Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 10:36:48

Annales UMCS
K R 012) Informatica
nnales UMCS Informatica AI XII, 4 (2012) 51-67 . .
DOL: 10.2478 /v10065-012-0028-9 Lublin-Polonia
Sectio Al

http://www.annales.umcs.lublin.pl/

Automatic detection of DoS vulnerabilities of cryptographic
protocols

Urszula Krawczyk!*, Piotr Sapiecha!s?

L Krypton-Polska
Al. Jerozolimskie 131 Warsaw, Poland
2 Department of Electronics and Information Technology, Warsaw University of Technology
Warsaw, Poland

Abstract — In this article the subject of DoS vulnerabilities of cryptographic key establishment
and authentication protocols is discussed. The system for computer-aided DoS protocol resistance

analysis, which employs the Petri nets formalism and Spin model-checker, is presented.

1 Introduction

Denial of service attacks (DoS) limits the server abilities to respond to clients’ re-
quests. In this article, the attacks that exploit vulnerabilities of cryptographic key
exchange and authentication protocols, will be considered. Such attacks took place
in the past years, including those based on the DoS susceptibility of the SSL/TLS
protocol, launched on: banks [1], well-known commercial services like Yahoo, Amazon
and governmental sites [2, 3]. So this is a crucial and up-to-date problem.

The article will focus on the computational DoS (CDoS) attacks, that exhaust
servers computational resources and connections queue. As the server must process
all the incoming messages, it is by definition vulnerable to DoS attacks and can not be
entirely protected from them. Yet a protocol design should prevent from the situation,
when the client can easily make the server engage in expensive calculations.

Problem definition The main goal of the presented work, was designing a metho-
dology to analyse vulnerabilities of cryptographic protocols to DoS attacks. It should

*U.Krawczyk@krypton-polska.com

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 07/02/2026 10:36:48

52

Automatic detection of DoS vulnerabilities of cryptographic...

indicate the most effective attack scenarios and allow comparing DoS resistance of
different key establishment and authentication protocols.

Primary analysis
pl:oni =

pa: nd, b
ol e TN el
pes ge, e,

High-level protocol description

Static and dynamic analisis

5 ; Scenarios for » | Simulation
Static analysis %} e in Spin
Petri nets - dynamic mod&“m B
{one net for a simulation) L

Simulations settings
Petri nets template {number of clignts)

Simulation results analysis

Companng
@@
Cnmpanng
proto:ols

Simulations output

Fig. 1. Steps of analysing protocols DoS vulnerabilities in the DoS Analyzer
system.

Related work Unlike the case of verifying confidentiality and integrity provided
by protocols, there has been far less research in the field of designing and testing DoS
resistance of cryptographic protocols. The most known is the Meadows’s framework [4].
It has been used to analyse the JFK protocol in [5]. For each message, computational
costs of client and server are compared. However, this approach is limited only to the
static analysis of one protocol run and requires manual, work consuming calculations.

Dynamic analysis, involving many parallel protocol runs modelled as a Petri net, was
presented in [6, 7]. In [6] first the authors present costs of protocol runs for chosen
types of clients (static analysis). Transport versions of the SSL protocol and the HIP
protocol are considered. Then a Petri net describing each protocol step is shown. It
contains detailed information of every users action, which is unfortunately redundant
during simulation. The model takes into account the puzzle mechanism. Yet it does not
consider sharing costs by the attackers, replays of messages and reusable exponentials
of the server.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 10:36:48

Urszula Krawczyk, Piotr Sapiecha

53

The [7] article concentrates on slightly different aspects of protocol design, consid-
ering the broadcast DREAM protocol in the ad-hoc wireless network. Simulations are
done in the CPN Tools and Matlab.

These methodologies are also not automated, as the nets are manually created for
every analysed protocol.

2 Owur approach

The protocol DoS resistance analysis methodology presented in this article is illustra-

ted in Fig. 1. As can be seen, the input to the analysis process is a high-level protocol
description. The output includes the information on the most dangerous attack types
and vulnerabilities as well as comparison and evaluation of different protocols DoS
resistance. The steps of our approach are the following:

(1)
(2)

(3)

(4)

Parsing protocol description — parsing high-level protocol description.

Static analysis — determining each user’s step, computational and memory
costs and scenarios of attacks.

Dynamic analysis — creating an instance of a Petri net for each simulation.
Running a simulation for each type of attack, with a chosen number of honest
clients and attackers of the type under consideration.

Comparing different attack scenarios — finding the most dangerous at-
tack type at (which exposes vulnerabilities of the protocol), such that:

f(at) = min ({ flat;): je{1:AT} }). (1)
Where:
e f(at;) — the number of successful honest clients protocol runs, for a
simulation with the j-th attacker type,
e AT — the number of attacker types in the modelled protocol, defined
by equation (3) (in this article bounded by 15).

Comparing protocols — for a set of P analysed protocols, finding the most
DoS-resistant protocol p, such that:

f(at?) = max ({ flat'): ie{1:P} }) (2)
Where:
e at’ is the most dangerous attack type in the i-th protocol, as denoted by
equation (1).

