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Abstract – Cryptographic hash functions are fundamental primitives in modern cryptography and

have many security applications (data integrity checking, cryptographic protocols, digital signatures,

pseudo random number generators etc.). At the same time novel hash functions are designed (for

instance in the framework of the SHA-3 contest organized by the National Institute of Standards

and Technology (NIST)), the cryptanalysts exhibit a set of statistical metrics (propagation criterion,

frequency analysis etc.) able to assert the quality of new proposals. Also, rules to design "good"

hash functions are now known and are followed in every reasonable proposal of a new hash scheme.

This article investigates the ways to build on this experiment and those metrics to generate automat-

ically compression functions by means of Evolutionary Algorithms (EAs). Such functions are at the

heart of the construction of iterative hash schemes and it is therefore crucial for them to hold good

properties. Actually, the idea to use nature-inspired heuristics for the design of such cryptographic

primitives is not new: this approach has been successfully applied in several previous works, typically

using the Genetic Programming (GP) heuristic [1]. Here, we exploit a hybrid meta-heuristic for the

evolutionary process called Gene Expression Programming (GEP) [2] that appeared far more efficient

computationally speaking compared to the GP paradigm used in the previous papers. In this context,

the GEPHashSearch framework is presented. As it is still a work in progress, this article focuses on

the design aspects of this framework (individuals definitions, fitness objectives etc.) rather than on

complete implementation details and validation results. Note that we propose to tackle the generation

of compression functions as a multi-objective optimization problem in order to identify the Pareto

front i.e. the set of non-dominated functions over the four fitness criteria considered. If this goal is

not yet reached, the first experimental results in a mono-objective context are promising and open the

perspective of fruitful contributions to the cryptographic community.
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38 Hash function generation by means of Gene Expression...

1 Introduction

Cryptographic hash functions are fundamental primitives in modern cryptography

and are of crucial importance for our digital life. In particular, they are used in

many security applications (data integrity checking, cryptographic protocols, digital

signatures, pseudo random number generator etc.). Formally speaking, a hash function

H : {0, 1}∗ −→ {0, 1}n maps a binary string of arbitrary length into a binary string

of some fixed length n (often called footprint) with at least the compression and ease

of computation properties [3]. If hash functions satisfy the additional requirements

such as preimage resistance, second preimage resistance and most importantly collision

resilience, they are a very powerful tool in the design of techniques to protect the

authenticity of information. Recent advances in hash functions cryptanalysis permitted

successful attacks against the major cryptographic hash function in use, including

the well-known MD5 [4] and SHA-1 [5] hash schemes which are therefore no longer

considered as secured. In response, the National Institute of Standards and Technology

(NIST) recommended to move to the SHA-2 family of hash functions (SHA-224, SHA-

256, SHA-384 and SHA-512) and the SHA-3 contest has been launched1 to find new

schemes. At the time of writing, the third and last round of this contest has been

released and permits to exhibit five candidates for the next SHA-3 standard. At the

same time novel hash functions are designed (especially in the framework of the SHA-3

contest), the cryptanalysts exhibit a set of statistical metrics (propagation criterion,

frequency analysis etc.) able to assert the quality of new proposals.

This article investigates the ways to build on this experiment and those metrics to

generate automatically the compression functions by means of Evolutionary Algorithm

(EA). Such functions are at the heart of the construction of iterative hash schemes and it

is therefore crucial for them to hold good properties. Actually, the idea to use nature-

inspired heuristics for the design of such cryptographic primitives is not new: this

approach has been successfully applied in several previous works, typically using the

GP heuristic [1]. Here, we exploit a hybrid meta-heuristic for the evolutionary process

called GEP [2] that appeared far more efficient computationally speaking compared to

the GP paradigm used in the previous papers. In this context, the GEPHashSearch

framework is presented.

This paper is organized as follows: section 2 presents the background of this work

(cryptographic hash functions, EAs) and reviews the related works. Section 3 provides

a brief overview of the Gene Expression Programming (GEP) heuristic while section 4

holds the main contribution of this paper. It details GEPHashSearch, a GEP–based

framework to build the compression functions with reasonably good properties. This is

still a work in progress such that section 5 remains limited. Yet the first experimental

results which are proposed there are still promising. Finally, section 6 concludes the

paper and provides the future directions.

