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Abstract — The family of algebraic graphs A(n;K) defined over the finite commutative ring K
were used for the design of different multivariate cryptographical algorithms (private and public keys,
key exchange protocols). The encryption map corresponds to a special walk on this graph. We
expand the class of encryption maps via the use of an automorphism group of A(n,K). In the case
of characteristic 2 the encryption transformation is a Boolean map. We change finite field for the
commutative ring of characteristic 2 and consider some modifications of algorithm which allow to hide

a ground commutative ring.

1 Introduction

Multivariate cryptography in the narrow sense (see[1]) is the generic term for asym-
metric cryptographic primitives based on the multivariate polynomials over finite fields.
In certain cases these polynomials could be defined over both a ground and an extension
field. If the polynomials have the degree two, we talk about multivariate quadratics.
The algorithm of finding a solution of the multivariate polynomial equations system is
proven to be NP-Hard or NP-Complete. That is why these schemes are often considered
to be good candidates for the post-quantum cryptography, once quantum computers
can break the current schemes. Today multivariate quadratics could be used only to
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build signatures. This definition leads to several questions: Why is a finite field, not a
commutative ring used? Why are quadratics so important?

We define multivariate cryptography as the studies of cryptosystems based on the
special regular automorphism f of the algebraic variety M, (K) of dimension n in a
sense of Zarisski topology over the finite commutative ring K. An example of algebraic
variety is a free module K™ which is simply a Cartesian product of n copies of K"
into itself. Regular automorphism is a bijective polynomial map of M, (K) onto itself
such that f~! is also a polynomial map. Elements of K” can be identified with strings
(x1,x9,...,2,) in the alphabet K, a nonlinear map f of the restricted degree d can be
used as a public rule if the key holder (Alice) knows the secret decomposition of f into
that of special maps f1, fo,..., fs with known inverse maps f: % So, she can decrypt
by the consecutive application of fs_l,f;ll, ..., fi~'. Notice, that the public user
(Bob) has to use symbolic computations to work with f, but Alice may use numerical
computations for the implementation of private key decryption process. Free module
K™ can be changed for the family of varieties M, (K), n = 1,2,..., the commutative
ring can be treated as an alphabet, the element v € M, (K) as a "potentially infinite"
plaintext, the parameter n as a measurement of variety size.

The complexity of the best general algorithms for the solution of nonlinear system of
equations of the kind f(x) =y, =,y € K" equals d°(™) (see recent papers [2], [3]). One
can use the Grobner basis, the Gauss elimination method or alternative options for the
investigation of the system. One can write simple nonlinear equations which are easy to
solve. So, the system of nonlinear equations has to be tested on "pseudorandomness"
and the map f has to be of a large order. Notice that one of the first attempts to
create a workable multivariate cryptosystem was proposed by Imai and Matsumoto
(see [4] and [1] for the historical survey in the area). They used the finite field of
characteristic 2 and its extension, f has a decomposition fifsf3, where f; and fo are
the affine maps (of degree 1) and f is a Frobenius automorphism. Cryptanalysis by J.
Patarin for the scheme can be found in [5], [6], the history of its various modifications
goes on (see, for instance survey in [1]). We have to notice that the failure of this
cryptosystem is not a surprise for specialists in algebra. Despite its formal quadratic
appearance the Frobenius automorphism is quite close to linear maps (in his known
book [7] J.Diedonne uses the term 3/2 linear map for such automorphism).

One of the popular directions in multivariate cryptography is the use of tools outside
commutative algebra such as dynamical systems or extremal algebraic graphs (see [8],
[9] and further references) for the creation of nonlinear maps of pseudorandom nature.
We will study some properties of graph base public key, private key and key exchange
algorithms, which were proposed in [10], [11], [9], [12]. Some results of implementation
of this method can be found in [10], [11]. Some results about extremal properties of
the corresponding graphs and relations with cryptographical algorithms based on the
algebraic graphs over the finite commutative rings are included in [13]. In our paper we
will use special commutative rings K of characteristic 2, which are algebraic extensions
of finite field F5. We assume that the addition in the ring is usually the addition of m -
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dimensional free module K™ over Fy and the multiplication of vectors (z1, 2, ..., Tm)
and (y1,¥2,...,Ym) can be computed as (f1, fa,..., fm), where f;, i = 1,2,... ,m are
the boolean functions in the variables x;, y;, j = 1,2,...m in a special basis.
Some examples of the finite ring of characteristic 2:
(i) Boolean ring By,: B,, = Fom with the multiplication
(1,22, T ) (Y1, Y25+« Um) = (T1Y1, T2Y2s -+« + s TinYm)s
(ii) commutative ring K = Fy[z]/p(z) , where p(z) is a polynomial from Fy[z] of
degree m. If p(x) is irreducible, then K is a finite field I, of characteristic 2
containing 2 elements. In the case p(z) = 2™ and natural base 1, =, 22, ...
2™~ the multiplication in K is a usual polynomial multiplication with the

specialization ' = 0 for i = m, m + 1, ..., 2m — 2. We denote this ring by
Ny
It is clear that in the ring IV, or the case of Boolean ring B,, we have really "fast”
multiplication.

