear pseudopublic rule: x1 → f1(x1, x2, . . . , xn),

x2 → f2(x1, x2, . . . , xn), . . . , xn → fn(x1, x2, . . . , xn), where fi are the multivariable
polynomials from K[x1, x2, . . . , xn].

Let Sk = (Bk, Jk), k = 1, 2, . . . , N be the pairs of users (B and J stand for Brad and
Jennifer).

Alice provides each pair with the “seed” triple Ck, fBk
, Dk, where Ck and Dk are

the linear or affine transformations of the plainspace Kn of large order (like maps
conjugated with the Singer cycles of the order qn − 1 in the case of K = Fq) and gives
them also fBk

−1. So they can use the encryption map CkfBk
Dk and decrypt with

Dk
−1f−1

Bk
Ck

−1.
The pair (Jk, Bk) can take “quite close ” primes p1, p2, p3 (or pseudoprimes) numbers

to |Ck|, p2 = |Dk| and |fBk
|. They use the Diffie-Hellman key exchange protocol for

Zpi

∗ and develop the collision triple hi ∈ Zpi

∗, i = 1, 2, 3. During the session they use
the encryption and decryption nonlinear maps Ck

h1fBk

h2Dh3

k and Dk
−h3fBk

−h2D−h1

k .
Notice that Sk is known to the trusted third party (Alice), but triple h1, h2, h3 is

the individual private password for Brad and Jennifer. There is no need to compute
a new encryption map symbolically, users just apply Dh3

k , fh2

Bk
and Ck

h1 consequtively
to the plainspace vector. In the next session of the key exchange, Brad and Jennifer
can get a new triple h′

j ∈ Zpj

∗, j = 1, 2, 3 and use the numbers h”j = h′
jhjmodpj for

the modification of multivariate encryption map. This approach leads to dependence
of the algorithm from the prehistory of communications.

The use of key exchange protocols as tools of protection against linearisation attacks
is a standard one.
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