1See http://csrc.nist.gov/groups/ST/hash/sha-3/.
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2 Context & Motivations

2.1 Cryptographic hash functions

Cryptographic hash functions are fundamental primitives in modern cryptography

and have many security applications (data integrity checking, cryptographic protocols,

digital signatures, pseudo random number generators etc.). Formally speaking, a hash

function H : {0, 1}∗ −→ {0, 1}n maps a binary string of arbitrary length into a binary

string of some fixed length n (often called footprint or fingerprint) with at least the

compression and ease of computation properties [3].
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To be of cryptographic use, hash functions must satisfy the additional properties,

such as preimage resistance, second preimage resistance and most importantly collision

resilience. One talks about a collision between x and x′ when x �= x′ and H(x) = H(x′).

Considering that the input of a hash function can be of any size (in particular > n),

collisions are unavoidable. Knowing that if y is such that y = H(x), then x is called

the preimage of y, the above mentioned properties can be defined as follows2:

• Preimage resistance: given y, one can not find - in reasonable time - some

x such that y = H(x). Given y, 2n computations are at most required for

finding x.

• Second preimage resistance: given x, one can not find - in reasonable

time - x′ �= x such that H(x) = H(x′). As above, given x, 2n evaluations are

at most required for finding y.

• Collision resistance: one can not find in reasonable time x and x′ such that

H(x) = H(x′). Note that there is a free choice of both inputs. There are 2
n
2

evaluations required to find a valid couple (x, x′) (This result comes from the

Birthday paradox).

The additional properties are often desired:

• non-correlation: input and output bits should not be correlated. Related to

this, an avalanche effect property similar to the one of good block ciphers is

required: modification of a single bit in the input should change at least half

2In these definitions, reasonable means that there exists no attack that operate faster than the

exhaustive or brute-force search among all possible inputs.
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40 Hash function generation by means of Gene Expression...

of the output bits. This rules out hash functions for which preimage resis-

tance fails to imply the 2nd-preimage resistance simply due to the function

effectively ignoring a subset of input bits.

• near-collision resistance: it should be hard to find any two inputs (x, x′) such

that H(x) and H(x′) differ in only a small number of bits.

• partial-preimage resistance or local one-wayness. It should be as difficult to

recover any substring as to recover the entire input. Moreover, even if part of

the input is known, it should be difficult to find the remainder (e.g., if t input

bits remain unknown, it should take on the average 2t−1 hash operations to

find these bits.)

In practice, most arbitrary-length hash functions are built in the iterative process

based on a fixed-length compression function or a block cipher. For instance, SHA-1 [5],

MD5[4], as well as all the other hash functions we know, are constructed by applying

some variant of the Merkle-Damgård construction to an underlying compression func-

tion h : {0, 1}b ×{0, 1}n −→ {0, 1}n (see Figure 2). The general model for the iterated

hash functions operates as follows: the hash input x of the arbitrary finite length is first

split into fixed-sized chunks x1, x2, . . . xL ∈ {0, 1}b which gives the expanded message

(x1, . . . , xL). An iterated hash H iterates the underlying compression function h as

follows:

h0 = IV ; {hi = h(hi−1, xi)}1≤i≤L ; H(x) = g(hL). (1)

hi−1 serves as the n-bit chaining variable between the stage i−1 and the stage i. h0 is

a predefined starting value or initializing value (IV). An optional output transformation

g is used in a final step to map the n-bit chaining variable to an n-bit result g(hL); g

is often the identity mapping g(hL) = hL. The one or two last chunks of the expanded

message are padded, and the last chunk xL may contain the additional information,

such as the length ‖x‖ of the non-expanded message x.

Incremental hashing. Alternative constructions make use of incremental hashing :

The idea behind the method presented in [6] is that if one changes a message and one

has already computed the hash function of the (unchanged) message, one only needs

to recompute the changed part in order to obtain the new hash value. This is done

as follows: each chunk xi of the message x = x1x2 . . . xL is prefixed by a block index.

Then the hash value yi = h(〈i〉 .xi) is computed and the output is combined via a

special operation: y = y1 ⊙ y2 ⊙ ...⊙ yL.