In Section 2 we introduce some definitions needed to describe our algorithms. In
Section 3 we recall and define some properties of the family of algebraic graphs A(n,K)
over a general commutative ring K, in the case K = F, we have A(n,K) = A(n, ¢) and
define the double directed graphs DA(n,K) of the bipartite graphs A(K). In section
4 we present the groups automorphism of these graphs. In Section 5, we show how
to generate the bijective Boolean transformation based on the graphs A(n,K) and
DA(n,K) over the finite commutative ring K with charK = 2 from the above mentioned
class of rings.

We formulate some properties of the generated boolean functions related to crypto-
graphical applications.

In Section 6 we present the multivariate public key cryptosystem using the results
from the previous sections.

Let us use traditional characters in Cryptography: Alice is the holder of the key,
Bob - the public user (see [5]).

2 Graph theoretical preliminaries and some open problems

The missing definitions of graph-theoretical concepts in the case of simple graphs
which appears in this paper can be found in [14], [15].

All graphs under consideration are simple graphs, i. e. undirected without loops and
multiple edges. Let V(T') and F(T") denote the set of vertices and the set of edges of T',
respectively. |V(T')| is called the order of T', and |E(T')| is called the size of G. A path
in I' is called simple path if all its vertices are distinct. When it is convenient, we shall
identify I" with the corresponding antireflexive binary relation on V(T'), i.e. E(T) is a
subset of V(I') x V(TI"). A graph I is bipartite if its vertices can be partitioned into two
sets in such a way that no edge joins two vertices in the same set.

The length of a path is a number of its edges. The girth of a graph I', denoted by
g = g(T') is the length of the shortest cycle in T'.
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Let g, = g.(T") be the length of the minimal cycle through the vertex x from the set

V(') of vertices in graph I'. We refer to
Cind(T") = max{g,, z € V(I)}
as cycle indicator of the graph T'.

If T'; is a family of connected k-regular graphs of increasing order with the increasing
cycle indicator for which projective (or inductive) limit I' = UimT;, ¢ — oo is well
defined, then T is a tree.

If T'; is a family of connected k-regular graphs of increasing order with the increasing
cycle indicator for which projective (or inductive) limit I' = limT;, i — oo is well
defined, then T is a tree.

Recall, that a family of regular graphs I'; of degree k; and increasing order v; is the
family of graphs of large girth if

g(I's) = clogy (vs)
for an independent constant ¢, ¢ > 0. This family plays an important role in Extremal
Graph Theory, Theory of LDPC codes and Cryptography [16],[9], [17]. The family
of graphs of a large girth of bounded degree is hard to be constructed. This fact is a
serious motivation for the studies of infinite families of graphs of a large cycle indicator,
which are generalisations of families of graphs of a large girth.

We refer to a family of regular simple graphs I'; of degree k; and order v; as a family
of graphs of a large cycle indicator, if

Cind(T';) > clogy, (v;)
for an independent constant ¢, ¢ > 0. We refer to the maximal value of ¢ satisfying the
above mentioned inequality as a speed of growth of the girth indicator for the family of
graphs T';.

3 The algebraic graphs A(n,K) over a finite commutative
ring K

In papers [18], [19] were discussed the importance of finite automata related to
the algebraic graph B(S,K) over the commutative ring K defined by the system S
of quadratic equations for the variety P, U L,, P, = K", L, = K" in the following
manner.

The point (z1,x2,...,x,) and line [y1,y2,...,ys] are connected by an edge if and
only if the following system S of relations holds.

Y2 — T2 = T1Y1,

Yj — T =Ty, by <gli<g,j=3,4,...,n.

Such graphs over fields play an important role in the theory of geometries associated
with Simple Lie Algebras (see [20] and further references).

In this paper we will use the family of graphs A(n,K). We can write the equations
as follows;
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Y2 — T2 =1UY171,
Y3 —x3 = T1Y2,
Yo — Ty = Y173, (1)
Ys — x5 = T1Y4,

with the last equation y,, — x,, = y1x,_1, in the case of n even or the last equation
Yn — Tp = T1Yn—1, in the case of n odd. So, A(n,K) is a graph of the kind B(S,K).
We use the notation A(n,q) for the graph A(n,F,) over the finite field F,.

Another example is a family of Wenger graphs W(n,K) defined by the system of
equations

Y1 — x1 = T1Y1,

Y2 — T2 = X1Y2,

Yn — Tn = T1Yn—1-

As it was proven in [21] for the fixed K = F, the family W (n,K) is the family of small
world graphs without small cycles. The stream cipher based on the Wenger graphs was
proposed in [21].

Historically, the graph A(n,K) appears as homomorphic images of the graphs
D(n,K) or CD(n,K), defined via the root system of Lie Algebra A; [20]. Positive
roots of this system can be identified with the formal pairs (4,4), (i+1,1), and (i,i+1),
where i = 1,2, ... (see [20], [12] and further references). So, we can use double indices
in the definition of our graphs. First of all we define an infinite family of graphs A(K).

