
Annales UMCS Informatica AI XII, 4 (2012) 51–67

DOI: 10.2478/v10065-012-0028-9

Automatic detection of DoS vulnerabilities of cryptographic

protocols

Urszula Krawczyk1∗, Piotr Sapiecha1,2

1Krypton-Polska

Al. Jerozolimskie 131 Warsaw, Poland
2Department of Electronics and Information Technology, Warsaw University of Technology

Warsaw, Poland

Abstract – In this article the subject of DoS vulnerabilities of cryptographic key establishment

and authentication protocols is discussed. The system for computer-aided DoS protocol resistance

analysis, which employs the Petri nets formalism and Spin model-checker, is presented.

1 Introduction

Denial of service attacks (DoS ) limits the server abilities to respond to clients’ re-

quests. In this article, the attacks that exploit vulnerabilities of cryptographic key

exchange and authentication protocols, will be considered. Such attacks took place

in the past years, including those based on the DoS susceptibility of the SSL/TLS

protocol, launched on: banks [1], well-known commercial services like Yahoo, Amazon

and governmental sites [2, 3]. So this is a crucial and up-to-date problem.

The article will focus on the computational DoS (CDoS ) attacks, that exhaust

servers computational resources and connections queue. As the server must process

all the incoming messages, it is by definition vulnerable to DoS attacks and can not be

entirely protected from them. Yet a protocol design should prevent from the situation,

when the client can easily make the server engage in expensive calculations.

Problem definition The main goal of the presented work, was designing a metho-

dology to analyse vulnerabilities of cryptographic protocols to DoS attacks. It should

∗U.Krawczyk@krypton-polska.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 10:36:48

UM
CS



52 Automatic detection of DoS vulnerabilities of cryptographic...

indicate the most effective attack scenarios and allow comparing DoS resistance of

different key establishment and authentication protocols.

Fig. 1. Steps of analysing protocols DoS vulnerabilities in the DoS Analyzer

system.

Related work Unlike the case of verifying confidentiality and integrity provided

by protocols, there has been far less research in the field of designing and testing DoS

resistance of cryptographic protocols. The most known is the Meadows’s framework [4].

It has been used to analyse the JFK protocol in [5]. For each message, computational

costs of client and server are compared. However, this approach is limited only to the

static analysis of one protocol run and requires manual, work consuming calculations.

Dynamic analysis, involving many parallel protocol runs modelled as a Petri net, was

presented in [6, 7]. In [6] first the authors present costs of protocol runs for chosen

types of clients (static analysis). Transport versions of the SSL protocol and the HIP

protocol are considered. Then a Petri net describing each protocol step is shown. It

contains detailed information of every users action, which is unfortunately redundant

during simulation. The model takes into account the puzzle mechanism. Yet it does not

consider sharing costs by the attackers, replays of messages and reusable exponentials

of the server.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 10:36:48

UM
CS



Urszula Krawczyk, Piotr Sapiecha 53

The [7] article concentrates on slightly different aspects of protocol design, consid-

ering the broadcast DREAM protocol in the ad-hoc wireless network. Simulations are

done in the CPN Tools and Matlab.

These methodologies are also not automated, as the nets are manually created for

every analysed protocol.

2 Our approach

The protocol DoS resistance analysis methodology presented in this article is illustra-

ted in Fig. 1. As can be seen, the input to the analysis process is a high-level protocol

description. The output includes the information on the most dangerous attack types

and vulnerabilities as well as comparison and evaluation of different protocols DoS

resistance. The steps of our approach are the following:

(1) Parsing protocol description – parsing high-level protocol description.

(2) Static analysis – determining each user’s step, computational and memory

costs and scenarios of attacks.

(3) Dynamic analysis – creating an instance of a Petri net for each simulation.

Running a simulation for each type of attack, with a chosen number of honest

clients and attackers of the type under consideration.

(4) Comparing different attack scenarios – finding the most dangerous at-

tack type at (which exposes vulnerabilities of the protocol), such that:

f(at) = min
(

{

f(atj) : j ∈ {1 : AT}
}

)

. (1)

Where:

• f(atj) – the number of successful honest clients protocol runs, for a

simulation with the j-th attacker type,

• AT – the number of attacker types in the modelled protocol, defined

by equation (3) (in this article bounded by 15).