3 Protocol model for the DoS analysis

The protocol is described in a high-level language. This makes it possible to analyse
protocols, which haven’t been implemented yet. The language is of our own design.

Its grammar is not presented here because of the limited space in the article. Yet it

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 07/02/2026 10:36:48

54

Automatic detection of DoS vulnerabilities of...

can be found in [8]. The examples of protocol specification are shown in sections 3.2
and 5.

3.1 Static protocol model

The static protocol model includes all the details from the parsed protocol specifi-
cation. A protocol run is one of the basic terms in the model. It includes protocol
participants actions and states that store the actual knowledge of the users. As shown
in Fig 2, in one step of a protocol run, the message sender creates all the necessary
fields and sends the message. Then if this is the last message sent in the protocol, the
user accepts the protocol run and establishes a session.

The receiver computes the elements needed to process the message and verifies or
decrypts the message fields, according to the protocol specification. If this is the last
message in the protocol and the verification is positive, then the user accepts the
protocol run and establishes a session.

Sender preparing message M,
A after clearing
i = SEIVers memory
e r - ——
(Start M, - o, - | Accapt 7 N
L y, Generate ¥, = P Send M, | 1 After M, |
W — — Eproloco fun] _ sent
Recelver Receive M,
ol ' :
After M, Accept || ———) —., <
(_ @eq; protsssl (—gﬂ,s(—@(—()(—{ Verify)»(—(:__/K—{Generate 7 D)
processing message M,

Fig. 2. Steps of senders and receivers in a protocol run.

3.2 Clients launching DoS attacks

The client that is not honest can launch a DoS attack in several ways. The set of
attacker types is determined during the static analysis. The main properties of the
attacker are:

e Aiming at exhausting server resources,

e The ability to deviate from the protocol specification by:
Not verifying the received messages — thus avoid unnecessary costs,
Producing fake messages — sending random data at no cost instead

of expensive fields,

Sharing computational costs — sharing the costs among a group of
attackers, which makes expensive operations cheap,

Finishing protocol run — an attacker may not respond to the server
message and stop protocol run in any stage,

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 07/02/2026 10:36:48
Urszula Krawczyk, Piotr Sapiecha 55

— Message replay — once generated, a message may be replayed many
times at no cost,

— Eavesdropping messages — an attacker may capture and resend mes-
sages originally sent by legal clients.

Determining attacker types When considering the above features, there is a finite
set of adversary types for a protocol. Let V' be the number of fields verified by the server
and let M be the number of messages received by the server. Then the size of the set
of attacker types is calculated with equation (3).
AT =2-V +3- M. (3)
The equation is derived from the fact that there are the following kinds of adversary
types:
e A group of V 4+ M attacker types — each subsequent attacker type proceeds
one step further in a protocol run,
e A group of V + M attacker types — analogous to the previous group, except
for replaying the last message (up to the server reset),

e A group of M attacker types — consists of attackers that eavesdrop a message
from a real, honest client and replay it repeatedly (up to the server reset).

Examplary attacker types Fig. 3 depicts part of STS protocol specification, with
the server verifying one field (sig3 signature). Hence M = 2, V = 1 and there are
altogether 2 * (1 + 2) + 2 = 8 adversary types that are listed in Table 1).

[Packets]

pl: IDi = CERT(privI), gi = PM(g, i) // client sending his cert. and D-H exponential
// server sending his certificate, D-H exponential and signature over the exponentials
p2: IDr = CERT(privR), gr = PM(g, r), sig2 = S(privR, 42 = C(gi, gr))

p3: sig3 = S(privI, d3 = C(gi, gr))

[ToProcess] // fields to be processed by the message receiver
MSG pl: ;

MSG p2: sig2 ; // signature from MSG 2 verified by a client

MSG p3: sig3 ; // signature from MSG 3 verified by the server

Fig. 3. Part of STS protocol specification for the DoS Analyzer system.

Whereas in the case of Sigmal protocol, the server receives three messages and
verifies the following three fields: token, mac3, sig3 (see Fig. 7; Page 62). So according
to equation (3), there are 2 * (34 3) + 3 = 15 adversary types (see Fig. 8; Page 63).

3.3 Dynamic protocol model

The dynamic model allows to simulate multiple, simultaneous protocol runs, while
monitoring the server state. Unlike in [6], the model presented here includes only

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 10:36:48

56 Automatic detection of DoS vulnerabilities of...

Table 1. Attackers types for the STS protocol.

A group of V + M = 3 attacker types:

Attacker type 1 | Sends MSG1 with random content and ignores MSG2.

Attacker type 2 | Sends MSG1 and then MSG3 with random content — verification of
sig3 will fail.

Attacker type 3 | Sends MSG1 and MSG3 that are successfully verified by server.

A group of V + M = 3 attacker types:

Attacker type 4 | Analogous to attacker 1 but keeps replaying once generated MSG1.

Attacker type 5 | Analogous to attacker 2 but keeps replaying once generated MSGS.

