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Abstract – The initial-boundary value problem for a convection-diffusion equa-
tion

∂u

∂t
+ a

∂u

∂x
=

∂

∂x

(
k(u)

∂u

∂x

)
, (x, t) ∈ QT ,

u(x, 0) = u0(x), 0 ≤ x ≤ l, u(0, t) = μ1(t), u(l, t) = μ2(t), 0 ≤ t ≤ T

is considered. The difference scheme, approximating this problem, is constructed. It is shown that

for traveling wave solutions the scheme is exact (EDS). The monotonicity of the scheme is also taken

into consideration. Presented numerical experiments illustrate the theoretical results investigated in

the paper.

1 Introduction

In constructing a difference scheme the main aim is to approximate an original prob-
lem with a prescribed accuracy in a finite number of operations. In this regard, the
question of the approximation order of the difference scheme arises at once. The order
of the approximation is desired to be as high as possible with a minimum number of
grid nodes in the pattern of a scheme at the same time. In some cases, the EDS can
be constructed.

Definition 1. A difference scheme is exact if the truncation error equals zero or
y = u at the grid nodes.
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38 Exact difference schemes and schemes of higher order of...

Let us introduce the uniform grids ωh = {xi = ih, i = 0, . . . , N, hN = l}, ωτ =

ωτ ∪{0} = {tn = nτ, n = 0, . . . , N0, τN0 = T}, ωhτ = ωh ×ωτ . Here and after ωhτ =

QT ∩ ωhτ . In the paper we will use the following notation [1]

ŷ = yn+1
i , y = yni , y = y

n+1/2
i , y(σ) = σyn+1

i + (1− σ)yni , yt = (yn+1
i − yni )/τ,

yx = (yi+1 − yi)/h, yx = (yi − yi−1)/h, yxx = (yi+1 − 2yi + yi−1)/h
2.

Let Cm
n (QT ) be the class of functions with m derivatives in x and n derivatives in t,

all necessary derivatives being continuous in the domain QT = QT ∪ ∂QT .
Contracting EDSs was, for example, discussed in [2, 3, 4, 5, 6]. In the papers by

R.E. Mickens certain rules for construction of the nonstandard finite difference schemes
are given. In [2] there were constructed EDSs from which the implementable truncated
difference schemes were derived. For the Cauchy problem

du

dt
= f1(t)f2(u), u = u(t), 0 < t ≤ T, u(0) = u0,

the following EDS can be constructed [7]

yn+1 − yn

τ
=

1

τ

tn+1∫
tn

f1(t)dt

⎛
⎜⎝ 1

yn+1 − yn

yn+1∫
yn

du

f(u)

⎞
⎟⎠

−1

, t ∈ ωτ , y0 = u0.

In the above scheme the special Steklov averaging is used.
The authors have established that for the parabolic problems with travelling wave

solutions the EDS may be constructed [7, 8]. This paper refers to the travelling waves
which arise in many problems such as heat transfer, combustion, reaction chemistry,
fluid dynamics, plasma physics, soil-moisture, foam drainage, crystal growth, biolog-
ical population genetics, cellular ecology, neurology and synergy [9, 10]. This was
the motivation for constructing EDS for a convection-diffusion problem. The authors
took advantage of the equivalence of the convection-diffusion equation to the transport
equation for travelling wave solutions and constructed the difference scheme which can
be reduced to the EDS for transport problem in this special case. The main goal was to
construct the difference scheme which can be applied not only for a class of travelling
wave solutions but also for a wide class of solutions. The monotonicity of the scheme
was also an important question. For further investigation the corollary of the maximum
principle was used, which asserts that for a solution to the difference equation

Aiyi−1 − Ciyi +Biyi+1 = −Fi, i = 1, . . . , N − 1, (1)

y0 = μ1, yN = μ2, |Ai| �= 0, |Bi| �= 0,

the estimate

‖y‖C ≤ max {|μ1| , |μ2| , ‖F/D‖C} (2)
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Magdalena Lapinska-Chrzczonowicz, Piotr Matus 39

is valid if Di = |Ci| − |Ai| − |Bi| > 0 [11]. The equation (1) can be rewritten in a more
general unified canonical form [11]

A(P )y(P ) =
∑

Q∈Patt′(P )

B(P,Q)y(Q) + F (P ), P ∈ ω, (3)

where A(P ), B(P,Q), F (P ) are given grid functions, Patt′(P ) = Patt(P ) \ {P}, and
Patt is the difference pattern.