Let P and L be two copies of a infinite-dimensional free module K, where K is
the field commutative ring and N is the set of positive integer numbers.The elements
of P will be called points and those of L lines. To distinguish points from lines we
use parentheses and brackets. If x € V, then (z) € P and [z] € L. It will be also
advantageous to adopt the notation for coordinates of points and lines. So, we take
the following notation

(p) = (po,l,m,l,pl,z,p2,27p2,3, <5 Piyiy Pijit1, - - )
[l] = [1170, 11’1, 1172, l272, 12,3, ey li,i7 li,i+17 .. ]

The elements of P and L can be thought as infinite ordered tuples of elements from
K, such that only a finite number of components is different from zero. We now define
an incidence structure (P, L, I) as follows. We say the point (p) is incident with the
line [I], and we write (p)I[l], if the following relations between their coordinates hold:

lii—pii =liopi-1

lijiv1 — Piit1 = ligpopn  t=1,2,....
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For each positive integer n > 2 we obtain an incidence structure (P,, Ly, I,) as
follows. P, and L,, are obtained from P and L, respectively, by simply projecting each
vector into its n initial coordinates with respect to the above order. The incidence I,
is then defined by imposing the first n—1 incidence equations and ignoring all others.
The incidence graph corresponding to the structure (P, Ly, I,,) is denoted by A(n,K).
It is clear, that A(n,K) is a |K|-regular bipartite graph of the order 2|K|", where [K]|
denotes the cardinality of ring K.

For each positive integer n > 2 we consider the standard graph homomorphism ¢,, of
(Pn, Ly, I;,) onto (Py—1,Ln—1,I,-1) defined as simple projection of each vector from
P, and L,, onto its n — 1 initial coordinates with respect to the above mentioned order.

To show how interesting are our graphs, we present them in small rings in Figs 1-4
and some of their properties in Table 1. For computer simulation in this paper there
were used the Matlab and SAGE.

Table 1. Some properties of graphs A(n,K) over finite rings K of character-
istic 2, e.g. Fy, Fg, B2 and Na, respectively.

Properties | A(2,F4) | A(2,Fs) | A(2,By) | A(2,N,) |
Order 2 128 32 32
Size 64 512 64 64
Density % %7 % %
Diameter 4 4 4 4
Girth 6 6 4 4
Degree 4 8 4 4
Regularity 4 8 4 4
The second largest eigenvalue 2 2.82842... | 2.828427... | 2.828427...
Is it connected? true true true true

Is it vertex transitive? true true true true

Is it hamiltonian? true true true true

Is it eulerian? true true true true
Vertex connectivity 4 8 4 4
Edge connectivity 4 8 4 4
Vertex cover 16 64 16 16

We define the colour function 7 for the graph A(n,K) as a projection of tuples
(p) € P, and [l] € L,, onto the first coordinate (p) or [I], respectively. So, the set of
colours is K.

Let P; , be the operator of taking the neighbour of point of colour pg; +¢

(p) = (Po,l,P1,1,p1,2,p2,27p2,3, <oy Piiy Piitls - - )
of a kind
0 =[po1+tli,liolalas, .l g, .-,
where n —1 parameters [y 1, 1,2, l22,l23, .. -, lii, lii+1, ... are computed consequently

from the equations in the definition of A(n,K). Similarly, L, ,, is the operator of taking
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Fig. 3. Graph A(2,B;) Fig. 4. Graph A(2,N2)

the neighbour of line of colour /5 o + ¢
=10l l2 2,003, b v, ..
of a kind
(p) = (li,o + 2, p1,1,P1,2:D2,2,D2,3, - - -+ Diis Piyit1s -+ -),
where n — 1 parameters P1,1, P1,2, P2,2, P2,35- -+ Pijiy Piji+1, --. A€ computed conse-
quently from the above written equations.

Notice, that P, = L, = K". So, we can think that P, and L, are bijective
operators on the n-dimensional free module K™.

We use the term multiplicative set M for the subset M without zero of the ring
K, such that © € M,y € M implies zy € M. We say that {t1,ts,...,ts} is a set of
multiplicative generators if its closure under multiplication is a multiplicative set, i. e.
it does not contain zero.

The following statement is presented in [13].
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Theorem 1. Let K be a finite commutative ring K with M C K, where M is a

multiplicative set of cardinality larger than 2. Let us assume that (¢,%s,...,t;) € K¥.
Then

(i) each nonidentical transformation Fp, 4, +,... tx.n, Which is a composition of
maps Py, n, Liym, -y Py m, Ltyn for an even number k or Py, ,,, Ly, n,
ooy Lty n, Piyn for an odd number k is a cubical map of P, onto P, and
P, onto L,, respectively.