(5) Comparing protocols – for a set of P analysed protocols, finding the most

DoS -resistant protocol p, such that:

f(atp) = max
(

{

f(ati) : i ∈ {1 : P}
}

)

. (2)

Where:

• ati is the most dangerous attack type in the i -th protocol, as denoted by

equation (1).

3 Protocol model for the DoS analysis

The protocol is described in a high-level language. This makes it possible to analyse

protocols, which haven’t been implemented yet. The language is of our own design.

Its grammar is not presented here because of the limited space in the article. Yet it

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 10:36:48

UM
CS



54 Automatic detection of DoS vulnerabilities of...

can be found in [8]. The examples of protocol specification are shown in sections 3.2

and 5.

3.1 Static protocol model

The static protocol model includes all the details from the parsed protocol specifi-

cation. A protocol run is one of the basic terms in the model. It includes protocol

participants actions and states that store the actual knowledge of the users. As shown

in Fig 2, in one step of a protocol run, the message sender creates all the necessary

fields and sends the message. Then if this is the last message sent in the protocol, the

user accepts the protocol run and establishes a session.

The receiver computes the elements needed to process the message and verifies or

decrypts the message fields, according to the protocol specification. If this is the last

message in the protocol and the verification is positive, then the user accepts the

protocol run and establishes a session.

Fig. 2. Steps of senders and receivers in a protocol run.

3.2 Clients launching DoS attacks

The client that is not honest can launch a DoS attack in several ways. The set of

attacker types is determined during the static analysis. The main properties of the

attacker are:

• Aiming at exhausting server resources,

• The ability to deviate from the protocol specification by:

– Not verifying the received messages – thus avoid unnecessary costs,

– Producing fake messages – sending random data at no cost instead

of expensive fields,

– Sharing computational costs – sharing the costs among a group of

attackers, which makes expensive operations cheap,

– Finishing protocol run – an attacker may not respond to the server

message and stop protocol run in any stage,

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 10:36:48

UM
CS



Urszula Krawczyk, Piotr Sapiecha 55

– Message replay – once generated, a message may be replayed many

times at no cost,

– Eavesdropping messages – an attacker may capture and resend mes-

sages originally sent by legal clients.

Determining attacker types When considering the above features, there is a finite

set of adversary types for a protocol. Let V be the number of fields verified by the server

and let M be the number of messages received by the server. Then the size of the set

of attacker types is calculated with equation (3).

AT = 2 · V + 3 ·M. (3)

The equation is derived from the fact that there are the following kinds of adversary

types:

• A group of V +M attacker types – each subsequent attacker type proceeds

one step further in a protocol run,

• A group of V +M attacker types – analogous to the previous group, except

for replaying the last message (up to the server reset),

• A group of M attacker types – consists of attackers that eavesdrop a message

from a real, honest client and replay it repeatedly (up to the server reset).

Examplary attacker types Fig. 3 depicts part of STS protocol specification, with

the server verifying one field (sig3 signature). Hence M = 2, V = 1 and there are

altogether 2 ∗ (1 + 2) + 2 = 8 adversary types that are listed in Table 1).

[Packets]

p1: IDi = CERT(privI), gi = PM(g, i) // client sending his cert. and D-H exponential

// server sending his certificate, D-H exponential and signature over the exponentials

p2: IDr = CERT(privR), gr = PM(g, r), sig2 = S(privR, d2 = C(gi, gr) )

p3: sig3 = S(privI, d3 = C(gi, gr) )

[ToProcess] // fields to be processed by the message receiver

MSG p1: ;

MSG p2: sig2 ; // signature from MSG 2 verified by a client

MSG p3: sig3 ; // signature from MSG 3 verified by the server

Fig. 3. Part of STS protocol specification for the DoS Analyzer system.

Whereas in the case of SigmaI protocol, the server receives three messages and

verifies the following three fields: token, mac3, sig3 (see Fig. 7; Page 62). So according

to equation (3), there are 2 ∗ (3 + 3) + 3 = 15 adversary types (see Fig. 8; Page 63).