The computation of h can be done by any standard hash function as soon as it is col-

lision free. With this technique the computation of the hash value can be parallelized,

therefore it is also possible to recompute only parts xi of the message. In all cases,

a good choice for the combining operation ⊙ is crucial. A first natural thought is to

use the bitwise XOR, but it was shown that it is insecure [6]. Using multiplication or

addition in a group Z∗
p (multiplication and addition modulo p) is generally seen as a

good choice for the combining operation (in this case, the incremental hashing scheme

is called MuHASH and AddHASH where, for security reasons, |p| should have at least
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512 or 1024 bits, making the final hash value of the same length. If a smaller length is

required, the output y can be hashed with a standard collision-free hash function (For

instance, applying SHA-1 to MuHASH leads to a 160 bit fingerprint). The security

depends on the discrete logarithm problem in the underlying group. As we will see in

the sequel, the EA–based heuristic presented in this paper derives from the incremen-

tal hashing scheme in the way linking functions are used to connect the genes of the

GEPHashSearch individuals.

2.2 Evolutionary Algorithms (EA)

EA is a class of solving techniques based on the Darwinian theory of evolution [7]

which involves the search of a population Xt of solutions. Members of the population are

feasible solutions and called individuals. Each iteration of an EA involves a competitive

selection that weeds out poor solutions through the evaluation of a fitness value that

indicates the quality of the individual as a solution to the problem. The evolutionary

process involves at each generation a set of stochastic operators that are applied on

the individuals, typically recombination (or cross-over) and mutation. Execution of

simple EA requires high computational resources in the case of non-trivial problems,

in particular the evaluation of the population is often the costliest operation in EAs.

There exists many useful models of EAs, yet a pseudo-code of a general execution

scheme is provided in Algorithm 1.

Algorithm 1. General scheme of an EA in the pseudo-code.

t ← 0;

Generation(Xt); // generate the initial population

Evaluation(Xt); // evaluate population

while Stopping criteria not satisfied

X̂t ← ParentsSelection(Xt); // select parents

X ′
t ← Modification(X̂t); // cross-over + mutation

Evaluation(X ′
t); // evaluate offspring

t ← t+ 1;

end while

2.3 Hash function generation by means of EAs

The idea to use nature-inspired heuristics for the design of cryptographic primitives

and in particular hash functions is not new: this approach has been successfully applied

in several previous works as reviewed in [8]. This probably started to attract attention

of the researchers in the 90’s with the Ph.D. Thesis of Clark [9] where different heuristic

techniques (genetic algorithms, simulated annealing, and tabu search) were compared

to break classical cryptosystems. In particular, the use of simulated annealing was

proposed in the cryptanalysis of a certain class of stream ciphers. As mentioned in [8],

Millan, Clark, and Dawson then additionally proposed a model for the generation of

the Boolean functions with excellent cryptographic applications, thus starting a very
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42 Hash function generation by means of Gene Expression...

fruitful research line and showing these techniques could also help in cryptography, not

only cryptanalysis. At the level of hash functions, the work of Daemen & al. in [10]

opens the research area for the generation of hash functions by means of evolutionary

technics (in this paper, a Cellular Automata (CA)) as initiated by the seminal work

of Damgård in [11]. For instance in [12], an evolutionary technique was applied for

the design of a digital circuit which computes a simple hashing function. Based on the

FPGA architecture, the circuit was synthesized automatically through simulated evo-

lution. More recently in [13], the authors used Genetic Algorithms (GAs) to construct

Universal Hash Functions to efficiently hash a given set of keys. The Hash Functions

generated in this way provide a lesser number of collisions as compared to selecting them

randomly from a family of Universal Hash Functions. The proposed algorithm could

be used in the scenarios where the input distribution of keys frequently changes and

the hash function needs to be modified often to rehash the values to reduce collisions.

Finally, the use of the Genetic Programming (GP) heuristic was successfully applied

in [14] for the automated design of cryptographic block ciphers and hash functions. In

this article, we extend the work proposed in [14] by exploiting a hybrid meta-heuristic

for the evolutionary process called GEP [2] that appeared far more efficient computa-

tionally speaking compared to the GP paradigm used in the previous papers. The next

section details this heuristic. Also, while the work presented in [14] focuses on a single

objective (the avalanche effect captured by the propagation criteria PCk(t) presented

in §4.1), we add a set of complementary objectives to direct the traversal of the search

space toward solutions which not only optimize the propagation criteria but also the

randomness, the complexity and the efficiency of the evolved compression functions.