(ii) each nonidentical transformation Fp, _trns Which is a composition of

nyti,t2,..
maps L¢y n, Prony -y Lty 1 ny Pryon for the set t1,%a,..., %, where £k is an
even number, or Ly, n, Piyn, ooy Py n, Lityn, for an odd number £ is a

cubical map of L,, onto L,, and L,, onto P,, respectively.

(iii) for nonidentical transformations Fp, i, 5. txn &0d FL ¢1 45 tpn, COITE
sponding to the string t1,to, ...t with t; +t,41 € Myi=1,2,...,k—1 and
t1 +tp € M (k is even), the order goes to infinity with the growth of n.

We say, g is a cubical map if it has the form
g = (fl(xlv' H 737”),. N ~;fn(mlv s 7xn))a
where f;(x1,...,2,) are the polynomials of n variables written as the sums of mono-

mials of the kind 27222

praray?, where iy, 2,13 € {1,2,...,n}; n1, ng, ng € {0,1,2,3},
n1 + no + nz < 3, with the coefficients from K. As we mentioned before the polynomial
equations y; = fi(x1,xo,...,x,), which are made public, are of degree 3.

From the computer simulation and from the fact, that the family of graphs A(n,q)
over the finite field F, is neither edge nor vertex transitive, when n > 5 and ¢ # 2,
there raises the following problem:

Problem 1. Is the family of graphs A(n,q) of a large girth?

Basically, just two explicit constructions of the families of graphs of a large girth for
ki =k, i1 =1,2,... (k is the independent constant) for the general case of arbitrary
large k& with the unbounded girth are known: the family of Ramanujan graphs with
¢ = 3/4 introduced by G. Margulis approximately 40 years after the appearance of
Erdés probabilistic construction (see [22]); the family of algebraic graphs D(n, q) with
¢ = 1 defined over the arbitrary finite field F,, their connected components C'D(n, q)
with ¢ = 3/4 and regular version of polarity graphs for D(n, q) or CD(n, q) introduced
by F. Lazebnik, V. A. Ustimenko and A. J. Woldar (see [23]). In 1995 A. Lubotzky
[24] presented the following known problem which is still open.

Problem 2. Does a family of graphs of large girth with ¢ > 4/3 exist?
V. Ustimenko showed the following interesting result:

Theorem 2. [25] The family of A(n,q) with ¢ # 2 is the family of graphs of large
cycle indicator with ¢ = 2.
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The family A(n,q) is the family of graphs of large cycle indicator for which the
maximal possible speed of growth ¢ = 2. The family of algebraic graphs A(n,q) is
not edge transitive, then if Problem 1 had a positive solution, it would have to be
¢ < 2 and therefore would be an example of the family of algebraic graphs such that
Cind(A(n,q)) > g(A(n.q)).

In the case of K = IF; Theorem 3 is the corollary of Theorem 1.

Theorem 3. [25] The family of graphs A(n,q), when ¢ # 2, is the family of small
world graphs.

Let D A(n,K) be the double directed graphs of the bipartite graphs A(K). The vertex
set for the graph D A(n,K) consists of two copies F; and F» of the edge set for A(n, K).
We have the arc e of the kind ([I'], (p')) — [[I?], (p?)], if and only if (p') = (p?) and
[I'] # [I?]. Let us assume that the colour p(e) of the arc e is Ij ; — I3 o. Recall, that we
have the arc e’ of kind [[I?], (p?)] — ([I}], (p1)), if and only if [I}] = [I?] and (p') # (p?).
Let us assume that the colour p(e’) of arc ¢’ is pi o — p .

We consider two families of bijective nonlinear polynomial transformations of the
kind:

Aﬁ)t,nJrl P = R

L py1 s Fo — F1, X
n=3,4,...,t € K. It is easy to see that F; = F» = K"T!, so we may treat Py g1
and fft,n+1 as automorphisms of KZ}“. Of course, I:t,n_s_l(v) is the operator of taking
the neighbour of v € F3 of colour ¢ belonging to F» and Pt7n+1(u) is the operator of
taking the neighbour of u € F; of colour ¢ belonging to Fa.

The following statement is equivalent to the previous theorem.

Theorem 4. [13] Let K be a finite commutative ring K with M C K, where M is a
multiplicative set of cardinality larger than 2. Let us assume that (¢,%,...,t;) € K¥.
Then

(i) each nonidentical transformation F Fi it ot which is a composition of

ta,..
maps Ptl N1, LtQ ntly - - Ptk Loty Ltk n+1 for an even number k or Ptl 1,
Ltz,n_H, .. Ptk Lt Ltk n+1 for an odd number k is a cubical map of F;

onto Fi and F1 onto Fo, respectlvely

(ii) each nonidentical transformation F Fosty ta,osti s which is a composition of
maps Lt1 ntls th,_H, .. Ltk Lt Ptk n+1 for an even number k£ or com-
position of maps Ltl ntls Pt2 bl - Ptk_l’n+1, LA,tk,n+1 for an odd number
k is a cubical map of F5 onto F» and Fo onto Fi, respectively.