Definition 2. [11] The difference scheme (3) is monotone if A(P ) > 0, B(P,Q) > 0

for all P ∈ ω, Q ∈ Patt′(P ) and

D(P ) = A(P )−
∑

Q∈Patt′(P )

B(P,Q) ≥ 0.

The outline of this paper is as follows. In the first two sections the EDS for transport
problems are considered. On their basis the EDS for a convection-diffusion problem
is constructed in the next section and the approximation order is considered. The
numerical results are given and the future research directions are discussed.

2 Difference schemes for a homogenous transport equation

In the domain QT = {(x, t) : x ∈ [0, l], t ∈ [0, T ]} let us consider the initial-
boundary value problem for a transport equation with a positive coefficient a > 0

∂u

∂t
+ a

∂u

∂x
= 0, (x, t) ∈ QT , (4)

u(x, 0) = u0(x), 0 ≤ x ≤ l, u(0, t) = μ1(t), u(l, t) = μ2(t), 0 < t ≤ T, (5)

where QT = {(x, t) : x ∈ (0, l], t ∈ (0, T ]}. It is well-known that the solution of the
problem (4) is a travelling wave

u(x, t) = U(x− at),

where a is the wave velocity and U(ξ) is the differentiable function [11].
In this section we review some of the difference schemes approximating the problem

(4) - (5) with particular reference to an exactness property. The difference schemes
introduced below are exact under the same condition connected with the Courant
number γ

γ = aτ/h = 1.

Let us begin with the well-studied explicit difference scheme [11, 12]

yt + ayx = 0, (6)

y0i = u0(xi), xi ∈ ωh, yn+1
0 = μ1(tn+1), yn+1

N = μ2(tn+1), tn+1 ∈ ωτ . (7)

This scheme is monotone and stable for γ ≤ 1. Another scheme [11, 12]

yt + aŷx = 0, (8)
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40 Exact difference schemes and schemes of higher order...

is monotone and stable with a contrary condition ie. γ = aτ/h ≥ 1. The above
schemes have the first order of approximation ψn

i = O(τ + h) for γ �= 1. The third
scheme approximating problem (4) - (5) is weighted simultaneously with respect to the
time and space and has the form

y(α)t + ay
(σ)
x = 0, α, σ ∈ [0, 1]. (9)

Here y(α) = αyni + (1 − α)yni−1. This scheme is also exact under the condition γ = 1,
but only for a special case of weights, ie. α + σ = 1. It has the second order of
approximation O(τ2 + h2) for α = σ = 0.5 and γ �= 1. Furthermore, it is monotone
and stable under the condition α + γσ ≥ max {γ, 1} [13]. Now we deal with another
difference scheme weighted simultaneously with respect to the time and space

yt + aσŷx + a(1− σ)yx = 0. (10)

This scheme is a combination of the schemes (6) and (8). It is monotone and stable
for [8]

σ = σi(γ) =

⎧⎨
⎩

0, if γ ≤ 1, i = 1, . . . , N,

1, if γ ≥ 1, i = 0,

σ1, if σγ ≤ σ1 < 1, γ > 1, i = 1, . . . , N − 1, σγ = max {1/γ, 1− 1/γ} .
This scheme is particularly important in view of next sections. Because of it, we will
recall the following lemmas.

Lemma 1. If γ = 1, then the difference scheme (10), (7) is exact.

Proof. Multiplying equations (8) and (6) by σ and 1−σ respectively, and adding
the obtained formulas, we get the equation (10). Thus scheme (10), (7) is also exact
for γ = 1. �

Lemma 2. The approximation error of the difference scheme (10), (7) is

ψn
i =

⎧⎨
⎩

0, if γ = 1,

O(τ2 + h2), if σ = 0.5, i = 0, . . . , N − 1, γ �= 1,

O(τ + h), if σ �= 0.5, i = 0, . . . , N − 1, γ �= 1.

