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Abstract — Cryptographic hash functions are fundamental primitives in modern cryptography and
have many security applications (data integrity checking, cryptographic protocols, digital signatures,
pseudo random number generators etc.). At the same time novel hash functions are designed (for
instance in the framework of the SHA-3 contest organized by the National Institute of Standards
and Technology (NIST)), the cryptanalysts exhibit a set of statistical metrics (propagation criterion,
frequency analysis etc.) able to assert the quality of new proposals. Also, rules to design "good"
hash functions are now known and are followed in every reasonable proposal of a new hash scheme.
This article investigates the ways to build on this experiment and those metrics to generate automat-
ically compression functions by means of Evolutionary Algorithms (EAs). Such functions are at the
heart of the construction of iterative hash schemes and it is therefore crucial for them to hold good
properties. Actually, the idea to use nature-inspired heuristics for the design of such cryptographic
primitives is not new: this approach has been successfully applied in several previous works, typically
using the Genetic Programming (GP) heuristic [1]. Here, we exploit a hybrid meta-heuristic for the
evolutionary process called Gene Expression Programming (GEP) [2] that appeared far more efficient
computationally speaking compared to the GP paradigm used in the previous papers. In this context,
the GEPHAsHSEARCH framework is presented. As it is still a work in progress, this article focuses on
the design aspects of this framework (individuals definitions, fitness objectives etc.) rather than on
complete implementation details and validation results. Note that we propose to tackle the generation
of compression functions as a multi-objective optimization problem in order to identify the Pareto
front i.e. the set of non-dominated functions over the four fitness criteria considered. If this goal is
not yet reached, the first experimental results in a mono-objective context are promising and open the

perspective of fruitful contributions to the cryptographic community.
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1 Introduction

Cryptographic hash functions are fundamental primitives in modern cryptography
and are of crucial importance for our digital life. In particular, they are used in
many security applications (data integrity checking, cryptographic protocols, digital
signatures, pseudo random number generator etc.). Formally speaking, a hash function
H :{0,1}* — {0,1}"™ maps a binary string of arbitrary length into a binary string
of some fixed length n (often called footprint) with at least the compression and ease
of computation properties [3]. If hash functions satisfy the additional requirements
such as preimage resistance, second preimage resistance and most importantly collision
resilience, they are a very powerful tool in the design of techniques to protect the
authenticity of information. Recent advances in hash functions cryptanalysis permitted
successful attacks against the major cryptographic hash function in use, including
the well-known MD5 [4] and SHA-1 [5] hash schemes which are therefore no longer
considered as secured. In response, the National Institute of Standards and Technology
(NIST) recommended to move to the SHA-2 family of hash functions (SHA-224, SHA-
256, SHA-384 and SHA-512) and the SHA-3 contest has been launched! to find new
schemes. At the time of writing, the third and last round of this contest has been
released and permits to exhibit five candidates for the next SHA-3 standard. At the
same time novel hash functions are designed (especially in the framework of the SHA-3
contest), the cryptanalysts exhibit a set of statistical metrics (propagation criterion,
frequency analysis etc.) able to assert the quality of new proposals.

This article investigates the ways to build on this experiment and those metrics to
generate automatically the compression functions by means of Evolutionary Algorithm
(EA). Such functions are at the heart of the construction of iterative hash schemes and it
is therefore crucial for them to hold good properties. Actually, the idea to use nature-
inspired heuristics for the design of such cryptographic primitives is not new: this
approach has been successfully applied in several previous works, typically using the
GP heuristic [1]. Here, we exploit a hybrid meta-heuristic for the evolutionary process
called GEP [2] that appeared far more efficient computationally speaking compared to
the GP paradigm used in the previous papers. In this context, the GEPHASHSEARCH
framework is presented.

This paper is organized as follows: section 2 presents the background of this work
(cryptographic hash functions, EAs) and reviews the related works. Section 3 provides
a brief overview of the Gene Expression Programming (GEP) heuristic while section 4
holds the main contribution of this paper. It details GEPHASHSEARCH, a GEP—based
framework to build the compression functions with reasonably good properties. This is
still a work in progress such that section 5 remains limited. Yet the first experimental
results which are proposed there are still promising. Finally, section 6 concludes the
paper and provides the future directions.