Attacker type 6 | Analogous to attacker 3 but keeps replaying once generated MSGS.

A group of M = 2 attacker types:

Attacker type 7 | Eavesdrops MSG1 from real, honest client and repeatedly resends it.

Attacker type 8 | Eavesdrops MSGS3 from real, honest client and repeatedly resends it.

' hYd N
Send M, —> Receive M;—> Send M, —> Receive M,—>| Send M; >

M.
A AL
I

N JINC J/
Y g

I

1

X - S

client step 1 i server step 1

1

1

]

1

'
client step 2

server
knowledge
(memory
usage) [T[T

- memory cost
} of server step 1

time

Fig. 4. Computational and memory costs of one protocol step.

information necessary for the simulation. This makes the model less complicated and
speeds up simulation.

Computational costs of protocol run step Detailed information about every
action of the protocol user, that is stored in the static model (Fig. 2), is redundant in
the dynamic model. What is important, is the aggregated actions costs of each user
step, which is illustrated in Fig. 4. The following action types costs are separately
handled and stored:
e Server costs
— REUSED - the actions of generating fields that are reused by the server
(e.g. exponentials), this kind of actions is performed only periodically,
after the old values are reset (which is here called the server reset),
— NORMAL — the actions concerning the elements that are not reused,

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 07/02/2026 10:36:48
Urszula Krawczyk, Piotr Sapiecha 57

— REPLAY - the actions performed by the server after receiving the replayed
message, where:

REUSEDUNORMAL = ALL SERVER COST, (4)
REUSED N NORMAL = 0, (5)
REPLAY C NORMAL. (6)

e Client costs
— SHARED - the actions whose costs can be shared among attackers (not

applicable for honest clients),
— NON_SHARED - the actions whose costs can not be shared among attackers,

where:
SHAREDUNON SHARED = ALL _CLIENT COST, (7)
SHAREDNNON SHARED = . (8)

Memory costs of protocol run step At the end of every user step, the elements
that will not be used in subsequent steps or can be cheaply reconstructed later, are
erased from memory. As can be seen in Fig. 4, the server memory cost is calculated as
a difference between memory usage after the server step and before it.

3.4 Modelling protocol as a Petri net

For the purpose of simulating multiple protocol runs, high-level, coloured, timed
Petri nets were used [9, 10, 11]. Fig. 5 a) depicts a graphical representation of the
examplary net. Places drawn as ellipses can store tokens. Transitions are drawn as
rectangles. Tokens can travel from place to place according to arc expressions, after the
transition fires. The time it takes for the transition to fire is determined by the time
inscription (here @+(hd ccs)). In the examplary net, this models the time needed by
the client to receive MSG2 and send MSGS3.

Dynamic model structure The Petri nets used in the presented system have the
following features:

e Petri net structure — the net consists of subpages describing behaviour of
client and server, while the main page contains the instances of subpages and
links them together,

e Coloured tokens — each token represents a protocol run with one client and
bears information about:

— client type (real client or type of attacker),

— the number of the currently processed message (incremented during the
protocol run),

— computational and memory costs of every user’s step, in the protocol
run with the considered client type (as described in section 3.3),

— delays after a client is ignored by the server or before a client starts a
new protocol run.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 10:36:48

58 Automatic detection of DoS vulnerabilities of...

e Client and server subpages — for each message in the protocol there is
an instance of client and server subpage (e.g. a server subpage for receiving
MSG1 and sending MSG2),

e Petri net template — for each analysed protocol, a Petri net is created
by simply parameterizing a template net with: the number of messages, the
number and type of tokens,

e Tokens movement — tokens travel between the client and server subpages.
After a particular protocol run is finished, a token moves back to the initial
place before it gets engaged in a new run.

Client model Client subpage has quite a simple construction, as shown in Fig. 5 a.
A token in the MsgInNum place determines that this subnet represents receiving MSG2
and possibly sending MSG3. The client has two alternatives: responding with MSG3
(ComputeOutMsg transition) or starting a new protocol run (Finish transition), which
is available only for an attacker. The choice, cost and duration of action are controlled
by the information found in the token un the MsgIn place.

(lastM, willRp, lastRj, @ (lastM, willRp, lastR),
cl, uid, ccs, scs, rpscs, @ @+hd ccs d, uid, tf ccs, scs, rpscs, @
TOSCS, 5M, rpsm, roscs, sm, rpsm,
isRp, replD, stT) | | isRp, replD, stT)
Msgln | ComputeOutMsg MsgOut

= oy [lastM Num]
astM <> mhum Milcm

1°(3,false,faise,at1,0,[100,2000],[30
01,{20],[0],[2048],[0],false, 300,0)@27
00

(lastM, willRp, lastRj,
o, uid, ccs, scs, rpscs,
roscs, sm, rpsm,
isRp, replD, stT)

@ 1ird +41 atl

1 rel@0+++

Finish

[lastM = miNum]

a)

Fig. 5. Client model: a) Petri net graphical representation in the CPN Tools

Server model The Petri net representing the server behaviour is much bigger and
more complex than the client model. Therefore it is not presented here. Instead the
description of server logic is presented in the decision diagram in Fig. 6.