Proof. Lemma 1 shows that ψn
i = 0 for γ = 1. Now, let γ �= 1. The approxima-

tion error fulfills the relation

ψn
i = −ut,i + σ

∂û

∂t
+ (1− σ)

∂u

∂t
− aσûx,i + aσ

∂û

∂x
− a(1− σ)ux,i + a(1− σ)

∂u

∂x
=

= ψn
1i + ψn

2i + ψn
3i,

where

ψn
1i = −ut,i + σ

∂û

∂t
+ (1− σ)

∂u

∂t
,

ψn
2i = −aσûx,i + aσ

∂û

∂x
, ψn

3i = −a(1− σ)ux,i + a(1− σ)
∂u

∂x
.
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Magdalena Lapinska-Chrzczonowicz, Piotr Matus 41

Our first goal is to estimate the error ψn
1i. The difference operator ut has a Taylor

expansion of the form ut,i =
∂u
∂t +O(τ2), so the approximation error ψn

1i is

ψn
1i = −∂u

∂t
+ σ

∂û

∂t
+ (1− σ)

∂u

∂t
+O(τ2). (11)

Next, let us estimate the error ψn
2i. In view of the Taylor expansion ûx,i =

∂û
∂x +

h
2
∂2û
∂x2 +

O(h2), we have

ψn
2i = −aσ

h

2

∂2û

∂x2
+O(h2). (12)

Analogously, we can show that

ψn
3i = a(1− σ)

h

2

∂2u

∂x2
+O(h2). (13)

The trick of the proof is to estimate the expression ψn
2i + ψn

3i. The key relation is

v(tn+1) = v(tn) + τv′(tn + θn(tn+1 − tn)), 0 < θn < 1, θn = const. (14)

The only, but crucial use of the above equality is that from (11) - (13) we obtain the
estimations

ψn
1i = (σ − 0.5)τ

∂2u

∂t2
+O(τ2), (15)

ψn
2i + ψn

3i = −a(σ − 0.5)h
∂2u

∂x2
+O(τ2 + h2). (16)

It is straightforward to show that the error of approximation is

ψn
i = O((σ − 0.5)(τ + h) + τ2 + h2).

Thus, the difference scheme (10), (7) has the second order of approximation for σ =

0.5. �

3 Difference schemes for a semilinear transport equation

In the domain QT consider a semilinear transport equation
∂u

∂t
+ a

∂u

∂x
= f1(x, t)f2(u), f2(u) �= 0, (x, t) ∈ QT , (17)

with the initial and boundary conditions (5). The difference scheme approximating the
above problem is [8]

yt,i + aσyn+1
x,i + a(1− σ)ynx,i = σϕn

i+1 + (1− σ)ϕn
i , (18)

y0i = u0(xi), xi ∈ ωh, yn+1
0 = μ1(tn+1), yn+1

N = μ2(tn+1), tn+1 ∈ ωτ , (19)

where

ϕn
i =

1

τ

tn+1∫
tn

f1(xi(t), t)dt

⎛
⎜⎝ 1

yn+1
i − yni−1

yn+1
i∫

yn
i−1

du

f(u)

⎞
⎟⎠

−1

, xi(t) = at+ xi(0).

It is exact for γ = 1 [7, 8].
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42 Exact difference schemes and schemes of higher order......

If the integrals in the EDS cannot be evaluated exactly, to approximate them the
Euler-Maclaurin formula can be applied [14]. In this case, instead of EDS, we obtain
a difference scheme of an arbitrary order of accuracy.

Example. We consider the function u(x, t) = sin2(π(x − t))/(1 − t sin2(π(x − t)))

(see Fig. 1) that satisfies the problem (17), (5) in the domain QT = [0, 1]× [0, 0.9] with
a = 1, f1 ≡ 1 and f2(u) = u2 [15]. The corresponding difference scheme is

yt,i + σyn+1
x,i + (1− σ)ynx,i = σyn+1

i+1 y
n
i + (1− σ)yn+1

i yni−1.

Fig. 1. The approximate solution for σ = 0.5, τ = h = 0.01.

Table 1 presents the numerical results for time and space steps satisfying the condi-
tion γ = 1 and demonstrates the exactness of the difference scheme.