3 Gene Expression Programming (GEP) heuristic

Among different classes of EAs, John Koza in [1] proposed to use GA in the so called

Genetic Programming (GP) where the individuals represent a function or a program.

Gene Expression Programming (GEP) was proposed by Cândida Ferreira in [2] as

an extension of GP. As an EA, GEP uses the populations of individuals, selects the

individuals according to their fitness, and introduces genetic variation using one or

more genetic operators. The fundamental difference between these three classes of

EAs resides in the nature of the individuals:

• in GAs the individuals are symbolic strings of fixed length (chromosomes);

• in GP the individuals are nonlinear entities of different sizes and shapes called

parse trees that represent a program (see Fig. 3);

• in GEP, the individuals are also nonlinear entities of different sizes and shapes

(expression trees), but these complex entities are encoded as simple strings

of the fixed length (chromosomes).

This avoids possible divergence in the size of the parse trees that can be observed

within GP and represents the main weakness of this approach: a large number of

computational resources can be used to edit huge illegal structures. On the contrary,
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the chromosomes in GEP are simple entities: linear, compact, relatively small, easy

to manipulate genetically (replicate, mutate, recombine, transpose, etc.). In addition,

any modification made in the genome always results in syntactically correct expression

trees or programs. Hence, GEP has been chosen as the base of heuristic for finding

good candidates for hash functions (or more precisely, compression functions).

Overview. In GEP, the genome or chromosome consists of a linear, symbolic string

of the fixed length composed of one or more genes. This string contains two kinds

of symbols: functions (which are typically elements from the set ∆f ) and terminals

(belonging to a set ∆term). Each gene represents a relation between the function

and one can represent it as a tree called Expression Tree (ET). The string reflects,

in fact, the traversal of the tree from the left to the right and from the top to the

bottom, which is neither the prefix nor the postfix traversal sometimes found in the

GP implementations. For instance, let us assume that ∆f = {√,+,−, ∗} and ∆term =

{a, b, c}. Fig. 3 provides the gene and the expression tree associated to the algebraic

expression (a+ b) ∗
√
b− c. Here, the gene starts at position 0 and ends at position 7.

7

+

a b

6
b c

*

Expression Tree

+* a b − b c

−

Function:

Gene

0 1 2 3 4 5

(a + b) ∗
√
b− c √

√

Fig. 3. Gene and expression tree associated to the function (a+ b) ∗
√
b− c

In fact, the genes in GEP are composed of a head (containing both functions and

terminals) together with a tail containing only terminals. Let h (resp. t) be the size

of the head (resp. the tail). Then GEP encodes each gene with a string of the length

h + t. More precisely, let amax be the maximum number of arguments taken by the

functions in ∆f , then t = h(amax−1)+1. Note that in the previous example, amax = 2

meaning that t = h + 1 and each gene is encoded with a string of the length 2h + 1.

For instance, let us take h = 7. Then the complete gene considered previously could

be written in GEP as depicted in Fig. 4.

In this case, the expression tree finishes at position 7 whereas the gene ends at

position 14. If a mutation occurs at position 4 that changes ’b’ into ’+’, then the

gene presented in Fig. 5 is obtained, where the corresponding expression tree is also

provided. It now finishes at position 9. So despite its fixed length, each gene has the

potential to code for the expression trees of different sizes and shapes.

The way of cross-over operation is similar. Finally, GEP chromosomes are usually

composed of more than one gene of equal length. For each problem or run, the number

of genes, as well as the length of the head, is chosen. Each gene then codes the sub-ET
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0 head 6 7 tail 14

* + √ a b – b c b a a a b c b

+

a b

b c

*

Expression Tree

−

√

Fig. 4. Original gene: (a +

b) ∗
√
b− c

0 head 6 7 tail 14

* + √ a + – b c b a a a b c b

"

 

!

!

#

Expression Tree

"  

# $

√

Fig. 5. Mutation example:

(a+ b+ c) ∗
√
b− a

and the sub-ETs interact with one another forming a more complex expression tree.

Detailing more closely GEP is clearly out of the topic for this paper (for this purpose,

please refer to [15]).