(iii) for nonidentical transformations thtl’tz,_“’tk,n_i'_l and FFz,tl,tz,--<7tk,n+1 cor-
responding to the string ¢1,to,...,t; with ¢; +t;01 e M, i=1,2, ... k—1
and t1 + t, € M (k is even), the order goes to infinity with the growth of n.
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4 A group of automorphisms of an infinite graph over the
commutative ring K

Let us introduce a group of automorphisms of infinite graph A(K) over the commu-
tative ring K:
G =< §"’,£E’1)0), (1) ffj’j), i=23,... abec,deK>
generated by the maps £%, 6?1,0)’ 551’1) , fé,j) defined below.
The map £* changes every coordinate of a point (p) and a line [I] as follows:
P01 = aPo1, Pii — @*'Pii, Diig1 — a* T piig, =12,
lio —alio, Lii — a®l4, L1 — a® 40, i=1,2,....

The map fé’l 0) changes every coordinate of a point (p) and a line [I] as follows:

P01 —* P01, Pii = Pii—bPi—1i, Piit1 = Piiv1, = 1,2,...
1170 — 1170 + b, llﬂ — li,i7 li,i-l-l — li,i-&-l, = ].7 2, e

The map 5(0171) changes every coordinate of a point (p) and a line [I] as follows:
Do,1 — Po,1, P11 — P11+ C P2 — P12 — CPo1
Dii = Pii — CPi—1,i—1 DPijit1 — Dii41 — CDi—1,4, ©=2,3,...
Lio—=lio, han—=hi+e lia—li2,
Lig—=lii—cli—ii—1, iivn = L1 —cliciy, ©=2,3,...

The map f&j) changes every coordinate of a point (p) and a line [I] as follows:
Do,1 = Po,1, Pii — Diis Piitl — Piit1, t=12,...,5—1,
Pij — Pij T d, Djjt1 — Pjj+1— dpo,
Pk = Pkk — APk—jk—j, DPkk+1 — Pek+1 —dpo1, k=j+1,7+2,...
lio—=lio, Lo —liiliirr — liirr, 1=1,2,...,5 -1,
Lig =15 +d, L= i,
e = e — dlg—j—j, U ks = g1, k=J7+1,74+2,....

Automorphism of the infinite simple graph A(K), listed above, can be naturally
considered as an automorphism of double directed graph DA(K). Such maps generate
a group

R R G:A< fa’§€170)7 5(01’1)’ 667])7 j:2537"'7 a,b,c€K>
where £%, §é’1 0y’ f(cl 1) 521]. ;) are given by the rules

([, )" = ([0, (), 1, P = ([UE", (),

t

([, ()% = (%, (p)%%), [, ())& = (0%, (p)&))

where « € {(0,1), (m,m),m =1,2,...}, and ¢ is equal to b, ¢ and d, respectively.



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 18/01/2026 09:56:31

Urszula Romariczuk, Vasyl Ustimenko

5 Boolean transformation corresponding to the graph A(n,K).

For simplicity we use the definition of the graph A(n,K) given by the set of equations
(1) over any commutative ring K. Its clear that in the case K is a finite commuta-
tive ring of characteristic 2, the maps Fp, +, » and Fr, 4 , are the bijective Boolean
transformations of the n-dimensional free module K”. We have

Frpyn((@1, @,y 20)) = Poy (21,02, 0)) = [0 (@1), ooy S35 (@ w)

where
(1) _
f1t1( 1) =1+t
2
f2 th (-1'1;372) =xo + ] + 177,
2
fgs_ul (T1,22,. .., Tas—1) = Tas—1 + T1T25—2 + T1Tas—3 + 11717253,
(1)
fzs,t1($179€27 co T2s) = Tos + T1Tos—1 + t1Tos—1

for s =2,3,.. L”J If n is odd we need to add that

_ 2
fn,,tl ($17 DRI xn) = Tn + T1Tp—-1 + T1Tp—2 + tlxlxn—2~
And for the transformation Fr, 4, we obtain

1 1
Fr (w192, yn]) = Lign (1,02, yal) = (080 1) g (01 9m),

where

1
g () =y1 + 15,

1
9;2/1 (y1,92) = y2 — ¥5 — thun,
1
gés)—u; (Y1, Y25 - - - Y25—1) = Y2s—1 — Y1Y2s—2 — L1252,

1
gés?t/l (Y1, Y20 - Y2s) = Y2s — Y1¥Y2s—1 + Y1Y2s—2 + t1Y1Y25—2
for s =2,3,..., L%J If n is odd we need to add that

Iy, W15+ Yns 1) = Y = Y1Yn—1 — Hiyn—1-
Of course, |z] = floor(z) is the largest integer, not larger than x. So, we have:

1 i=1 Li=1
m )2 i=2 W _) 2 i=2
degfin =0 3 j_95—1 9 T\ 9 o951
2 i=2s, 3 1=2s,

where s = 2,3,... L J If n is odd, then degf +, =3 and deggiz, =2.
The compositions Fpy, ¢, n, Frt 4,0 Of the maps Py, 5, Lt, n and Ly n Py, re-

spectively, are the bijective transformation on the n-dimensional free module K. We
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have
FP7t17t27n((561,1’2, ceey mn)) = Ptl,nLtQm((xlvaa ceey xn)) =
2 2 2
= (fl(,t)l,tz (‘Tl)v fl(,t)l,tz (xlv 552)7 sy 7(7,,t)1,t2 (irlv ceey xn))
where

fl(,zt)l,tz (1) = o1 +t1 + t2,

f2(,2t)1,t2 (z1,20) = xo — (t1 + t2) (21 + t1),

féill’tl’t2 (x1,29,...,Z2s—1) = Tas—1 — (t1 + t2)[T2s—2 + T1T25—3 + t1Z25_3),
fz(i)tlxtz (1,2, ..., Tas) = Tos + (t1 + t2) (21 + t1)[T25—2 + T1T25—3 + t1T24—3]

for s =2,3,..., L%J If n is odd we need add that

FO (@) =2 — (b + ) [Tt + 212 + 1T o).

»li,ta

And for the transformation Fp s 4 , of the composition of maps we obtain

FL,tl,tQ,n((xthv cee 7mn)) = Lt’l,nPt’Q,n([xla T2,y ... 71'77.]) =
2 2 2
= [(952’17,5’2 (y1)7g§7t)’1 (y17y2)7 s 795177)5'1,té (Zl/1> cee y’n))7]
where
Gt (1) =y + 11 + 15,

B, 2 9) = 31 (8 15) o + 1)
Iy, (Y1 Y2, Y3, 9a) = ya + (B +5)(ys — yayz — thy2),
ggs_l’tll’tlz (Y1, Y25+ s Y25-1) = Y2s—1 + (81 +5) (Y1 + 1) [Y2s—3 — Y1y2s—a — t1Y25-4],

#(
G0, (U1, 02) = 2 + () +5) (v +11),

(

(

ggs,%% (Y1, Y20 - Y2s) = y2s + (1) +15)[Y2s—1 — Y1Y2s—a — t1Y2s-2]

fors:374,...7t J If n is odd we need add that

n
2

2
g;ﬂ)f,pt/z (xla cees Ty tl) = Un + (tll + té)(yl + t/l)[yTLfZ —Y1Yn-3 — tllyn73]
So, we have
1 =1 1 =12
@_) 1 i=2 2 ) 2 i=34
degfi™ =9 9 i_o9s_1 9897 = 3 ;9 1
3 i=2s, 2 i=2r,

where s = 2,3,...,| 2| and r = 3,4,..., |2|. If n is odd, then degf"} ,, = 2 and

(2) _
degg”,t,uté = 3.

Mathematical induction can be used to prove the following statement.
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Theorem 5. Let K be a finite commutative ring K of characteristic 2 with M C K,
where M is a multiplicative set of cardinality larger than 2. Let us assume that
t = (t1,t2,...,t) € KF. Then

(i) each nonidentical Boolean transformation of the kind
Frp i = (F8) @), 18 (@1, a), o, £ @, w))

has
1 i=1, 1 i=1,
2 i=2 k) 1 i=2
d (k) - ’ d ( = ’
eefis 3 i=2s—1, eefit 2 =241,
2 i=2s, k is odd 3 i=2s, k is even
where s = 2,3,...,|2]. If n is odd, then degf) = 3 and degf?) = 2,
respectively.
(ii) each nonidentical Boolean transformation of a kind
k k k
Fren = (917 (1), 957 (@1,22), ... g0 (21, 20)
has
1 i=1, 1 i=1,2
m_) 2 1=2 o ) 2 i=3.4,
deggi™ =9 9 ;o5 1, deggi” =9 5 i _or_1,
3 i=2s, k is odd 2 1=2r k is even

where s = 2,3,..., 2] and r = 3,4,..., | 2]. If n is odd, then degg')) = 2
and degg,(fz = 3, respectively.

(iii) for the nonidentical Boolean transformations Fp, iy .ts.....tx.ns Lo t1,ta,.. tems
with ¢; + t;41 € M, t1 +ti, € M (k is even), the order goes to infinity with
the growth of n.

(iv) the inverse maps of nonidentical Boolean transformations Fp, 4, ¢,.... t,.n and
Fr otito,temare Fp oy _popand Fr 4 4 .. —+ n for keven
and Fr, 4, —tx 1otz and Fp, 4 4 o 4 5 for k odd, respectively.

(v) each nonidentical Boolean transformation F]—'l’t17t2’.”7tk’n, Ff27tl’t27”_’tk7n is a
cubical map, and if k iseven and t;+t;41 € M,i=1,2,... k=1, t1+t; € M,
then the order of these maps goes to infinity with the growth of n,

(vi) the inverse maps of nonidentical Boolean transformations F, ¢\t temt1
and Ffz,tl,t2,...,tk,n+1 are ﬁJ‘H,*tm*tk—hm,*tl,n‘kl and F]"z,*tk,*tk—hm,*tlﬂﬂrl
for k even and Fr, 4, 1, 1. —tymi1 and Fr, 4o 4 14 e for kodd.