3.5 Protocol model properties

The protocol model, used in the presented methodology, covers the following crucial
protocol features:

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 07/02/2026 10:36:48
Urszula Krawczyk, Piotr Sapiecha 59

proctype ClientProc{chan inHag, outlsg: bylte msgInNum)({
Client client: int cost, speed:
do ::avomic|
inMsg?client; /* Blocking receive */
if

tclient, lastHay == msgInNum -> /®==:=
clCompCoat (cost, client, maginNum):
ool - will sty of the tim me: p

RS S L Yime =/
. =ost, client. cmesta:r.

/* Send fokien 1o the <lients
aadzcllem:oue[:ue

pr:ntf. e

elay va =z last and restacein®,
msqInNum, elisnt.uid, client.clType, TIMNE, cost, client.clBestarchel):
if
iclienc.clType == RCL -3 /- AL
printf| " lisnt UID 3d
fielse;

CERT PROTOCOL RUM

", cliant.uid, client.e1Typs, TIMNE):

COMPUTE OUT MSE fransistion ===

t:client.clType == RCL -> /* Real honest clent
clCompCost [cost, client, magInNum):

/* Send token fo outMsg channel - will say of fhe time pre
addiClientCue (client, cost, 0O, outMsg)
peintf ("C1
mag InNum, msg‘[nNum + 1, client.uid, client.clType, TINE, cost):

: elwe —-> /*aftacker client

L —
®

ant Hag . | id, uIp 1 (type 1) t d, lient cost id, reapond\n”®

. artacker logie ...
£i: /*ficlient ype o/
£1; } /" atamic =S

ad: b}

Fig. 5. Client model: b) textual Petri net specification in the Promela code.
The numbers in the white circles indicate the corresponding elements in both
models.

¢ Reuse of message elements by the server — the anti-DoS technique that
reduces computational costs and increases DoS resistance of the server,

e Sharing costs among attackers — increases capabilities of attackers,

e Servers computational resources — servers computation speed is inversely
proportional to the number of clients served at the time,

e Attackers computational resources — the more adversaries are using the
shared resources at the time, the longer it will take to finish calculations for
each attacker. Yet the adversary was limited to using at most four machines
concurrently.

4 Petri nets simulation tool choice

Petri nets are generally represented graphically. However, in the DoS Analyzer
system a textual net description was chosen. The well-known simulator and model-
checker Spin {12, 13] was used, together with the Promela language. When compared
with the CPN Tools [14] (which we used in the early stage of the project), Spin suited
more for our application. It is much faster and does not require human user’s interaction
with GUI for each simulation, which automates the process.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 10:36:48

60 Automatic detection of DoS vulnerabilities of...

Server receives
message M,

Ignore M,,

(queue full) There can still

be M, ., to
be sent to client

Ignore M,
(memory)

Reject M,
as old

Respond
with M, ,,

Notation:
verification

of M, OK?

verification
of M, OK?

Action possible
only for client

of attacker type
Possibly Reject M, Possibly Reject M,
send M, send M,
and finish run and finish run
- AN S
client starts new protocol run client will replay M,

Fig. 6. Server model logic after receiving the message M,,.

The method to represent the Petri nets in the Promela language is shown in Table 2.
According to these rules the net in Fig. 5 a) was transformed into the code in Fig. 5 b.

Processing simulation output During the protocol simulation, some data is writ-
ten into files, including: client costs, server costs, information of server ignoring clients
during DoS attack, honest clients establishing a session, server memory usage. This
data is then aggregated by the DoS Analyzer system to calculate statistics.

5 Results

The protocol analysis methodology presented so far was incorporated into the
DoS Analyzer system, that aids the process. This section will demonstrate the results
of analysis of two examplary protocols: the simple STS protocol [15, 16| (described
in Fig. 3) and the Sigmal protocol [16, 17| that has been equipped with the DoS
resistance mechanisms (see Fig. 7).

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 10:36:48

Urszula Krawczyk, Piotr Sapiecha 61

Table 2. Petri net representation in the Promela language for the Spin simulator.

Petri net feature ‘ Spin
Coloured tokens typedef mechanism similar to C-language structs
Non-determinism Built-in nondeterministic Promela language construc-

tions (if, do)

Hierarchical = subnets for | Asynchronic processes in Promela language
client and server (proctype)

Protocol state stored in spe-
cific places (e.g. server mem-
ory usage in SrvMem place)

Data kept simply in variables

Tokens travelling between
client and server subnets

Structs sent via communicational channels between
processes (chan)

Transition firing delayed by
time inscriptions

When a protocol step is performed, a struct (token) is
inserted into a queue managed by the additional time
process. The token is passed to its destination process
(message receiver or first message sender in a new pro-
tocol run), only after the necessary computations and
when the specified time interval is over

Simulation configuration Both protocols were simulated for identical computa-

tional and memory resources, shown in Table 3. This makes it possible to compare the
simulation results. The cryptographic algorithms used were: AES, MD5 and RSA. The

symmetric key length was 128 b, the asymmetric key length was 1024 b. Such values
are generally used and recommended as currently safe by NIST [18] and ENRYPT
[19]. Computational cost came from benchmarks [6, 20].