4 GEPHashSearch: a GEP-based framework to find "good"

compression functions

This article presents GEPHashSearch, a framework designed to evolve a popula-

tion of individuals that are candidates for a compression function used in an iterative

or incremental hash scheme. The objective is to design basic blocks of sufficiently good

quality to expect that the global scheme remains a strong candidate. Note that many

modern Hashes such as the current NIST finalists for the SHA-3 competition have a

preprocessing stage; this is to prevent attacks that take advantage of a greater freedom

of input (as opposed to being forced to append the length of the message). Some Hashes

have expansion functions in addition to that prior to hashing. GEPHashSearch does

neither of these as it simply focuses on the compression functions.

Table 1. ∆f set of basic building operators used in GEPHashSearch

Operator Description # Args Example/Comment

~ negates the input 1 ~01=10

& bitwise AND 2 0110 & 1100 = 0100

| bitwise OR 2 0110 | 1100 = 1110

^ bitwise XOR 2 0110 ^ 1100 = 1010

≫k cyclic right rotation of k bits 1 10110 ≫3 = 11010

≪k cyclic left rotation of k bits 1 10110 ≪3 = 10101

addmodp Addition modulo p 2 1011 addmod8 1100 = 0111

multmodp Multiplication modulo p 2 1011 multmod8 1100 = 0100
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Basic building operators. As we saw in §2.1, contemporary hash schemes consist

in a set of binary operators combined together to form a more complex function applied

in the different stages of the hash function evaluation. In GEPHashSearch, the basic

building operators under considention are described in Table 1. They will form the set

of functions ∆f used by the GEP individuals in their head. The choices we made were

governed by the operators generally used in the known hash schemes. Table 2 presents

an overview of the basic operators used in MD5, SHA-1 and the finalists of the current

SHA-3 hash competition. In the framework of GEPHashSearch, we focus on the

cheapest operators (in terms of gates equivalents and required cycles to compute).

Table 2. Basic building operators used in MD5, SHA-1 and the five finalists

of the current SHA-3 challenge (apart from permutations and Sboxes).

MD5 [4] ⊕ & | ~ swap

SHA-1 [5] ⊕ & | ~ ≫5 ≫30 div

BLAKE [16] ⊕ ≫k ≪k addmod
2
32 addmod

2
64

Grøstl [17] ⊕ trunck Four AES operators on F256

JH [18] ⊕ & | ~

Keccak [19] ⊕ & | ~ ≫k

Skein [20] ⊕ addmod
2
64 ≫k

GEP Individuals. In GEPHashSearch, each GEP individual Indi that composes

the population to evolve is assumed to be a potential candidate for a compression

function compressi that intervenes in the iterative construction of a hash function

H. This function is assumed to take two input parameters: a message chunk M of b

bits and a state bloc S on n bits (corresponding to the fingerprint generated in the

previous stage). This setup is illustrated in Fig. 6. The associated ET corresponds to

the expression of compressi as a function composed by the basic building operators

mentioned in Table 1 that form the set ∆f . Remember that the objective of our work

is to generate "good" candidates for the compression functions hoping that it will lead

to good hash functions. In this context, the considered individuals are constrained by

the following parameters:

• n = 32×N : size of the fingerprint, seen as N words i.e. N blocks of 4 bytes;

• b = 32×B: size of the successive message chunks, seen as B words;

• head: size of the head of the GEP chromosome.

The set of terminals ∆term are all considered as word values corresponding to a block

within the fingerprint or the message chunks. They are labelled accordingly as follows:

∆term = {b1, . . . , bN} ∪ {m1, . . . ,mB}. Also, rather than having a single GEP gene

per individual, we setup N genes (to characterize the N threads responsible for each

part of the state block {bi}1≤i≤N ). These genes are linked together by so-called linking

functions that belongs to the set ∆f and evolve throughout the generations. Finally, at

every evaluation of an individual Ind, we compute a terminal diversity metric TD(Ind)
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Fig. 6. GEP individual in the GEPHashSearch framework.

defined as the number of distinct terminals that are really expressed in the individual

(i.e. that belong to the ET) divided by the total number of terminals i.e. |∆term| =
N + B. In particular, it is crucial that TD(Ind) = 1 for the final individual chosen

at the end of a GEPHashSearch process, meaning that none of the input blocks

of the compression function (whether from the fingerprint or the message chunks) are

ignored. Now that the GEPHashSearch individuals are defined, we can detail the

four fitness functions used to evaluate them.