Proposition 1. Let be the commutative ring, t = (t1,ts,...,t;) € K*. Then
(i) for the nonidentical Boolean transformations Fpy, iy, tx.ns FLoty tar . tnm
and any automorphism ¢ € G we have
CEFp, tyt0,tom = FPy oty ot €
CEL, t1,ta,ten = FLo, 180, tr .0 G,
(ii) for the nonidentical Boolean transformations F’]—‘htl,tz’_”,tk’n_i'_l, F]—‘z,thtz,...,tk,n—&-l
and any automorphism ¢ € G we have
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CEFv b ot = EFy bt n 1§
CF]‘—Q,tl,tQ,...,tk,’rL-‘rl = F.7:27t17t2,...7tk,77.+1<'

6 Application of algebraic graphs in Cryptography

In this section we present our multivariate public key cryptosystem using the results
from the previous sections. Our cryptosystem will work over the general finite commu-
tative ring K. The plainspace of the algorithm is K™, the graph theoretical encryption
corresponds to a path on the bipartite graph A(n,K) with the partition sets, which
are isomorphic to K”. We can identify the graph A(n,K) with the corresponding sym-
metric binary relation on the vertex set K™ UK"™. Each neighbour of the point (line) v
can be obtained as u = Fp, 1 »n(v) (v = FL, +.n,(v), respectively), t € K. So, we put the
colour ¢ on the arrow between v and u and the colour —t on the reverse arrow between
u and v.

For simplicity we assume that the encryption path has even length and the starting
vertex is always a point. If the path corresponds to the sequence of colours t1,ts, ..., g
and the starting point is v belonging to P, (L, respectively) , then the ending point can
be computed as Fp, ¢, to.....t, (V) ( FL,, t1 ts,....t, (V), respectively). We will treat v as a
variable (potentially plaintext), using the term password for the sequence (t1,ta, .. .1t)
and refering to the map v — Fp, 4, 15,4, (V) (v = FL, 41 ,t,...t, (V), respectively) as
the encryption map that is based on a simple graph.

The slightly modified idea is to use the directed graph DA(n,K). Recall that the
vertex set of this graph is K"Tt U K"t Let vertex v be an element of F; ( JFo,
respectively) then v and u are connected by arrow if and only if u = Pr, ;,41(v)
(u= i—/f2’t’n+1(/l)), respectively) for uniquely determined ¢ € K. We put the colour ¢ for
the arrow from v to u. If the path of even length corresponds to the sequence of colours
ty,to,...,t; and the starting vertex is v from F; (Fo, respectively), then the ending
point can be computed as Fz, 1, 1,10 (V) (FFyty 4.0, (v), respectively). We refer to
the map v — F]"l,tlyt2,~~,tk (v) (v— F}'%tlytz’“"tk (v) , respectively) as the encryption
map that is based on the directed graph.

Let K be a finite commutative ring K with M C K, where M is a multiplicative set
of cardinality larger than 2.

Private-key algorithms. We assume that the two users Alice and Bob share
a common password for the simple graph based encryption which is the sequence of
colour ty,tg,...,ts, where t;;1 —t; € M,i=1,...,s—1 and two affine transformations
71, T2 from the affine group AGL(n,K) together with the linear automorphism ¢ of
the graph. Then, they encrypt the plaintext m and obtain the ciphertext c as follows:
c=T1CFp, t1.ts,. t.nT2(m)

: . R | 1 -1
The decryption process is as follows: m =7, " Fp"\ (7' (o).
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IfK=F,and k < M, then different keys produce distinct ciphertexts from the
chosen plaintext. The same property holds in a more general case of A(n,K), where
K is a finite commutative ring and ¢; + t;41, ¢ = 1,2, ... form a set of multiplicative
generators, and k < an, where the constant o depends on the ring K. As follows from
Theorem 1 in the case of o = 71 ! the order of the encryption map grows to infinity
with the growth of parameter n.

The graph A(n,q), ¢ # 2 is connected. It means that in the case K = F, for the
arbitrary pair v € Fy and u € Fy and the fixed pair 71, 72 there is a password 1,
ta, ..., tg, such that the corresponding encryption map sends v to u. A small world
property holds for A(n, ¢), it means that we can transform v to u with a rather short
password of length % of kind Sn + «, where § and « are the constants.

In the above described algorithm we can change the simple graph based encryption
map for the directed graph based map v — Fr, 4, 1. 0. (V) (0 = Frysy o in (),
respectively). In the case of 75 = 7 1 and the password t1,to, ...t of multiplicative
generators the order of encryption map will grow with the growth of n.

Both algorithms (stream ciphers) have good mixing properties because the families
of graphs A(n,q) are good expanders. In fact, computer experiments demonstrate
existence of a large spectral gap in the case of A(n, K) where K is a small commutative
ring. So, change of one character in the plaintext string or in the password leads to
the change of 97 percents of symbols of the corresponding ciphertext (see Theorems 1
and 5).