ISee http://csrc.nist.gov/groups/ST/hash/sha-3/.
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2 Context & Motivations

2.1 Cryptographic hash functions

Cryptographic hash functions are fundamental primitives in modern cryptography
and have many security applications (data integrity checking, cryptographic protocols,
digital signatures, pseudo random number generators etc.). Formally speaking, a hash
function H : {0,1}* — {0,1}™ maps a binary string of arbitrary length into a binary
string of some fixed length n (often called footprint or fingerprint) with at least the
compression and ease of computation properties [3].

b bits
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Fig. 1. Principle of a hash function Fig. 2. Compression func-

tion of a hash function

To be of cryptographic use, hash functions must satisfy the additional properties,
such as preimage resistance, second preimage resistance and most importantly collision
resilience. One talks about a collision between x and o’ when « # 2’ and H(z) = H(z').
Considering that the input of a hash function can be of any size (in particular > n),
collisions are unavoidable. Knowing that if y is such that y = H(x), then z is called
the preimage of y, the above mentioned properties can be defined as follows?:

e Preimage resistance: given y, one can not find - in reasonable time - some
x such that y = H(z). Given y, 2" computations are at most required for
finding z.

e Second preimage resistance: given x, one can not find - in reasonable
time - o’ # x such that H(x) = H(2'). As above, given x, 2™ evaluations are
at most required for finding y.

e Collision resistance: one can not find in reasonable time z and x’ such that
H(x) = H(2'). Note that there is a free choice of both inputs. There are 2%
evaluations required to find a valid couple (z, z’) (This result comes from the
Birthday paradox).

The additional properties are often desired:

e non-correlation: input and output bits should not be correlated. Related to
this, an avalanche effect property similar to the one of good block ciphers is
required: modification of a single bit in the input should change at least half

2In these definitions, reasonable means that there exists no attack that operate faster than the
exhaustive or brute-force search among all possible inputs.
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of the output bits. This rules out hash functions for which preimage resis-
tance fails to imply the 2nd-preimage resistance simply due to the function
effectively ignoring a subset of input bits.

e near-collision resistance: it should be hard to find any two inputs (x, 2’) such
that H(z) and H (') differ in only a small number of bits.

e partial-preimage resistance or local one-wayness. It should be as difficult to
recover any substring as to recover the entire input. Moreover, even if part of
the input is known, it should be difficult to find the remainder (e.g., if ¢ input
bits remain unknown, it should take on the average 2!~! hash operations to
find these bits.)

In practice, most arbitrary-length hash functions are built in the iterative process
based on a fixed-length compression function or a block cipher. For instance, SHA-1 [5],
MD5[4], as well as all the other hash functions we know, are constructed by applying
some variant of the Merkle-Damgard construction to an underlying compression func-
tion A : {0,1}° x {0,1}™ — {0,1}" (see Figure 2). The general model for the iterated
hash functions operates as follows: the hash input x of the arbitrary finite length is first
split into fixed-sized chunks 1, x,... 27 € {0,1}" which gives the expanded message
(z1,...,21). An iterated hash H iterates the underlying compression function h as
follows:

ho =1V {hi = h(hi—1,zi)}i<;<p s H(z) = g(hr). (1)

hi_1 serves as the n-bit chaining variable between the stage i —1 and the stage i. hq is

a predefined starting value or initializing value (IV). An optional output transformation

g is used in a final step to map the n-bit chaining variable to an n-bit result g(hyr); g

is often the identity mapping g(hz) = hr. The one or two last chunks of the expanded

message are padded, and the last chunk x; may contain the additional information,
such as the length ||z|| of the non-expanded message x.

Incremental hashing. Alternative constructions make use of incremental hashing:
The idea behind the method presented in [6] is that if one changes a message and one
has already computed the hash function of the (unchanged) message, one only needs
to recompute the changed part in order to obtain the new hash value. This is done
as follows: each chunk x; of the message © = x1x5 ... 2 is prefixed by a block index.
Then the hash value y; = h({(i).x;) is computed and the output is combined via a
special operation: y =91 © y2 ® ... ©® Y.

The computation of h can be done by any standard hash function as soon as it is col-
lision free. With this technique the computation of the hash value can be parallelized,
therefore it is also possible to recompute only parts x; of the message. In all cases,
a good choice for the combining operation © is crucial. A first natural thought is to
use the bitwise XOR, but it was shown that it is insecure [6]. Using multiplication or
addition in a group Z; (multiplication and addition modulo p) is generally seen as a
good choice for the combining operation (in this case, the incremental hashing scheme
is called MuHASH and AddHASH where, for security reasons, |p| should have at least
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512 or 1024 bits, making the final hash value of the same length. If a smaller length is
required, the output y can be hashed with a standard collision-free hash function (For
instance, applying SHA-1 to MuHASH leads to a 160 bit fingerprint). The security
depends on the discrete logarithm problem in the underlying group. As we will see in
the sequel, the EA—based heuristic presented in this paper derives from the incremen-
tal hashing scheme in the way linking functions are used to connect the genes of the
GEPHASHSEARCH individuals.