For each type of attacker there was a simulation with 100 honest clients and 100
attackers. Each simulation time spanned one server reset cycle (30s). Such a configu-
ration allows to observe computational DoS (CDoS).

Table 3. Computational and memory resources configuration for the simulation.

Computational resources

Client connection queue length at server

80 slots

Computational power of one machine used by server, client and
attacker, for the purpose of protocol computations

230000 kcycle/s

The number of machines used together by adversaries 20
Maximal attacker speed up, due to distributed computations 4 times
Memory resources

Server memory 20971528

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 10:36:48

62 Automatic detection of DoS vulnerabilities of...
client server client server chisnt server
[PaCketS] Gen ni (760 cycla) Gen Ka tlmgth] Gen a3 (0 cycle)
pL: ni = N(8), gi = PM(g,) C X i el Lt
p2: ni, nr = N(8), gr = PM(g, 1), " gen nF (750 cycle) cec::lﬁ'm:z;m client accepts
token = HMAC("SHA1", privHash, O e peturiach (60 eyeropantpn T opan enes 280 eperel
a2 = C(gr’ gi’ or, ni, ipi = IP("remote"))) g:: ?:hwncg!l-:ézwtl! IICIIH i (4608000 eycle) v‘c’-:’::?:?v:lflm
p3: ni, gi, nr, gr, token g2 g:: :t,:::%emm ve:rﬂf_mmwmr

p4: gr, nr Open enc2 (6260 cycle)
: s s

3 Gan Ka (1770 cycle]
enc2 = E("DES3", Var token 540 cyele) © Gen a1 0 cycte)
Ke = HMAC(“SHAl", ci = PM(g, i, r), nis = C(ni,nr)) , Gen ¢l (4608000 cycle) Ver sigl (IB4000 cycle)

Gen nis [0 eycle} Gen macd (590 cycle)

e2 = ENC(
IDr = CERT(privR),
sig2 = S(privR, d1 = C(ni, gr)),
mac2 = HMAC("SHA1", Ka = HMAC("SHA1",ci,nis), IDr)
)

) [WEervon rormad cont B Sumven orce a et cont B Chent non shared cost B Chortt shated cont]

€nsts [CPU cyele |

p5: enc3 = E("DES3", Ke,
e3 = ENC(

IDi = CERT(privI),

sig3 = S(privI, d3 = C(nr, gi)),

mac3 = HMAC("SHA1", Ka, IDi)

)

)

[Cache&Reuse] // fields that are computed only once a reset
server RESET gr EVERY 30 s;
server RESET privHash ON gr reset;

Fig. 7. Sigmal protocol specification fragment and protocol run visualiza-
tion in the DoS Analyzer system.

Static analysis of Sigmal protocol Fig. 7 shows Sigmal protocol specification and
visualization of the protocol run with an honest client. The Sigmal protocol includes
the cookie mechanism [6]. Only a client that sent MSGI and received MSG2, can send
MSG3 with token field that will be accepted by the server.

The results of static analysis are depicted in Fig. 8. The first row in the table refers
to an honest client, while the other rows are related to attacker types.

After the static analysis, DoS Analyzer application indicates (with bold face in the
Srv - cl cost column) the most significant difference between the client and server
costs in the case of adversaries of 4, 5, 10 and 11 type. These are potentially the most
dangerous attack scenarios.

Dynamic analysis of the Sigmal anf STS protocols After the static analysis,
which is similar to the Meadows’s framework, there are some assumptions about the
effectiveness of different attack types. Nevertheless only dynamic analysis can address
the problem of multiple, interacting protocol runs. The results of Sigmal protocol
model simulation are shown in Fig. 9. Each row corresponds to a simulation with
the attacker type indicated in the first column. The main criteria is the number of
sessions established by real clients (see section 1), found in the second column. The
minimal number of successful runs was detected for adversaries 3, 5, 6 and 4. These
most dangerous attacks are based on the following Sigmal protocol vulnerabilities:

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 07/02/2026 10:36:48
Urszula Krawczyk, Piotr Sapiecha

Mr | Clients type | 1. nonshared cost| Sre. every run cost | Sre- Cl cost Client parameters