Table 1. Numerical results for σ = 0.5 and γ = 1.

h τ max
tn∈ωτ

‖yn − un‖C
0.1 0.1 6.94 · 10−18

0.01 0.01 2.78 · 10−17

Table 2 presents the numerical results for the different time and space steps for which
γ ≤ 1 and demonstrates the second order convergence of the difference scheme.

4 Exact difference scheme for a convection-diffusion in a
one-dimensional problem

In this section the convection-diffusion equation is considered and the difference
scheme is constructed. This scheme can be applied for a wide class of solutions but
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Magdalena Lapinska-Chrzczonowicz, Piotr Matus 43

Table 2. Numerical results for σ = 0.5 and γ �= 1.

h τ max
tn∈ωτ

‖yn − un‖C
0.05 0.09 2.33 · 10+00

0.01 0.018 1.50 · 10−01

0.005 0.009 3.82 · 10−02

0.001 0.0018 1.54 · 10−03

it is particularly important for travelling wave solutions. In this case the constructed
scheme is exact.

In the domain QT let us consider the boundary-value problem for the convection-
diffusion equation

∂u

∂t
+ a

∂u

∂x
=

∂

∂x

(
k(u)

∂u

∂x

)
, (x, t) ∈ QT , a > 0, (20)

u(x, 0) = u0(x), 0 ≤ x ≤ l, (21)

u(0, t) = μ1(t), u(l, t) = μ2(t), 0 ≤ t ≤ T, (22)

where 0 < c1 ≤ k(u) ≤ c2, c1, c2 = const, for u in the range of values of the exact
solution or its small neighborhood, i.e., u ∈ Dũ. Let us assume that the problem
(20) - (22) has a unique solution u ∈ C4

3 (QT ) satisfying the condition 0 < m1 ≤
u(x, t) ≤ m2, (x, t) ∈ QT , m1,m2 = const, and all necessary derivatives exist and are
continuous and bounded. Moreover let us assume that k(u)/u ∈ C3(Dũ), (x, t) ∈ QT

has continuous and bounded derivatives. Here QT = {(x, t) : x ∈ (0, l), t ∈ (0, T ]}.
Let us notice that the equation (20) can be rewritten in the equivalent form

∂u

∂t
+ a

∂u

∂x
=

∂

∂x

(
u
∂ϕ(u)

∂x

)
, ϕ(u) =

u∫
u0

k(ξ)

ξ
dξ. (23)

On the uniform grid ωhτ the problem (23), (21), (22) is approximated by the differ-
ence scheme with the weight

yt,i + aynx,i = σΛyn+1
i + (1− σ)Λ−yni , (xi, tn) ∈ ωhτ , (24)

y0i = u0(xi), xi ∈ ωh, (25)

yn+1
0 = μ1(tn+1), yn+1

N = μ2(tn+1), tn+1 ∈ ωτ , (26)

where the operators Λ,Λ− are given by the formulas

Λyi = (y [ϕ(y)]x)x,i , Λ−yi = (y [ϕ(y)]x)x,i , i = 1, N − 1.

It is worth to noticing here that the explicit scheme (σ = 0) is also exact but unstable.
The experiments show that, when there is no restriction on the grid steps, the weighted
scheme (24) - (26) is unstable for σ < 0.5.
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44 Exact difference schemes and schemes of higher...

Let us denote the error of the method by z = y − u. Then the difference problem
for this error takes the following form

zt,i + aznx,i − σΛzn+1
i − (1− σ)Λ−zni −

−σ
(
zn+1

(
un+1ϕ′(zn+1

θ1 )
)
x

)
x,i

− σ
(
un+1

(
zn+1ϕ′(un+1

θ2 )
)
x

)
x,i

−
−(1− σ) (zn (unϕ′(znθ3))x)x,i − (1− σ) (un (znϕ′(un

θ4))x)x,i = ψn
i , (xi, tn) ∈ ωhτ ,

z0i = 0, xi ∈ ωh, zn+1
0 = zn+1

N = 0, tn+1 ∈ ωτ ,

where zn+1
θ1,i = zn+1

i + θn+1
1i un+1

i , znθ3,i = zni + θn3iu
n
i , un+1

θ2,i = un+1
i + θn+1

2i zn+1
i , un

θ4,i =

un
i + θn4iz

n
i and the approximation error is

ψn
i = −ut,i − aun

x,i + σΛun+1
i + (1− σ)Λ−un

i .