Public-key algorithm. We assume that the password ¢1,to, ... tg, t; +t;41 € M
for i = 1,2,.... Alice takes 7, 7o, the sequence tq,to,...,t; of elements from the
commutative ring K, authomorphism ¢ € G of graph A(n,K). She stores this secret
information in a secure way and computes the map

fA = TlCFPn,tl,tg,...,tk,nTZ

in a symbolic way (she can use the packages "Maple" , "Mathematica" or the tools of
Computer Algebra for specialists). She gets a public rule, which is a cubical map:
€Ty — f1($1,$2, L ,a:n),
To —r f2(x17x27 ey l‘n),
.
Ty = fulx1, 29, .. 20),
where f; are the multivariable polynomials from K[z, z2, . .., x,]. If she uses the string

t1,to,...,t; and the affine maps 7, 7o, such that t; +¢;,41, 7 =1,2,...,k — 1 are the
multiplicative generators and 7 = 7, ! then the order of cubical transformation is
grows with the growth of n.

In the case when k is less than half of n + 4 different strings ¢y, to, ..., tx lead to
distinct symbolic public rules.

Symbolic Diffie-Hellman algorithm. Suppose Alice and Bob want to agree with
a key Kap.
1. Alice uses the information on the graph A(n,K). She picks up the string of ring
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elements t1,t9,...,tk, such that t;41 —¢;, i =1,...,k — 1 and t; — ¢; from the set of
multiplicative generators. She chooses the linear automorphism ¢ of the graph A(n, K)
and the invertible affine transformation 7 of the free module K.

The first step Alice computes symbolically f = TCFPMtl’tz,“"tk}nT_l. She sends the

cubical symbolic map f to Bob. The next step is for Alice to pick a secret integer n
that she does not reveal to anyone, while at the same time Bob picks an integer np
that he keeps secret.
2. Alice and Bob use their secret integers (n4 and np, respectively) to compute A =
f"4 and B = f"B respectively. Recall, that they use the composition of multivariable
map f with itself. After that they exchange these computed cubical transformations.
3. Finally, Alice and Bob again use their secret integers to compute K p = B™4 =
(fre)'s = frans and Kap = A" = (f4)"? = frans respectively.

Security of the cryptographic algorithms usage is based on the complexity of hard
discrete logarithm problem for the group generated by cubical transformations defined
by graphs A(n,K) (see Theorems 1 and 5).

Of course, in these algorithms (public key rule and key exchange protocol) we can
change the simple graph based map for the directed graph based encryption transfor-
mation v = Fz, ¢, 4y (V) (0= Fxy 4,00, 1. (0), respectively) acting on the module
K"*!. In the case of 75 = 7, ! and the password ti,ts, ...t of multiplicative genera-
tors, the order of the encryption map will grow with the growth of n. If k < (n+4)/2,
then different sequences of multiplicative generators produce distinct symbolic maps.

7 On the hidden ring multivariate cryptography

In the case of the ring K = F3" from the class of commutative rings of characteristic
2 defined in Section 1, each map of K” into itself can be treated as a cubical map of the
vector space FY to itself. So the graph based symbolic map F in the previous section
(Fpy 41t tims FLotyitontens EFty oo OF F5y o) 04 ) can be written in the

form
T —>f1(x1,a:2,...,xN),
T 4)f2(x1,.’1:2,...7$1\[),
ry = fy(z1,20,...,2N),

where N = mn in the case of the use of A(n,K) based transformation and N = m(n+1)
in the case of the use of DA(n,K).

So, we can consider analogy of algorithms from the previous section over Fs. In the
case of private-key algorithms and public-key algorithms we will combine the written
above cubical bijective map F of FY with two invertible affine transformations 71 and 7
of N-dimensional vector space over Fy. Notice that the number of options to choose 7
is 2V (2N=1) (2N —2) (2N —22) ... (2V — 2N 1), Recall, that the choice of 75 = 7, 71 will
guarantee the growth of the order of encryption map with the growth of parameter N.
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We can combine 7 with the linear automorphism ¢ of the graph A(n,K) or DA(n,K).
Notice that ¢ will be a linear bijective map of the vector space FY to itself.

Notice that all nonidentical powers of the encryption map H = 7,(Fr ! are the
cubical Boolean maps. So this can be used for the Symbolic Diffie-Hellman algorithm.
The correspondents, for example may "compress" the collision public rule Z = H*aFs

of the kind x; — 21,20 — 29,...,2ny — zn (composition of kakp copies of H) by
the application of differential D = d/d,, + d/d;,+,...,+d/d,, three times to each
component of the vector (z1, z2,...,2n) to get a numerical string of the length nm or

(n+ 1)m over the field Fs.

8 Conclusions

The modified method allows to hide a ring K in the definition of graph A(n,K).
After you apply, the traces of graph disappear. We have one of the first examples of
multivariate cryptosystem over the ring with zero divisors. The case of the Boolean
ring B,, is especially important because as the execution is very fast. It is possible to
use logic gates and create a hardware device producing an encryption map.
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