) RCL 19597970 14999050 4598520 lastmsg sentpd (nrg), MO REPLAY, lastmsg Ok

il AT 1] 4290 4290 last msg sentp2 (nr2), WO REPLAY, lastmsg OK

2 AT2 0 T30 TE30 lastmsg sentp3 (nr3), WO REPLAY, Server FAILS at'Ver token

3 AT3 1] 14609210 14609210 |last msg sent pd {nrd4), KO REFLAY, lastmsg OK

4 T4 1] 14615050 14615050 |(astmsgsentpd inrS), NO REPLAY, Server FAILS atVer mac3

5 ATS 9380 14999050 14989670 |(astmsgsent pd {nrg), NO REPLAY, Server FAILS atVer sig3

B ATE 9E95380 14999050 S003670 lastmsg sentpd inr), MO REPLAY, lastmsg Ok

I ATT 1] 0 0 lastmsg sentp2 (nr2), REPLAYS p1, lastmsg Ok

& ATE o TE30 TE30 lastmsg sent p3 (nr3), REPLAYS p3, Server FAILS atVer token

9 &T9] 4290 4290 lastmsg sent p4 (nr4), REPLAYS p3, lastmsg 0K

1 ATI0 1] 14615050 14615050 |(astmsgsent pd {nrS), REFPLAYS pa, Server FAILS atver mac3

11 AT 9380 14999050 14989670 |lastmsg sentps {nr5), REPLAYS p5, Server FAILS atVer sig2

12 AT12 9995380 14609210 4613830 lastmag sentpd {nr5), REPLAYS pi, lastmsg OK

13 AT13 1] 0 0 last msg sentp2 (nr2), REFLAYS p1, lastmsg Ok

14 AT14 1] 0 0 last m=g sentpd (nr4), REPLAYS p3, lastmsg OK

N5 AT14 0 i i last sy sent pa (nr5), REPLAYS ps, lastmsg 0K

Fig. 8. Type of DoS attacks in the Sigmal protocol — the results of static
analysis in the DoS Analyzer system.

Simulation file RCLW RCL que \gmured RCL mem \gnnred RCL\gmtaEEeEt Srv overal nnsﬁ Srv a¥ Merm usage Srv av que Aftackers overal cost | Aft. avg que
sigmal_3.txt_ RCL-100_AT3- 227 617533 i 297.5| 3508338060 396278 62.0 5364619990 0.0
sigmal_3.txt_ RCL-100_ATS- 232 52179 i 268.0) 8455749370 185768, 63.0 5412302190 1.0
sigmal 3.txt_ RCL-100_AT6- 233 59088 i 253.5| 3365095300 186500, 63.0 6936636030 1.1
sigmal 3.txt RCL-100_AT4- 244 56923 0 233.25 5471853090 187466, 63.0 5369303870 0.0
sigmal_3.txt_ RCL-100_AT11 281 34657 0 123.25 8260762120 152922 63.0 6122659450 1.0
sigmal_3.txt_ RCL-100_ATL0 319 27617 i 86.5 8430795880 167637, 58.0 6901381310 0.0
sigmal 3.txt_ RCL-100_AT1Z 324 20081 0 62.0| 5414236750 158036, 58.0 7746766500 1.0
sigmal 3.txt_ RCL-100_AT9- 340 11414 0 33.5 5435638710 296974 62.0 72426664 0.0
sigmal_3.txt_ RCL-100_AT1- 400 4938 3769 z1.75| 7473273030 997077, 52.0 8465706000 0.0,
sigmal_3.txt_ RCL-100_AT7- 410 6032 i 14.75| 7703838320 214288 52.0 8664104770 0.0
sigmal 3.txt_ RCL-100_AT14 411 5785 0 14.0| 7703421350 128291 52.0 8677925020 0.0
sigual 3.txt_ RCL-100_ATG- 411 6678 0 16.25| 7697345810 140365, 55.0 6639900050 0.0
sigmal_3.txt_ RCL-100_AT13 413 5588 i 14.25 7689594650 128769, 53.0 8649113550 0.0,
sigmal_3.txt_ RCL-100_ATLS 413 5336 0 14.25| 7574883130 126428, 51.0 8649113550 0.0
sigmal 3.txt_ RCL-100_AT2- 419, 6164 0 14.75| 7705400100 139208, 50.0 §714856150 0.0

Fig. 9. Results of dynamic analysis of the Sigmal protocol in the
DoS Analyzer system. The four most dangerous attack types are framed.

e Attacker type 3 — after verifying the token field in MSG3, the server gets
engaged in expensive computations (Diffie-Hellman and generating signa-
ture), whilst an attacker can flood server with messages created at no cost.
The protocol requires from the attacker only the ability to receive a reply to
MSG1.

e Attacker type 4 — similar to that of adversary 3 but additionally sends
MSGS5 with the random content. The server will reject a message at mac3
verification. Employing the HMAC function protects the server from far more
computationally expensive signature verification. For this reason, this attack
is less effective than the previous one.

e Attacker types 5 and 6 — require much more computations from the
attackers but allow to engage the server in all protocol steps.