3.3 Dynamic protocol model

The dynamic model allows to simulate multiple, simultaneous protocol runs, while

monitoring the server state. Unlike in [6], the model presented here includes only

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 10:36:48

UM
CS



56 Automatic detection of DoS vulnerabilities of...

Table 1. Attackers types for the STS protocol.

A group of V +M = 3 attacker types:

Attacker type 1 Sends MSG1 with random content and ignores MSG2.

Attacker type 2 Sends MSG1 and then MSG3 with random content – verification of

sig3 will fail.

Attacker type 3 Sends MSG1 and MSG3 that are successfully verified by server.

A group of V +M = 3 attacker types:

Attacker type 4 Analogous to attacker 1 but keeps replaying once generated MSG1.

Attacker type 5 Analogous to attacker 2 but keeps replaying once generated MSG3.

Attacker type 6 Analogous to attacker 3 but keeps replaying once generated MSG3.

A group of M = 2 attacker types:

Attacker type 7 Eavesdrops MSG1 from real, honest client and repeatedly resends it.

Attacker type 8 Eavesdrops MSG3 from real, honest client and repeatedly resends it.

Fig. 4. Computational and memory costs of one protocol step.

information necessary for the simulation. This makes the model less complicated and

speeds up simulation.

Computational costs of protocol run step Detailed information about every

action of the protocol user, that is stored in the static model (Fig. 2), is redundant in

the dynamic model. What is important, is the aggregated actions costs of each user

step, which is illustrated in Fig. 4. The following action types costs are separately

handled and stored:

• Server costs

– REUSED – the actions of generating fields that are reused by the server

(e.g. exponentials), this kind of actions is performed only periodically,

after the old values are reset (which is here called the server reset),

– NORMAL – the actions concerning the elements that are not reused,

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 10:36:48

UM
CS



Urszula Krawczyk, Piotr Sapiecha 57

– REPLAY – the actions performed by the server after receiving the replayed

message, where:

REUSED ∪NORMAL = ALL_SERV ER_COST , (4)

REUSED ∩NORMAL = ∅, (5)

REPLAY ⊆ NORMAL. (6)

• Client costs

– SHARED - the actions whose costs can be shared among attackers (not

applicable for honest clients),

– NON_SHARED - the actions whose costs can not be shared among attackers,

where:

SHARED ∪NON_SHARED = ALL_CLIENT_COST, (7)

SHARED ∩NON_SHARED = ∅. (8)

Memory costs of protocol run step At the end of every user step, the elements

that will not be used in subsequent steps or can be cheaply reconstructed later, are

erased from memory. As can be seen in Fig. 4, the server memory cost is calculated as

a difference between memory usage after the server step and before it.

3.4 Modelling protocol as a Petri net

For the purpose of simulating multiple protocol runs, high-level, coloured, timed

Petri nets were used [9, 10, 11]. Fig. 5 a) depicts a graphical representation of the

examplary net. Places drawn as ellipses can store tokens. Transitions are drawn as

rectangles. Tokens can travel from place to place according to arc expressions, after the

transition fires. The time it takes for the transition to fire is determined by the time

inscription (here @+(hd ccs)). In the examplary net, this models the time needed by

the client to receive MSG2 and send MSG3.

Dynamic model structure The Petri nets used in the presented system have the

following features:

• Petri net structure – the net consists of subpages describing behaviour of

client and server, while the main page contains the instances of subpages and

links them together,

• Coloured tokens – each token represents a protocol run with one client and

bears information about:

– client type (real client or type of attacker),

– the number of the currently processed message (incremented during the

protocol run),

– computational and memory costs of every user’s step, in the protocol

run with the considered client type (as described in section 3.3),

– delays after a client is ignored by the server or before a client starts a

new protocol run.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 10:36:48

UM
CS



58 Automatic detection of DoS vulnerabilities of...

• Client and server subpages – for each message in the protocol there is

an instance of client and server subpage (e.g. a server subpage for receiving

MSG1 and sending MSG2 ),

• Petri net template – for each analysed protocol, a Petri net is created

by simply parameterizing a template net with: the number of messages, the

number and type of tokens,

• Tokens movement – tokens travel between the client and server subpages.

After a particular protocol run is finished, a token moves back to the initial

place before it gets engaged in a new run.

Client model Client subpage has quite a simple construction, as shown in Fig. 5 a.