2.2 Evolutionary Algorithms (EA)

EA is a class of solving techniques based on the Darwinian theory of evolution [7]
which involves the search of a population X, of solutions. Members of the population are
feasible solutions and called individuals. Each iteration of an EA involves a competitive
selection that weeds out poor solutions through the evaluation of a fitness value that
indicates the quality of the individual as a solution to the problem. The evolutionary
process involves at each generation a set of stochastic operators that are applied on
the individuals, typically recombination (or cross-over) and mutation. Execution of
simple EA requires high computational resources in the case of non-trivial problems,
in particular the evaluation of the population is often the costliest operation in EAs.
There exists many useful models of EAs, yet a pseudo-code of a general execution
scheme is provided in Algorithm 1.

Algorithm 1. General scheme of an EA in the pseudo-code.
t < 0;
Generation(Xy); // generate the initial population
Evaluation(X;); // evaluate population
while Stopping criteria not satisfied
X, < ParentsSelection(X,); // select parents
X/ + Modification(X;); // cross-over + mutation
Evaluation(X(); // evaluate offspring
t+—t+1;
end while

2.3 Hash function generation by means of EAs

The idea to use nature-inspired heuristics for the design of cryptographic primitives
and in particular hash functions is not new: this approach has been successfully applied
in several previous works as reviewed in [8]. This probably started to attract attention
of the researchers in the 90’s with the Ph.D. Thesis of Clark [9] where different heuristic
techniques (genetic algorithms, simulated annealing, and tabu search) were compared
to break classical cryptosystems. In particular, the use of simulated annealing was
proposed in the cryptanalysis of a certain class of stream ciphers. As mentioned in [8],
Millan, Clark, and Dawson then additionally proposed a model for the generation of
the Boolean functions with excellent cryptographic applications, thus starting a very
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fruitful research line and showing these techniques could also help in cryptography, not
only cryptanalysis. At the level of hash functions, the work of Daemen & al. in [10]
opens the research area for the generation of hash functions by means of evolutionary
technics (in this paper, a Cellular Automata (CA)) as initiated by the seminal work
of Damgard in [11]. For instance in [12], an evolutionary technique was applied for
the design of a digital circuit which computes a simple hashing function. Based on the
FPGA architecture, the circuit was synthesized automatically through simulated evo-
lution. More recently in [13], the authors used Genetic Algorithms (GAs) to construct
Universal Hash Functions to efficiently hash a given set of keys. The Hash Functions
generated in this way provide a lesser number of collisions as compared to selecting them
randomly from a family of Universal Hash Functions. The proposed algorithm could
be used in the scenarios where the input distribution of keys frequently changes and
the hash function needs to be modified often to rehash the values to reduce collisions.
Finally, the use of the Genetic Programming (GP) heuristic was successfully applied
in [14] for the automated design of cryptographic block ciphers and hash functions. In
this article, we extend the work proposed in [14] by exploiting a hybrid meta-heuristic
for the evolutionary process called GEP 2] that appeared far more efficient computa-
tionally speaking compared to the GP paradigm used in the previous papers. The next
section details this heuristic. Also, while the work presented in [14] focuses on a single
objective (the avalanche effect captured by the propagation criteria PCy(t) presented
in §4.1), we add a set of complementary objectives to direct the traversal of the search
space toward solutions which not only optimize the propagation criteria but also the
randomness, the complexity and the efficiency of the evolved compression functions.

3 Gene Expression Programming (GEP) heuristic

Among different classes of EAs, John Koza in [1] proposed to use GA in the so called
Genetic Programming (GP) where the individuals represent a function or a program.
Gene Expression Programming (GEP) was proposed by Candida Ferreira in [2] as
an extension of GP. As an EA, GEP uses the populations of individuals, selects the
individuals according to their fitness, and introduces genetic variation using one or
more genetic operators. The fundamental difference between these three classes of
EAs resides in the nature of the individuals:

e in GAs the individuals are symbolic strings of fixed length (chromosomes);

e in GP the individuals are nonlinear entities of different sizes and shapes called
parse trees that represent a program (see Fig. 3);

e in GEP, the individuals are also nonlinear entities of different sizes and shapes
(expression trees), but these complex entities are encoded as simple strings
of the fixed length (chromosomes).