Here and after θnpi = const, 0 < θnpi < 1.
The considered scheme is monotone and stable in a linear approximation for τ ≤

h2/(ah + 2b(1 − σ)) and 0 ≤ σ ≤ 1. Moreover, it is also stable for σ ≥ 1 and
aστ/h ≤ 1. In this case the linear approximation is treated as a finite difference
scheme yt + ayx = by

(σ)
xx , where a, b are the positive constants.

4.1 Approximation of the scheme (24) - (26)

First we prove the theorem on an order of approximation of the difference scheme
(24) - (26).

Theorem 1. The approximation error of the difference scheme (24) - (26) is O(h+

τ).

Proof. The approximation error of the difference scheme (24) - (26) satisfies the
relation

ψn
i = −ut,i + σ

∂û

∂t
+ (1− σ)

∂u

∂t
− aux,i + a(1− σ)

∂u

∂x
+ aσ

∂û

∂x
+

+σΛûi − σ
∂

∂x

(
û
∂ϕ(û)

∂x

)
+ (1− σ)Λ−ui − (1− σ)

∂

∂x

(
u
∂ϕ(u)

∂x

)
=

= ψn
1i + ψn

2i + ψn
3i + ψn

4i,

where

ψn
1i = −ut,i + σ

∂û

∂t
+ (1− σ)

∂u

∂t
, ψn

2i = −aux,i + aσ
∂û

∂x
+ a(1− σ)

∂u

∂x
,

ψn
3i = σΛûi − σ

∂

∂x

(
û
∂ϕ(û)

∂x

)
, ψn

4i = (1− σ)Λ−ui − (1− σ)
∂

∂x

(
u
∂ϕ(u)

∂x

)
.

It was shown in Lemma 2 that

ψn
1i = (σ − 0.5)τ

∂2u

∂t2
+O(τ2).
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Next let us estimate the error ψn
2i. In view of the Taylor expansion ux,i =

∂u
∂x − h

2
∂2u
∂x2 +

O(h2), after some tedious manipulations we have

ψn
2i = aστ

∂2u

∂t∂x
+ aσ

h

2

∂2u

∂x2
+O(τ2 + h2).

It remains to estimate ψn
3i and ψn

4i. Let us substitute the Taylor expansion

(ϕ(û))x,i =
∂ϕ(û)

∂x
+

h

2

∂2ϕ(û)

∂x2
+

h2

3!

∂3ϕ(û)

∂x3
+

h3

4!

(
∂4ϕ(ûξ1i)

∂x4

)
,

(ϕ(û))x,i =
∂ϕ(û)

∂x
− h

2

∂2ϕ(û)

∂x2
+

h2

3!

∂3ϕ(û)

∂x3
− h3

4!

(
∂4ϕ(ûξ2i)

∂x4

)
,

ûξ1i = u(ξ1i, tn+1), ξ1i ∈ (xi, xi+1), ûξ2i = u(ξ2i, tn+1), ξ2i ∈ (xi−1, xi),

to the error ψn
3i

ψn
3i = σ

(
ûi+1 − ûi

h
− ∂û

∂x

)
∂ϕ(û)

∂x
+ σ

(
ûi+1 + ûi

2
− ûi

)
∂2ϕ(û)

∂x2

+h2σ

(
1

3!
ûx,i

∂3ϕ(û)

∂x3
+

ûi+1

4

∂4ϕ(ûξ1i)

∂x4
+

ûi

4

∂4ϕ(ûξ2i)

∂x4

)
.

Taking into account the following estimation and transformations

|ûx,i| =
∣∣∣∣∣∣
1

h

xi+1∫
xi

∂u(ξ, tn+1)

∂ξ
dξ

∣∣∣∣∣∣ ≤
1

h

xi+1∫
xi

∣∣∣∣∂u(ξ, tn+1)

∂ξ

∣∣∣∣ dξ ≤ max
(x,t)∈QT

∣∣∣∣∂u∂x (x, t)
∣∣∣∣ ,

ûx,i =
∂û

∂x
+

h

2

∂2û

∂x2
+O(h2),

ûi+1 + ûi

2
− ûi =

h

2

∂û

∂x
+O(h2),

we are now in a position to estimate the error ψn
3i

ψn
3i = σ

h

2

∂2û

∂x2

∂ϕ(û)

∂x
+ σ

h

2

∂û

∂x

∂2ϕ(û)

∂x2
+O(h2).