A token in the MsgInNum place determines that this subnet represents receiving MSG2

and possibly sending MSG3. The client has two alternatives: responding with MSG3

(ComputeOutMsg transition) or starting a new protocol run (Finish transition), which

is available only for an attacker. The choice, cost and duration of action are controlled

by the information found in the token un the MsgIn place.

Fig. 5. Client model: a) Petri net graphical representation in the CPN Tools

Server model The Petri net representing the server behaviour is much bigger and

more complex than the client model. Therefore it is not presented here. Instead the

description of server logic is presented in the decision diagram in Fig. 6.

3.5 Protocol model properties

The protocol model, used in the presented methodology, covers the following crucial

protocol features:

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 10:36:48

UM
CS



Urszula Krawczyk, Piotr Sapiecha 59

Fig. 5. Client model: b) textual Petri net specification in the Promela code.

The numbers in the white circles indicate the corresponding elements in both

models.

• Reuse of message elements by the server – the anti-DoS technique that

reduces computational costs and increases DoS resistance of the server,

• Sharing costs among attackers – increases capabilities of attackers,

• Servers computational resources – servers computation speed is inversely

proportional to the number of clients served at the time,

• Attackers computational resources – the more adversaries are using the

shared resources at the time, the longer it will take to finish calculations for

each attacker. Yet the adversary was limited to using at most four machines

concurrently.

4 Petri nets simulation tool choice

Petri nets are generally represented graphically. However, in the DoS Analyzer

system a textual net description was chosen. The well-known simulator and model-

checker Spin [12, 13] was used, together with the Promela language. When compared

with the CPN Tools [14] (which we used in the early stage of the project), Spin suited

more for our application. It is much faster and does not require human user’s interaction

with GUI for each simulation, which automates the process.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 10:36:48

UM
CS



60 Automatic detection of DoS vulnerabilities of...

Fig. 6. Server model logic after receiving the message Mn.

The method to represent the Petri nets in the Promela language is shown in Table 2.

According to these rules the net in Fig. 5 a) was transformed into the code in Fig. 5 b.

Processing simulation output During the protocol simulation, some data is writ-

ten into files, including: client costs, server costs, information of server ignoring clients

during DoS attack, honest clients establishing a session, server memory usage. This

data is then aggregated by the DoS Analyzer system to calculate statistics.

5 Results

The protocol analysis methodology presented so far was incorporated into the

DoS Analyzer system, that aids the process. This section will demonstrate the results

of analysis of two examplary protocols: the simple STS protocol [15, 16] (described

in Fig. 3) and the SigmaI protocol [16, 17] that has been equipped with the DoS

resistance mechanisms (see Fig. 7).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 10:36:48

UM
CS



Urszula Krawczyk, Piotr Sapiecha 61

Table 2. Petri net representation in the Promela language for the Spin simulator.

Petri net feature Spin

Coloured tokens typedef mechanism similar to C -language structs

Non-determinism Built-in nondeterministic Promela language construc-

tions (if, do)

Hierarchical subnets for

client and server

Asynchronic processes in Promela language

(proctype)

Protocol state stored in spe-

cific places (e.g. server mem-

ory usage in SrvMem place)

Data kept simply in variables

Tokens travelling between

client and server subnets

Structs sent via communicational channels between

processes (chan)

Transition firing delayed by

time inscriptions

When a protocol step is performed, a struct (token) is

inserted into a queue managed by the additional time

process. The token is passed to its destination process

(message receiver or first message sender in a new pro-

tocol run), only after the necessary computations and

when the specified time interval is over

Simulation configuration Both protocols were simulated for identical computa-

tional and memory resources, shown in Table 3. This makes it possible to compare the

simulation results. The cryptographic algorithms used were: AES, MD5 and RSA. The

symmetric key length was 128 b, the asymmetric key length was 1024 b. Such values

are generally used and recommended as currently safe by NIST [18] and ENRYPT

[19]. Computational cost came from benchmarks [6, 20].

For each type of attacker there was a simulation with 100 honest clients and 100

attackers. Each simulation time spanned one server reset cycle (30s). Such a configu-

ration allows to observe computational DoS (CDoS ).

Table 3. Computational and memory resources configuration for the simulation.