This avoids possible divergence in the size of the parse trees that can be observed
within GP and represents the main weakness of this approach: a large number of
computational resources can be used to edit huge illegal structures. On the contrary,
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the chromosomes in GEP are simple entities: linear, compact, relatively small, easy
to manipulate genetically (replicate, mutate, recombine, transpose, etc.). In addition,
any modification made in the genome always results in syntactically correct expression
trees or programs. Hence, GEP has been chosen as the base of heuristic for finding
good candidates for hash functions (or more precisely, compression functions).

Overview. In GEP, the genome or chromosome consists of a linear, symbolic string
of the fixed length composed of one or more genes. This string contains two kinds
of symbols: functions (which are typically elements from the set Ay) and terminals
(belonging to a set Aterm). Each gene represents a relation between the function
and one can represent it as a tree called Exzpression Tree (ET). The string reflects,
in fact, the traversal of the tree from the left to the right and from the top to the
bottom, which is neither the prefix nor the postfix traversal sometimes found in the
GP implementations. For instance, let us assume that Ay = {\/, +,—, %} and Agepm =
{a,b,c}. Fig. 3 provides the gene and the expression tree associated to the algebraic
expression (a+ b) x+1/b — c¢. Here, the gene starts at position 0 and ends at position 7.

Expression Tree

Function: (@ +b) * v/b — ¢

Gene

*

+[v fafo]-[o]c]
o 1 2 3 4 5 6 7

Fig. 3. Gene and expression tree associated to the function (a + b) x /b — ¢

In fact, the genes in GEP are composed of a head (containing both functions and
terminals) together with a tail containing only terminals. Let h (resp. t) be the size
of the head (resp. the tail). Then GEP encodes each gene with a string of the length
h + t. More precisely, let a,,q,; be the maximum number of arguments taken by the
functions in Ay, then t = h(@maz —1)+1. Note that in the previous example, a;qz = 2
meaning that ¢ = h + 1 and each gene is encoded with a string of the length 2h 4 1.
For instance, let us take h = 7. Then the complete gene considered previously could
be written in GEP as depicted in Fig. 4.

In this case, the expression tree finishes at position 7 whereas the gene ends at
position 14. If a mutation occurs at position 4 that changes 'b’ into '+’, then the
gene presented in Fig. 5 is obtained, where the corresponding expression tree is also
provided. It now finishes at position 9. So despite its fixed length, each gene has the
potential to code for the expression trees of different sizes and shapes.

The way of cross-over operation is similar. Finally, GEP chromosomes are usually
composed of more than one gene of equal length. For each problem or run, the number
of genes, as well as the length of the head, is chosen. Each gene then codes the sub-ET
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o) (e

Fig. 4. Original gene: (a + Fig. 5. Mutation example:
b) *xvb—c (a+b+c)xvVb—a

and the sub-ETs interact with one another forming a more complex expression tree.
Detailing more closely GEP is clearly out of the topic for this paper (for this purpose,
please refer to [15]).

4 GEPHASHSEARCH: a GEP-based framework to find "good"
compression functions

This article presents GEPHASHSEARCH, a framework designed to evolve a popula-
tion of individuals that are candidates for a compression function used in an iterative
or incremental hash scheme. The objective is to design basic blocks of sufficiently good
quality to expect that the global scheme remains a strong candidate. Note that many
modern Hashes such as the current NIST finalists for the SHA-3 competition have a
preprocessing stage; this is to prevent attacks that take advantage of a greater freedom
of input (as opposed to being forced to append the length of the message). Some Hashes
have expansion functions in addition to that prior to hashing. GEPHASHSEARCH does
neither of these as it simply focuses on the compression functions.

Table 1. Ay set of basic building operators used in GEPHASHSEARCH

’ Operator ‘ Description ‘ # Args ‘ Example/Comment
- negates the input 1 ~01=10
& bitwise AND 2 0110 & 1100 = 0100
| bitwise OR 2 0110 | 1100 = 1110
~ bitwise XOR 2 0110 ~ 1100 = 1010
> cyclic right rotation of k bits 1 10110 >3 = 11010
< cyclic left rotation of k bits 1 10110 <3 = 10101
addmod,, Addition modulo p 2 1011 addmodg 1100 = 0111
multmod, Multiplication modulo p 2 1011 multmodg 1100 = 0100




Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 18/01/2026 09:56:38
Sébastien Varrette, Jakub Muszyriski, Pascal Bouvry

Basic building operators. As we saw in §2.1, contemporary hash schemes consist
in a set of binary operators combined together to form a more complex function applied
in the different stages of the hash function evaluation. In GEPHASHSEARCH, the basic
building operators under considention are described in Table 1. They will form the set
of functions Ay used by the GEP individuals in their head. The choices we made were
governed by the operators generally used in the known hash schemes. Table 2 presents
an overview of the basic operators used in MD5, SHA-1 and the finalists of the current
SHA-3 hash competition. In the framework of GEPHASHSEARCH, we focus on the
cheapest operators (in terms of gates equivalents and required cycles to compute).