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 07/02/2026 10:36:48

64

Automatic detection of DoS vulnerabilities of...

| Simulation file RCL acented | RCL aue jonored RCL mem jonored RCL lanaccent | S overal cost| S ava menm usane| St ava gue | Attackers overal cost|Ath avg aue.)
5TS 3.txrt_ RCL-100_ATZ 186 85402 459.25 8014092000 240058 5.0 5007176000 0.0

STS_3.txt__RCL-100_AT1: 191 87367 457.5 7857250000 465976 660 4971460000 0.0

ST3_3.twt_ RCL-100_AT3 210 93430 445.0 7921280000 221139 66.0 6143318000 1.0

S5T5_3.txt_ RCL-100_ATE: 273 58250 213.25 7921638000 168216 61.0 6782764000, 1.0

BT5_3.twt__RCL-100_ATS 282 52109 184.75 7879500000 180576 64.0] B10Z558000; 0.0

STS_3.txt_ RCL-100_ATd 313 42542 136.0 7880206000 278286 64.0 6670436000 0.0

STS_3.txt__RCL-100_ATS: 338 41276 l2z.00 7771484000 145526 58.0] 7249842000, 0.0

ST3_3.twt_ RCL-100_AT7 340 41495 1zz.0 7708504000 145699 58.0 T2l7574000 0.0

Fig. 10. Results of dynamic analysis of the STS protocol in the
DoS Analyzer system. The two most dangerous attack types are framed.

Specifications of the STS protocol and the attacker types derived from the static
analysis, were earlier presented on page 56. In the case of this protocol, the following
attack scenarios turned out to be the most effective:

e Attacker type 1 — sends MSG1 with random content at no cost, whereas
receiving MSG1 causes the server to compute an expensive exponential and
signature.

e Attacker type 2 — similar to adversary 1 but additionally sends MSG3 with
random content. Receiving MSG3 causes the server to expend computa-
tional resources for signature verification, while the attacker generates both
messages at no cost. This allows to engage the server in all protocol steps.
This attack type turns out to be the most effective.

DoS vulnerabilities of the STS and Sigmal protocols The obvious shortcoming
of the STS protocol design, is the lack of assurance that the client will expand compu-
tational resources as much as the server. Thus the protocol is significantly susceptible
to DoS attacks.

On the other hand, the Sigmal protocol incorporates built-in mechanisms protect-
ing the server from DoS attacks. This includes: reusing exponentials, performing
inexpensive verification operations (HMAC') before checking the signature, employing
the cookie scheme. Still, the cookie mechanism may be not strong enough to mitigate
the attacks, if the adversary can receive server response in spite of IP-spoofing. The
reason is that, sending the valid cookie ensures only that the client, distinguished by
an [P address, took part in the earlier message exchange. It does not guarantee the
client got engaged into computations. A solution to this might be using the puzzle
mechanism [6, 21].

Comparative analysis of the STS and Sigmal protocols Each protocol is rep-
resented by the results of simulation with the most dangerous adversary type for the
protocol (see Section 1). The compared protocols are: STS and Sigmal with and
without exponentials reuse.

Fig. 11 a) shows a diagram with the number of sessions established by legal users for
each protocol. The best performance was demonstrated by the Sigmal protocol with

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 07/02/2026 10:36:48
Urszula Krawczyk, Piotr Sapiecha 65

the exponential reuse. However, the other versions of the Sigmal protocol turned out
to be less efficient than the simple STS protocol. The reason for this situation might
be the necessity to generate a new exponential for each protocol run, combined with
the increased complexity of the protocol.

Real client successful runs Real client successful runs
@ w
5) 5 4
E sigmal - 227 E sigmal - 400
2| sTs-188 £
g sigmal_nareuse - 164 g
E E sigmal_noreuse - 202
g i STS - 186 gmal .
3 I
3 2
S £
=] =]
g 5
| £
5 5
z z
" S8TS - Attacker 2 u 3TS - Attacker 2
Sigmal exp. reuse - Attacker 3 u Sigmal exp. reuse - Attacker 1
® Sigmal no exp. reuse - Attacker § = Sigmal no exp. reuse - Attacker 2
a) b)

Fig. 11. Comparative analysis of the STS and Sigmal protocols.

Additionally, a case of adversary with limited abilities was considered. The situation
is when the attacker can only receive a response from the server, providing his real
IP address. Yet without IP-spoofing, the attack will probably be detected by the
server (IDS). This is quite a rational assumption. In this case in the Sigmal protocol,
attacker type 3 can not be taken into account any more, as it demands from the client
to send in MSG3 a valid token field, received with MSG2. So the permitted attack
scenarios are: 1, 2,7, 8, 13, 14, 15. According to the simulation results in Fig. 9, attack
type 1 was chosen as the most dangerous in this set. Whereas in the case of protocol
version without the exponential reuse attacker type 2 was chosen. In the protocol STS
adversaries 1, 2, 4, 5, 7 and 8 are considered, with attacker type 2 being the most
effective.

The results of comparative analysis for the constrained adversaries are shown in
Fig. 11 b. In such circumstances both versions of the Sigmal protocol presented sub-
stantially more DoS resistance than the STS protocol.

Conclusions after the protocol analysis Comparing protocols performance under
the DoS attacks has proven the mechanisms used in the Sigmal protocol to be useful.
Choosing a more complex design has shown to be justified. In contrast to the simple
STS protocol, in the Sigmal protocol negative effects of DoS attacks were reduced.