Computational resources

Client connection queue length at server 80 slots

Computational power of one machine used by server, client and

attacker, for the purpose of protocol computations

230000 kcycle/s

The number of machines used together by adversaries 20

Maximal attacker speed up, due to distributed computations 4 times

Memory resources

Server memory 2097152B

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 10:36:48

UM
CS



62 Automatic detection of DoS vulnerabilities of...

[Packets]

p1: ni = N(8), gi = PM(g, i)

p2: ni, nr = N(8), gr = PM(g, r),

token = HMAC("SHA1", privHash,

d2 = C(gr, gi, nr, ni, ipi = IP("remote")))

p3: ni, gi, nr, gr, token

p4: gr, nr,

enc2 = E("DES3",

Ke = HMAC("SHA1", ci = PM(g, i, r), nis = C(ni,nr)),

e2 = ENC(

IDr = CERT(privR),

sig2 = S(privR, d1 = C(ni, gr)),

mac2 = HMAC("SHA1", Ka = HMAC("SHA1",ci,nis), IDr)

)

)

p5: enc3 = E("DES3", Ke,

e3 = ENC(

IDi = CERT(privI),

sig3 = S(privI, d3 = C(nr, gi)),

mac3 = HMAC("SHA1", Ka, IDi)

)

)

[Cache&Reuse] // fields that are computed only once a reset

server RESET gr EVERY 30 s;

server RESET privHash ON gr reset;

Fig. 7. SigmaI protocol specification fragment and protocol run visualiza-

tion in the DoS Analyzer system.

Static analysis of SigmaI protocol Fig. 7 shows SigmaI protocol specification and

visualization of the protocol run with an honest client. The SigmaI protocol includes

the cookie mechanism [6]. Only a client that sent MSG1 and received MSG2, can send

MSG3 with token field that will be accepted by the server.

The results of static analysis are depicted in Fig. 8. The first row in the table refers

to an honest client, while the other rows are related to attacker types.

After the static analysis, DoS Analyzer application indicates (with bold face in the

Srv - cl cost column) the most significant difference between the client and server

costs in the case of adversaries of 4, 5, 10 and 11 type. These are potentially the most

dangerous attack scenarios.

Dynamic analysis of the SigmaI anf STS protocols After the static analysis,

which is similar to the Meadows’s framework, there are some assumptions about the

effectiveness of different attack types. Nevertheless only dynamic analysis can address

the problem of multiple, interacting protocol runs. The results of SigmaI protocol

model simulation are shown in Fig. 9. Each row corresponds to a simulation with

the attacker type indicated in the first column. The main criteria is the number of

sessions established by real clients (see section 1), found in the second column. The

minimal number of successful runs was detected for adversaries 3, 5, 6 and 4. These

most dangerous attacks are based on the following SigmaI protocol vulnerabilities:

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 10:36:48

UM
CS



Urszula Krawczyk, Piotr Sapiecha 63

Fig. 8. Type of DoS attacks in the SigmaI protocol – the results of static

analysis in the DoS Analyzer system.

Fig. 9. Results of dynamic analysis of the SigmaI protocol in the

DoS Analyzer system. The four most dangerous attack types are framed.

• Attacker type 3 – after verifying the token field in MSG3, the server gets

engaged in expensive computations (Diffie-Hellman and generating signa-

ture), whilst an attacker can flood server with messages created at no cost.

The protocol requires from the attacker only the ability to receive a reply to

MSG1.

• Attacker type 4 – similar to that of adversary 3 but additionally sends

MSG5 with the random content. The server will reject a message at mac3

verification. Employing the HMAC function protects the server from far more

computationally expensive signature verification. For this reason, this attack

is less effective than the previous one.

• Attacker types 5 and 6 – require much more computations from the

attackers but allow to engage the server in all protocol steps.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 10:36:48

UM
CS



64 Automatic detection of DoS vulnerabilities of...

Fig. 10. Results of dynamic analysis of the STS protocol in the

DoS Analyzer system. The two most dangerous attack types are framed.

Specifications of the STS protocol and the attacker types derived from the static

analysis, were earlier presented on page 56. In the case of this protocol, the following

attack scenarios turned out to be the most effective:

• Attacker type 1 – sends MSG1 with random content at no cost, whereas

receiving MSG1 causes the server to compute an expensive exponential and

signature.