Table 2. Basic building operators used in MD5, SHA-1 and the five finalists
of the current SHA-3 challenge (apart from permutations and Sboxes).

MD5 [4] @ & | 7 swap
SHA-1 [5] ® & | 7 >5 >3 div
BLAKE [16] &) > <) addmod,s2 addmod,ss
Grostl [17] P truncy, Four AES operators on Fase
JH 18] || & & | -
Keccak [19] || @ & | T >k
Skein [20] (&) addmod264 >k

GEP Individuals. In GEPHASHSEARCH, each GEP individual Ind; that composes
the population to evolve is assumed to be a potential candidate for a compression
function compress; that intervenes in the iterative construction of a hash function
H. This function is assumed to take two input parameters: a message chunk M of b
bits and a state bloc S on n bits (corresponding to the fingerprint generated in the
previous stage). This setup is illustrated in Fig. 6. The associated ET corresponds to
the expression of compress; as a function composed by the basic building operators
mentioned in Table 1 that form the set Ay. Remember that the objective of our work
is to generate "good" candidates for the compression functions hoping that it will lead
to good hash functions. In this context, the considered individuals are constrained by
the following parameters:

e n = 32 x N: size of the fingerprint, seen as N words i.e. N blocks of 4 bytes;
e b =32 X B: size of the successive message chunks, seen as B words;
e head: size of the head of the GEP chromosome.

The set of terminals Aye,.,, are all considered as word values corresponding to a block
within the fingerprint or the message chunks. They are labelled accordingly as follows:
Aterm = {b1,...,bxy} U{my,...,mp}. Also, rather than having a single GEP gene
per individual, we setup N genes (to characterize the N threads responsible for each
part of the state block {b;}1<i<n). These genes are linked together by so-called linking
functions that belongs to the set A; and evolve throughout the generations. Finally, at
every evaluation of an individual Ind, we compute a terminal diversity metric Tp(Ind)



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 18/01/2026 09:56:38

46 Hash function generation by means of Gene Expression...

Message chunk M
b = 32*B bits = B words |

_Iﬁ‘

GEP Individual Ind; >

N words

compressi(M,S)

State block S

32*N bits

5

GEP common parameters:
A, Aterm Pmbmuv N genes, ...

Output fingerprint C

n=

IAggrml =N +B

Fig. 6. GEP individual in the GEPHASHSEARCH framework.

defined as the number of distinct terminals that are really expressed in the individual
(i.e. that belong to the ET) divided by the total number of terminals i.e. [Aterm| =
N + B. In particular, it is crucial that Tp(Ind) = 1 for the final individual chosen
at the end of a GEPHASHSEARCH process, meaning that none of the input blocks
of the compression function (whether from the fingerprint or the message chunks) are
ignored. Now that the GEPHASHSEARCH individuals are defined, we can detail the
four fitness functions used to evaluate them.

4.1 Fitness functions used in GEPHASHSEARCH

Propagation criteria PCy(t). The propagation criterion PC(t) has been proposed
in [21] as a statistical test to check the effect of some bit flips on the output. Given
a function f to evaluate, some random input x is generated and the result y = f(x)
is computed. Then the input is changed slightly into 2z’ such that up to ¢ random
bits are flipped. In other words, assuming dg(.,.) denotes the Hamming distance,
dg(z,2’) < t. Then the function is evaluated again to obtain y' = f(x'). It is ex-
pected that for a "good" function, each bit in the output is modified with probability
%, thus the hamming distance dg (y,y’) is expected to follow the Binomial law B(%, n)
where n is the length of y (or ). The x? distribution (i.e., a left skewed curve) is
used to compare the goodness-of-fit of the observed frequencies of the k£ sample mea-
sures {du (Yi, V;) }o<i<k to the corresponding expected frequencies of the hypothesized
distribution (i.e. B(3,n)).