6 Conclusions

We developed a nowel methodology for analysing DoS resistance of cryptographic
key establishment and authentication protocols. The process is computer-aided with

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 07/02/2026 10:36:48

66

Automatic detection of DoS vulnerabilities of...

the DoS Analyzer system. It allows to easily discover DoS vulnerabilities of protocols
and identify the most dangerous attack scenarios. The system makes it also possible
to compare DoS resistance of different protocols. Our system has been applied to
the Sigmal protocol, which has proven the effectiveness of the anti-DoS techniques
employed in that protocol.

Unlike the Meadows’s framework [4, 5], our approach combines both static and
dynamic analyses. This allows to take into account the server behaviour during many
parallel protocol runs. Also when compared with the Petri nets introduced in [6], our
model is generated and simulated entirely automatically. Additionally, the model is
more concise. To summarize, the main features that distinguish our approach are:

e Modelling the anti-DoS mechanisms protecting the server and spe-
cific attackers abilities,

e Two-stage analysis — the preliminary stage of static analysis lets minimize
the final dynamic model, as the data redundant during the simulation is not
included, which speeds up the process,

e Analysis automatization — the methodology was fully automatized and the
human user has only to supply high-level protocol specification and simulation
configuration.

Extending the system The presented system can be improved in the following
ways:
e Taking into account that also honest clients can reuse exponentials,
e Adding an option to define the clock time unit of the simulation, which would
help balance the accuracy /speed issue,
e Live visualization of clients actions and server resources during simulation.

References

[1

Headlines, Bank of America Hit By Anonymous DDoS Attack, (27.12.2010);
www.infosecisland.com

Adair S., Pushdo DDoS’ing or Blending In?, (2010);
www.shadowserver.org/wiki/pmwiki.php/Calendar,/20100129

Moore D., Shannon C.,The Spread of the Code Red Worm (crv2) (2001);
www.caida.org/analysis/security /codered /coderedv2 _analysis.xml

Meadows C., A Cost-Based Framework for Analysis of Denial of Service in Networks (2001);
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.9001&rep=rep1&type=pdf

[5] Smith J., Gonzalez-Nieto J. M., Boyd C., Modelling Denial of Service Attacks on JFK with Mead-
ows Cost-Based Framework (2006); citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.3877
Tritilanunt S., Boyd C., Foo E., Gonzalez Nieto J. M., Using Coloured Petri Nets to Simulate
DoS-resistant protocols (2006); www.daimi.au.dk/CPnets/workshop06/cpn/papers/Paperl5.pdf
[7] Vanek T., Rohlik M., Model of DoS Resistant Broadcast Authentication Protocol in Colored Petri
Net Environment, (2010); www.ic.uff.br/iwssip2010/Proceedings/nav/papers/paper 85.pdf

[2

3

[4

[6

8

Sapiecha P., Krawczyk U., DoS Analizer language syntax (2012);
www.krypton-polska.com/upload/1f0e3dad99908345{7439f8ffabdffc4.pdf

[9] Balbo G., Desel J., Jensen K., Reisig W., Rozenberg G., Silva M., Introductory Tutorial - Petri
Nets (2000); www.informatik.uni-hamburg.de/TGI/PetriNets/introductions/pn2000 _introtut

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 10:36:48

Urszula Krawczyk, Piotr Sapiecha

67

[10]
(11]

[12]
[13]

[14]
[15]
[16]

[17]

(18]
[19]
[20]
21]

Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, annual
workshops in years 1998-2008; www.daimi.au.dk/CPnets

Jensen K., An Introduction to the Theoretical Aspects of Coloured Petri Nets (1994);
www.dsc.ufcg.edu.br/abrantes/CursosAnteriores/ MVSRP /rex.pdf

Holzmann G. J., Spin model-checker; http://spinroot.com

Sapiecha P., Krawczyk U., Effective reduction of cryptographic protocols specification for model-
checking with Spin, Annales UMCS, Informatica AI 11 (3) (2011): 27;

DOI: 10.2478/v10065-011-0002-y

Jensen K., CPN Tools, www.daimi.au.dk/CPNTools

Boyd C., Mathuria A., Protocols for authentication and key establishment, Springer (2003).
Krawczyk H., SIGMA: the 'SIGn-and-MAc’ Approach to Authenticated Diffie-Hellman and its
Use in the IKE Protocols (2003); ftp://ftp.pwg.org/pub/pwg/wbmm /security/sigma.pdf

Bitan S., Krawczyk H., SIGMA: the 'SIGn-and-MAc’ Crypto rationale and proposals — for IETF
meeting (2001); www.ietf.org/proceedings/52/slides/ipsec-9.pdf

Barker E., et. all, Computer security - Recomendation for key management (2007); csrc.nist.gov
Giry D., BlueKrypt - Cryptographic Key Lenght Recomentation (2010); www.keylength.com/en
Dai W., Crypto++ 5.2.1 Benchmarks (16.01.2011); www.cryptopp.com

Beal J., Shepard T., Deamplification of DoS attacks via puzzles (2004);

web.mit.edu/jakebeal /www /Unpublished /puzzle.pdf

http://www.tcpdf.org