An argument similar to the one used above shows that

ψn
4i = −(1− σ)

h

2

∂2u

∂x2

∂ϕ(u)

∂x
− (1− σ)

h

2

∂u

∂x

∂2ϕ(u)

∂x2
+O(h2).

We use the relation (14) to obtain the estimations

ψn
3i + ψn

4i = (σ − 0.5)h

(
∂2u

∂x2

∂ϕ(u)

∂x
+

∂u

∂x

∂2ϕ(u)

∂x2

)
+O(τ2 + h2).

Now, it is straightforward to show that the error of approximation is

ψn
i = O(τ + h).

Thus, the difference scheme (24) - (26) has the first order of approximation. �

Remark 1. A difference scheme of the second order O(τ2 + h2) of approximation
for α = σ = 0.5 has the form

yt,i + aαyn+1
x,i + a(1− α)ynx,i = σΛyn+1

i + (1− σ)Λ−yni , α, σ ∈ [0, 1]. (27)

For α = 0 the above scheme reduces to the scheme (24). Scheme (27) is exact for the
travelling wave solutions under the conditions γ = (a+c)τ

h = 1, α = σ. In this case the
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46 Exact difference schemes and schemes of higher...

linear approximation is treated as a finite scheme yt+aαŷx+a(1−α)yx = by
(σ)
xx , where

a, b are the positive constants, which is monotone and stable under two conditions:
ah/b < σ/α, τ ≤ h2/(2b(1 − σ) + ah(1 − α)). The first condition is connected with
the so-called Peclet number Pe = ah/b and for a wide class of problems imposes very
small grid steps. As a simple example, the convection-diffusion problem with the small
parameter, i.e., b 
 1 can be considered.

Another way to increase the order of approximation and avoid the restriction on
the cell Peclet number at the same time is constructing a difference scheme with the
regularization

yt,i +
qia

k(yi)
yx,i = κ̂iσΛŷi + κi(1− σ)Λ−yi, 0 ≤ σ ≤ 1, (28)

where κi =
1

1+Ri
, Ri =

ah
2k(yi)

, qi = 0.5(k(yi−1) + k(yi)). The approximation error of
the above scheme is O(τ + h2) for σ = 0.5. For k(u) ≡ b, the scheme (28) reduces to

yt,i + ayx,i = κσΛŷi + κ(1− σ)Λ−yi, 0 ≤ σ ≤ 1,

with κ = 1
1+R , R = ah

2b . More information about the difference schemes with a
regularization can be found in [11].

4.2 The proof of the main result

In the present section the exactness of the scheme (24) - (26) will be considered.
First we will need the following lemma.

Lemma 3. For the travelling-wave solution u(x, t) = U(x − (a + c)t), a, c =

const, a+ c > 0, of the equation (20) the following equality is fulfilled

σ (û (ϕ(û))x)x,i + (1− σ) (u (ϕ(u))x)x,i = −cσûx,i − c(1− σ)ux,i.

Proof. First, let us notice that for the travelling wave solution u(x, t) = U(x −
(a+ c)t) there follows

∂

∂x

(
u
∂ϕ(u)

∂x

)
=

∂u

∂t
+ a

∂u

∂x
= −(a+ c)U ′ + aU ′ = −c

∂u

∂x
.

From the above equality we get

∂

∂x
(ϕ(u)) = −c, (29)

Integrating the equation (29) for t = tn+1 on the closed intervals [xi−1, xi] and [xi, xi+1]

we have

(ϕ (û))x,i = −c, (ϕ (û))x,i+1 = −c.

After some tedious manipulation we obtain

(û (ϕ (û))x)x,i = −cûx,i.
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In a similar way we get

(u (ϕ (u))x)x,i = −cux,i.

Now it is straightforward to show that

σ (û (ϕ (û))x)x,i + (1− σ) (u (ϕ (u))x)x,i = −cσûx,i − c(1− σ)ux,i.