• Attacker type 2 – similar to adversary 1 but additionally sends MSG3 with

random content. Receiving MSG3 causes the server to expend computa-

tional resources for signature verification, while the attacker generates both

messages at no cost. This allows to engage the server in all protocol steps.

This attack type turns out to be the most effective.

DoS vulnerabilities of the STS and SigmaI protocols The obvious shortcoming

of the STS protocol design, is the lack of assurance that the client will expand compu-

tational resources as much as the server. Thus the protocol is significantly susceptible

to DoS attacks.

On the other hand, the SigmaI protocol incorporates built-in mechanisms protect-

ing the server from DoS attacks. This includes: reusing exponentials, performing

inexpensive verification operations (HMAC ) before checking the signature, employing

the cookie scheme. Still, the cookie mechanism may be not strong enough to mitigate

the attacks, if the adversary can receive server response in spite of IP-spoofing. The

reason is that, sending the valid cookie ensures only that the client, distinguished by

an IP address, took part in the earlier message exchange. It does not guarantee the

client got engaged into computations. A solution to this might be using the puzzle

mechanism [6, 21].

Comparative analysis of the STS and SigmaI protocols Each protocol is rep-

resented by the results of simulation with the most dangerous adversary type for the

protocol (see Section 1). The compared protocols are: STS and SigmaI with and

without exponentials reuse.

Fig. 11 a) shows a diagram with the number of sessions established by legal users for

each protocol. The best performance was demonstrated by the SigmaI protocol with

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 10:36:48

UM
CS



Urszula Krawczyk, Piotr Sapiecha 65

the exponential reuse. However, the other versions of the SigmaI protocol turned out

to be less efficient than the simple STS protocol. The reason for this situation might

be the necessity to generate a new exponential for each protocol run, combined with

the increased complexity of the protocol.

a) b)

Fig. 11. Comparative analysis of the STS and SigmaI protocols.

Additionally, a case of adversary with limited abilities was considered. The situation

is when the attacker can only receive a response from the server, providing his real

IP address. Yet without IP-spoofing, the attack will probably be detected by the

server (IDS ). This is quite a rational assumption. In this case in the SigmaI protocol,

attacker type 3 can not be taken into account any more, as it demands from the client

to send in MSG3 a valid token field, received with MSG2. So the permitted attack

scenarios are: 1, 2, 7, 8, 13, 14, 15. According to the simulation results in Fig. 9, attack

type 1 was chosen as the most dangerous in this set. Whereas in the case of protocol

version without the exponential reuse attacker type 2 was chosen. In the protocol STS

adversaries 1, 2, 4, 5, 7 and 8 are considered, with attacker type 2 being the most

effective.

The results of comparative analysis for the constrained adversaries are shown in

Fig. 11 b. In such circumstances both versions of the SigmaI protocol presented sub-

stantially more DoS resistance than the STS protocol.

Conclusions after the protocol analysis Comparing protocols performance under

the DoS attacks has proven the mechanisms used in the SigmaI protocol to be useful.

Choosing a more complex design has shown to be justified. In contrast to the simple

STS protocol, in the SigmaI protocol negative effects of DoS attacks were reduced.

6 Conclusions

We developed a nowel methodology for analysing DoS resistance of cryptographic

key establishment and authentication protocols. The process is computer-aided with

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 10:36:48

UM
CS



66 Automatic detection of DoS vulnerabilities of...

the DoS Analyzer system. It allows to easily discover DoS vulnerabilities of protocols

and identify the most dangerous attack scenarios. The system makes it also possible

to compare DoS resistance of different protocols. Our system has been applied to

the SigmaI protocol, which has proven the effectiveness of the anti-DoS techniques

employed in that protocol.

Unlike the Meadows’s framework [4, 5], our approach combines both static and

dynamic analyses. This allows to take into account the server behaviour during many

parallel protocol runs. Also when compared with the Petri nets introduced in [6], our

model is generated and simulated entirely automatically. Additionally, the model is

more concise. To summarize, the main features that distinguish our approach are:

• Modelling the anti-DoS mechanisms protecting the server and spe-

cific attackers abilities,

• Two-stage analysis – the preliminary stage of static analysis lets minimize

the final dynamic model, as the data redundant during the simulation is not

included, which speeds up the process,

• Analysis automatization – the methodology was fully automatized and the

human user has only to supply high-level protocol specification and simulation

configuration.