4.1 Fitness functions used in GEPHashSearch

Propagation criteria PCk(t). The propagation criterion PC(t) has been proposed

in [21] as a statistical test to check the effect of some bit flips on the output. Given

a function f to evaluate, some random input x is generated and the result y = f(x)

is computed. Then the input is changed slightly into x′ such that up to t random

bits are flipped. In other words, assuming dH(., .) denotes the Hamming distance,

dH(x, x′) ≤ t. Then the function is evaluated again to obtain y′ = f(x′). It is ex-

pected that for a "good" function, each bit in the output is modified with probability
1

2
, thus the hamming distance dH(y, y′) is expected to follow the Binomial law B( 1

2
, n)

where n is the length of y (or y′). The χ2 distribution (i.e., a left skewed curve) is

used to compare the goodness-of-fit of the observed frequencies of the k sample mea-

sures {dH(yi, y
′
i)}0≤i<k to the corresponding expected frequencies of the hypothesized

distribution (i.e. B( 1
2
, n)).

If the successive values dH(yi, y
′
i) respect a binomial distribution, then this results in

a low χ2 value that permits to conclude that the tested function has good propagation

proprieties. This χ2 value is the measured fitness of the tested function and is referred

to as PCk(t).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 05/10/2024 14:41:03

UM
CS



Sébastien Varrette, Jakub Muszyński, Pascal Bouvry 47

Randomness criteria RC. Apart from having good propagation properties,

GEPHashSearch considers also the random nature of the fingerprint generated

by the evaluated individuals. In this perspective, GEPHashSearch makes use

of the NIST statistical Test Suite [22]. From a global perspective, this statistical

package consists of 15 tests T1, . . . , T15 that were developed to test the randomness

of (arbitrarily long) binary sequences produced by either hardware or software based

cryptographic random or pseudorandom number generators. Each of the tests Ti
operates on a sufficiently long binary sequence s as an input, and computes a specific

P-value which, when compared to the selected level of confidence α (for instance,

α = 0.01 (1%)), permits to conclude whether the sequence is non-random (P-value

< α) or if, on the contrary, it can be considered as random (P-value ≥ α). In

GEPHashSearch, these tests are used to compute for each individual Indi at a given

generation t the randomness criteria RC defined as a result of the function described

in algorithm 2.

Algorithm 2. Randomness criteria evaluation RC for a given GEP individual.

Require: Ind, the GEP individual to test against the randomness criteria.

Require: l, the length of the sequence to pass to the NIST tests

Require: ∆x = {x1, . . . , xk}, a set of random message chunks / ∀i, |xi| = b bits and

k × n ≥ l

Require: IV , a fixed state block of n bits, used for the evaluation of all compression

functions

Require: α, the level of confidence to apply to each NIST test

Ensure: 0 ≤ RC ≤ 15

function RC(Ind, l, ∆x, IV , α)

RC ← 0; s ← ””; � At worst, RC = 0. Initialize s as an empty string.

while |s| < l bits � Generates the sequence s of at least l bits.

yi ←Ind(IV , xi); � Fingerprint of the message chunk xi.

s ← s‖yi � append yi (of n bits) to s.

end while

for i ← 1..15 � Test s randomness against each NIST test.

RC ← RC + Ti(s, α); �Ti(s, α) = 1 if Ti concludes that s is random, 0

otherwise.

end for

return RC

end function

To permit a fair comparison for this criteria of all GEP individuals, we assume that

the set of random message chunks ∆x used to build the bit-string sequence to be

evaluated by the NIST tests is constructed at the beginning of each generation and is

kept the same for all RC evaluations. Also, as these tests focus on the randomness

of the output fingerprints generated by a given individual, we also fixed the value of
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the input state block for the whole compression function evaluation. This fixed value,

denoted IV , is defined at the beginning of a GEPHashSearch execution and is kept

constant until the end of the run. A brief overview of the considered tests is now

provided (see [22] for more details):

T1: Frequency (Monobit) Analysis: the objective is to determine whether

the number of ones and zeros in the tested sequence is approximately the

same as would be expected for a truly random sequence.

T2: Frequency Analysis within each block: this test determines the pro-

portion of ones within each b-bit blocks yi: it should be approximately b
2
, as

would be expected under the assumption of randomness.