�

The essential observation is that the above Lemma gives the condition on equivalence
of the convection-diffusion equation and the transport equation. In the next theorem
we give the condition under which the scheme (24) - (26) is exact.

Theorem 2. If γ = (a+c)τ
h = 1, then the difference scheme (24) - (26) is exact for

the travelling wave solution of the form u(x, t) = U(x− (a+ c)t), a+ c > 0.

Proof. From Lemma 3 the following equality follows

ψn
i = −ut,i − cσûx,i − (a+ c(1− σ))ux,i.

For γ = 1 we have

un+1
i+1 = U(xi+1 − (a+ c)tn+1) = U(xi − (a+ c)tn) = un

i ,

and the approximation error satisfies the relationships

ψn
i = (−cστ

h
un+1
i+1 +

cστ

h
un+1
i − c(1− σ)τ

h
un
i +

c(1− σ)τ

h
un
i − aτ

h
un
i − aτ

h
un
i−1)/τ+

+
(−un+1

i + un
i

)
/τ = ((cτ/h− 1)un+1

i + (1− cτ/h)un
i − aτ/hun

i − aτ/hun
i−1)/τ

= ((γ − 1)un
i−1 + (1− γ)un

i )/τ = 0.

Hence, the difference scheme (24) - (26) is exact. �

Remark 2. For the travelling wave solutions u(x, t) = U(x − (a + c)t) under the
condition σ = 0.5(a+ c)/c the difference scheme (24) - (26) is equivalent to the scheme
(10) and its approximation error is

ψn
i = −ut,i − 0.5(a+ c)ûx,i − 0.5(a+ c)ux,i.

Thus it has tthe second order of approximation for γ �= 1.
Remark 3. For an arbitrary sign of the coefficient a the following difference scheme

yt +
a+ |a|

2
ynx +

a− |a|
2

ynx = σΛŷ + (1− σ)Λ−y

is still exact for the travelling wave solutions u(x, t) = U(x − (a + c)t) with γ =

(c+ a)τ/h, c+ a > 0.
Remark 4. The scheme (24) - (26) is nonlinear even in the linear case and the

following iterative method is used for its implementation
s+1
y − yni

τ
+ aynx,i = σ

[
s
y
(
ϕ(

s
y) + ϕ′(

s
y)

(
s+1
y − s

y
))

x

]
x,i

+ (1− σ)Λ−yni .
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48 Exact difference schemes and schemes of higher...

The iteration process is terminated, when
∥∥∥s+1
y − s

y
∥∥∥
C

≤ ε for some s = S. Then we

advance to the next level with yn+1
i =

S+1
y i, i = 1, . . . , N−1. The initial approximation

is taken from the explicit scheme (24) (σ = 0).

4.3 Numerical experiment for a linear equation

In this section we carry out numerical experiments to illustrate the convergence of
the exact difference scheme for a linear convection-diffusion equation.

Consider the equation (20) with k(u) = b and b = const > 0 together with the input
conditions

u(x, 0) = e−0.5x, u(0, t) = e(0.5a+0.25b)t, u(l, t) = e(0.5a+0.25b)t−0.5x. (30)

The solution of this problem is u(x, t) = e0.5((a+0.5b)t−x). In this case c = 0.5b and the
considered scheme is exact for (a+ 0.5b)τ/h = 1. Moreover, for σ = (2a+ b)/(2b) and
(a+ 0.5b)τ/h �= 1 the scheme has the second order of approximation.

Table 3. σ = 0.5, (a+0.5b)τ
h

= 1, a = b = 1, l = T = 1, ε = 1.0 · 10−15.

h τ max
tn∈ωτ

‖yn − un‖C number of iterations

0.5 0.3(3) 1.08 · 10−19 1

0.05 0.03(3) 3.79 · 10−17 2

0.005 0.003(3) 1.55 · 10−17 2

0.0005 0.0003(3) 1.35 · 10−16 2

Table 4. σ = 0.5, (a+0.5b)τ
h

�= 1, a = b = 1, l = T = 1, ε = 1.0 · 10−10.