Extending the system The presented system can be improved in the following

ways:
• Taking into account that also honest clients can reuse exponentials,

• Adding an option to define the clock time unit of the simulation, which would

help balance the accuracy/speed issue,

• Live visualization of clients actions and server resources during simulation.

References

[1] Headlines, Bank of America Hit By Anonymous DDoS Attack, (27.12.2010);

www.infosecisland.com

[2] Adair S., Pushdo DDoS’ing or Blending In?, (2010);

www.shadowserver.org/wiki/pmwiki.php/Calendar/20100129

[3] Moore D., Shannon C.,The Spread of the Code Red Worm (crv2) (2001);

www.caida.org/analysis/security/codered/coderedv2_analysis.xml

[4] Meadows C., A Cost-Based Framework for Analysis of Denial of Service in Networks (2001);

citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.9001&rep=rep1&type=pdf

[5] Smith J., Gonzalez-Nieto J. M., Boyd C., Modelling Denial of Service Attacks on JFK with Mead-

ows Cost-Based Framework (2006); citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.3877

[6] Tritilanunt S., Boyd C., Foo E., Gonzalez Nieto J. M., Using Coloured Petri Nets to Simulate

DoS-resistant protocols (2006); www.daimi.au.dk/CPnets/workshop06/cpn/papers/Paper15.pdf

[7] Vanek T., Rohlik M., Model of DoS Resistant Broadcast Authentication Protocol in Colored Petri

Net Environment, (2010); www.ic.uff.br/iwssip2010/Proceedings/nav/papers/paper_85.pdf

[8] Sapiecha P., Krawczyk U., DoS Analizer language syntax (2012);

www.krypton-polska.com/upload/1f0e3dad99908345f7439f8ffabdffc4.pdf

[9] Balbo G., Desel J., Jensen K., Reisig W., Rozenberg G., Silva M., Introductory Tutorial - Petri

Nets (2000); www.informatik.uni-hamburg.de/TGI/PetriNets/introductions/pn2000_introtut

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 10:36:48

UM
CS



Urszula Krawczyk, Piotr Sapiecha 67

[10] Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, annual

workshops in years 1998-2008; www.daimi.au.dk/CPnets

[11] Jensen K., An Introduction to the Theoretical Aspects of Coloured Petri Nets (1994);

www.dsc.ufcg.edu.br/ãbrantes/CursosAnteriores/MVSRP/rex.pdf

[12] Holzmann G. J., Spin model-checker; http://spinroot.com

[13] Sapiecha P., Krawczyk U., Effective reduction of cryptographic protocols specification for model-

checking with Spin, Annales UMCS, Informatica AI 11 (3) (2011): 27;

DOI: 10.2478/v10065-011-0002-y

[14] Jensen K., CPN Tools, www.daimi.au.dk/CPNTools

[15] Boyd C., Mathuria A., Protocols for authentication and key establishment, Springer (2003).

[16] Krawczyk H., SIGMA: the ’SIGn-and-MAc’ Approach to Authenticated Diffie-Hellman and its

Use in the IKE Protocols (2003); ftp://ftp.pwg.org/pub/pwg/wbmm/security/sigma.pdf

[17] Bitan S., Krawczyk H., SIGMA: the ’SIGn-and-MAc’ Crypto rationale and proposals – for IETF

meeting (2001); www.ietf.org/proceedings/52/slides/ipsec-9.pdf

[18] Barker E., et. all, Computer security - Recomendation for key management (2007); csrc.nist.gov

[19] Giry D., BlueKrypt - Cryptographic Key Lenght Recomentation (2010); www.keylength.com/en

[20] Dai W., Crypto++ 5.2.1 Benchmarks (16.01.2011); www.cryptopp.com

[21] Beal J., Shepard T., Deamplification of DoS attacks via puzzles (2004);

web.mit.edu/jakebeal/www/Unpublished/puzzle.pdf

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 10:36:48

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