T3: Longest sequence of identical bits (or runs): this test analyzes the

total number of runs in the sequence s, where a run is an uninterrupted

sequence of identical bits, to determine whether the number of runs of ones

and zeros of various lengths is as expected for a random sequence.

T4: Longest sequence of ones within each block: as T3 yet focusing on

the longest run of ones within each b-bit blocks yi.

T5: Binary Matrix Rank Test: the focus of this test is the rank of disjoint

sub-matrices of the entire sequence, to check linear dependence among the

fixed length sub-strings of the original sequence.

T6: Discrete Fourier Transform (DFT) (Spectral) Test: this test ana-

lyzes the peak heights in the DFT of the sequence in order to detect periodic

features (i.e., repetitive patterns that are near each other) that would

indicate deviation from the assumption of randomness.

T7: Non-overlapping Template Matching Test: the purpose of this test is

to detect the production of too many occurrences of a given non-periodic

(aperiodic) pattern.

T8: Overlapping Template Matching Test: this test complements the test

T7 to check the number of occurrences of prespecified target strings.

T9: Maurer’s "Universal Statistical" Test: it detects whether or not the

sequence can be significantly compressed without loss of information. A sig-

nificantly compressible sequence is considered to be non-random.

T10: Linear Complexity Test: the focus of this test is the length of Linear

Feedback Shift Register (LFSR) to determine whether or not the sequence is

complex enough to be considered random (random sequences are character-

ized by longer LFSRs).

T11: Serial Test: the purpose of this test is to determine whether the number

of occurrences of the 2m m-bit overlapping patterns is approximately the

same as would be expected for a random sequence. Random sequences have

uniformity; that is, every m-bit pattern has the same chance of appearing as

every other m-bit pattern.
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Table 3. Minimal size of the tested sequence given to each NIST test to

fulfill both the GEPHashSearch context and the NIST recommendations.

Test min |s| (bits) Test min |s| (bits) Test min |s| (bits)

T1 100 T6 1,000 T11 1,024

T2 100 T7 106 T12 1,024

T3 100 T8 106 T13 100

T4 6,272 T9 904,960 T14 106

T5 38,912 T10 106 T15 106

T12: Approximate Entropy Test: similarly to T11, this test compares the fre-

quency of overlapping blocks of two consecutive/adjacent lengths against the

expected result for a random sequence.

T13: Cumulative Sums (Cusum) Test: this test determines whether the cu-

mulative sum of the partial sequences occurring in the tested sequence is too

large or too small relative to the expected behaviour of that cumulative sum

for random sequences.

T14: Random Excursions Test: the focus of this test is the number of cycles

having exactly K visits in a cumulative sum random walk.

T15: Random Excursions Variant Test: this test detects deviations from

the expected number of visits to various states in the random walk.

In algorithm 2, the minimum length l of the tested sequence should be selected

carefully, in accordance with the NIST recommendations for each test. We adapt these

recommendations with regards of the GEPHashSearch context to produce the results

presented in Table 3. Based on this analysis, GEPHashSearch uses the value l = 10
6

bits for the computation of RC in algorithm 2.

Complexity W1. This metric measures the complexity of the compression function

seen as the accumulated number of cycles require to execute the operators that compose

the evaluated individual i.e. W1 =
∑

op∈Ind
⋂

∆f
W1(op). This assumes that the cost

(in terms of a number of cycles) of all the operators that compose the set ∆f is known.

The examples of such evaluations can be found in various speed benchmarks of hash

functions. For instance, those made in Blake [16] estimate that W1(�7) = 12 cycles,

W1(addmod232)= 24 cycles etc. The notation W1 is used as this criterion reflects the

sequential work required to perform the execution of the compression function.

Efficiency E. This metric makes a raw estimation of the efficiency of the tested

individual by translating automatically its ET into an C code which is compiled and

executed on a reference platform to determine the average time required by the asso-

ciated compression function to get the fingerprint of random message chunks.