h τ max
tn∈ωτ

‖yn − un‖C number of iterations

0.1 0.1 1.15 · 10−03 6

0.01 0.01 1.19 · 10−04 4

0.001 0.001 1.19 · 10−05 3

0.0005 0.0005 5.96 · 10−06 2

Table 5. σ = (2a+ b)/(2b), (a+0.5b)τ
h

�= 1, a = b = 1, l = T = 1, ε = 1.0 · 10−10.

h τ max
tn∈ωτ

‖yn − un‖C number of iterations

0.1 0.1 7.27 · 10−06 7

0.01 0.01 7.43 · 10−08 4

0.001 0.001 7.46 · 10−10 2

0.0005 0.0005 1.86 · 10−10 2

The number of iterations needed in the nonlinear scheme is sufficiently small.
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4.4 Numerical experiment for a nonlinear equation

In this section we carry out numerical experiments to illustrate the convergence of
the exact difference scheme for a nonlinear convection-diffusion equation.

Consider the equation (20) with k(u) = χ0u
β and χ0 = const > 0, β = const > 0

together with the input conditions

u(x, 0) = 0, u(0, t) = b(D + a)t1/βD−1/β ,

u(l, t) =

{
b

D1/β ((D + a)t− l)
1/β

, l ≤ (D + a)t,

0, (D + a)t < l,
, b = const > 0, D =

√
χ0bβ/β

The solution of this problem is

u(x, t) =

{
b

D1/β ((D + a)t− x)
1/β

, 0 ≤ x ≤ (D + a)t,

0, x > (D + a)t,
.

In this case c = D and the considered scheme is exact for (a+D)τ/h = 1.

Fig. 2. The approximate solution for σ = 0.5, τ = 0.01, h = 0.02

Table 6. σ = 0.5, (a+D)τ
h

= 1, a = b = 1, χ0 = β = 2, l = 1, T = 0.5,

ε = 1.0 · 10−16.

h τ max
tn∈ωτ

‖yn − un‖C number of iterations

0.1 0.05 9.76 · 10−19 1

0.01 0.005 4.39 · 10−18 2
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50 Exact difference schemes and schemes of higher...

5 Future research

In the future our research will focus on the two-dimensional case of the convection-
diffusion equation. The travelling wave solution will be still considered and the equiv-
alence to the transport equation will be crucial.

In the domain QT = Ω× [0, T ] let us consider the initial-boundary value problem for
a transport equation with the positive coefficients a1, a2 > 0

∂u

∂t
+ a1

∂u

∂x1
+ a2

∂u

∂x2
= 0, (x, t) ∈ Ω× (0, T ], (31)

u(x, 0) = u0(x), x ∈ Ω, u|x∈∂Ω = g(x, t), (x, t) ∈ ∂Ω× (0, T ], (32)

where

∂Ω =
{
x ∈ Ω : xk = 0, k = 1, 2

}
Ω = {x = (x1, x2) : 0 ≤ xk ≤ lk, k = 1, 2} = Ω∪∂Ω.

Let us introduce the uniform grids ωhk
= {xk,i : xk,i = ihk, i = 0, . . . , Nk, hkNk = lk},

k = 1, 2, ωh = ωh1
× ωh2

, ωh = ωh ∩ Ω and ∂ωh = ωh ∩ ∂Ω.
The following difference scheme approximating the problem (31) - (32) will be under

consideration [16, 4]

yt + a1y(μ2)x1
+ a2y(μ1)x2

= 0, x ∈ ωh, t ∈ ωτ , (33)

y(x, 0) = u0(x), x ∈ ωh, y|x∈∂Ω = g(x, t), (x, t) ∈ ∂ωh × ωτ . (34)

Here y(μ1) = μ1yi1,i2 + (1 − μ1)yi1−1,i2 and y(μ2) = μ2yi1,i2 + (1 − μ2)yi1,i2−1 for
0 ≤ μ1, μ2 ≤ 1. The scheme (33) - (34) is exact under conditions

μ1 + μ2 = 1, γ1 = γ2 = 1, γk = akτ/h, k = 1, 2.

It is monotone and stable under the condition

0 ≤ μ1, μ2 ≤ 1, max {γ1, γ2} ≤ γ1μ2 + γ2μ1 ≤ 1.
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