In practice, GEPHashSearch benchmarks the time t required to generate consecu-

tively fingerprints of the e first elements of the set ∆x (the one used for the evaluation
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of RC, each of n bits). Then, the average hash efficiency (expressed in kB/s) of the

individual is returned as follows: E = e×n
1000×t

4.2 Multi objective optimization in GEPHashSearch

If the first implementation of the GEPHashSearch framework targets the opti-

mization of each fitness object PCk(t), RC, W1 and E independently, the real goal is

to effectively explore and measure the trade-off that might be selected among these four

objectives. In practice, we plan to build the set of optimal solutions (largely known

as the Pareto-optimal solutions) using the NSGA-II algorithm [23], which works ex-

pressly with the notion of dominance. Just as all the individuals in the Pareto front are

dominant by definition, NSGA-II is an elitist algorithm that selects across the pareto

dominant individuals. One point worth noting is that evaluating over multiple criteria

takes a greater amount of time for each additional test, as does checking for dominance

over other individuals. While classical Multi-objective EAs that use non-dominated

sorting and sharing have been criticized for their non-elitism approach and their com-

putational complexity – O(|Pop|3) in our case (more precisely O(4 × |Pop|3) where

|Pop| is the population size as there are 4 objectives to optimize), NSGA-II is faster

as this non-dominated sorting approach has a computational complexity of O(|Pop|2)
in the GEPHashSearch context which explains why it received our preference.

5 Experiments

As mentioned before, we present here a work in progress and we are now in the

process of validating the design choices proposed in the article. The implementation

of GEPHashSearch consists in two fundamental components: (1) LibGEP3 (version

0.4.1), a C++ library partly developed by one of the authors which provides a con-

venient interface to the GEP heuristic; (2) ParadisEO4 (version 1.3), a portable C++

middleware for the manipulation of EAs heuristics. While at the moment of writing

this implementation this has not been finished, we can propose here the first experi-

mental results that were obtained in a mono-objective context. They were obtained

by running GEPHashSearch on the resources of the computing cluster of the Uni-

versity of Luxembourg (see http://hpc.uni.lu). The parameters of the evolutionary

processes executions are as follows:

• 100 executions on a population of 100 individuals, 20 generations

• Fingerprint size n = 128 bits (i.e. N = 4)

• Message chunk size b = 128 bits (i.e. B = 4)

• Level of confidence α = 0.05

• Probability of linking function mutation: 0.05

• Probability of individual (resp. gene) mutation: 0.3 (resp. 0.1)

3See http://libgep.gforge.uni.lu
4See http://paradiseo.gforge.inria.fr/
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• Probability of two-point crossover: 0.5

Figure 7 depicts the mono-objective optimization of the propagation criteria

PC1000(4). More precisely, it illustrates the evolution of the average fitness of the

best individual (over 50 executions) – Mean Best Fitness (MBF). We can see that

GEPHashSearch converges quickly to optimal solutions (for which the χ2 statistic

observed at the end (42.02559) is below the expected value (46) for the selected

level of confidence. This is obviously encouraging and we are now finalizing the

implementation of the other criteria, namely RC, W1 and E to permit concrete runs

over NSGA-II withing GEPHashSearch.
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Fig. 7. Mono-objective optimization of the Propagation Criteria PCk(t)

(with k = 1000 and t = 4) in GEPHashSearch.

6 Conclusion

Cryptographic hash functions are fundamental primitives in modern cryptography

and have many security applications. In this paper, the GEPHashSearch frame-

work was proposed. The objective is to build compression functions with reasonably

"good" properties by means of the Gene Exprassion Programming (GEP) heuristic

– an efficient alternative to the classical Genetic Programming (GP). As it is still a

work in progress, this article focuses on the design aspects of this framework rather
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than on complete implementation details and validation results. In particular, the

complete description of the GEP individuals encoding together with four fitness ob-

jectives has been detailed. While the way GEP individuals are encoded reflects the

organization of the most known hash functions (MD5, SHA-1 but also the five finalists

of the SHA-3 contest organized by the NIST were studied), the defined objectives try

to catch the expected properties of the underlying compression functions: a descent

propagation of small modifications in the input message (captured by the propagation

criteria PCk(t)), reasonably good randomness (attested by the RC fitness value which

reflects the successful passing of the 15 tests provided by the NIST Statistical Test

Suite) and good performances (as measured by the complexity W1 and the efficiency of

the hashing E). The first experimental results are quite promising. Without doubts,

the multi-objective optimization of this problem over these four criteria will lead to

fruitful contributions to the cryptographic community.
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