If the successive values dg (v, y;) respect a binomial distribution, then this results in
a low 2 value that permits to conclude that the tested function has good propagation

proprieties. This x2 value is the measured fitness of the tested function and is referred
to as PC(t).
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Randomness criteria RC. Apart from having good propagation properties,
GEPHASHSEARCH considers also the random nature of the fingerprint generated
by the evaluated individuals. In this perspective, GEPHASHSEARCH makes use
of the NIST statistical Test Suite [22]. From a global perspective, this statistical
package consists of 15 tests Ti,..., 715 that were developed to test the randomness
of (arbitrarily long) binary sequences produced by either hardware or software based
cryptographic random or pseudorandom number generators. Each of the tests 7;
operates on a sufficiently long binary sequence s as an input, and computes a specific
P-value which, when compared to the selected level of confidence a (for instance,
a = 0.01 (1%)), permits to conclude whether the sequence is non-random (P-value
< «) or if, on the contrary, it can be considered as random (P-value > «). In
GEPHASHSEARCH, these tests are used to compute for each individual Ind; at a given
generation t the randomness criteria RC' defined as a result of the function described
in algorithm 2.

Algorithm 2. Randomness criteria evaluation RC' for a given GEP individual.

Require: Ind, the GEP individual to test against the randomness criteria.
Require: [, the length of the sequence to pass to the NIST tests

Require: A, = {x1,...,24}, a set of random message chunks / Vi, |;| = b bits and
kxn>1

Require: IV, a fixed state block of n bits, used for the evaluation of all compression
functions

Require: «, the level of confidence to apply to each NIST test
Ensure: 0 < RC <15
function RC(Ind, I, A,, IV, «)

RC + 0; s <77, > At worst, RC' = 0. Initialize s as an empty string.

while |s| <[ bits > Generates the sequence s of at least [ bits.
y; < Ind(IV, x;); > Fingerprint of the message chunk x;.
s+ s||y; > append y; (of n bits) to s.

end while

for i<+ 1..15 > Test s randomness against each NIST test.
RC < RC + Ti(s,a); >Ti(s,a) =1 if T; concludes that s is random, 0

otherwise.
end for
return RC

end function

To permit a fair comparison for this criteria of all GEP individuals, we assume that
the set of random message chunks A, used to build the bit-string sequence to be
evaluated by the NIST tests is constructed at the beginning of each generation and is
kept the same for all RC' evaluations. Also, as these tests focus on the randomness
of the output fingerprints generated by a given individual, we also fixed the value of
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the input state block for the whole compression function evaluation. This fixed value,
denoted IV, is defined at the beginning of a GEPHASHSEARCH execution and is kept
constant until the end of the run. A brief overview of the considered tests is now
provided (see [22] for more details):

Ti: Frequency (Monobit) Analysis: the objective is to determine whether
the number of ones and zeros in the tested sequence is approximately the
same as would be expected for a truly random sequence.

T>: Frequency Analysis within each block: this test determines the pro-
portion of ones within each b-bit blocks y;: it should be approximately %, as
would be expected under the assumption of randomness.

T3: Longest sequence of identical bits (or runs): this test analyzes the
total number of runs in the sequence s, where a run is an uninterrupted
sequence of identical bits, to determine whether the number of runs of ones
and zeros of various lengths is as expected for a random sequence.

T4: Longest sequence of ones within each block: as 73 yet focusing on
the longest run of ones within each b-bit blocks y;.

T5: Binary Matrix Rank Test: the focus of this test is the rank of disjoint
sub-matrices of the entire sequence, to check linear dependence among the
fixed length sub-strings of the original sequence.

Ts: Discrete Fourier Transform (DFT) (Spectral) Test: this test ana-
lyzes the peak heights in the DFT of the sequence in order to detect periodic
features (i.e., repetitive patterns that are near each other) that would
indicate deviation from the assumption of randomness.

T7: Non-overlapping Template Matching Test: the purpose of this test is
to detect the production of too many occurrences of a given non-periodic
(aperiodic) pattern.

Ts: Overlapping Template Matching Test: this test complements the test
T to check the number of occurrences of prespecified target strings.

To: Maurer’s "Universal Statistical" Test: it detects whether or not the
sequence can be significantly compressed without loss of information. A sig-
nificantly compressible sequence is considered to be non-random.

Tio: Linear Complexity Test: the focus of this test is the length of Linear
Feedback Shift Register (LFSR) to determine whether or not the sequence is
complex enough to be considered random (random sequences are character-
ized by longer LFSRs).

T11: Serial Test: the purpose of this test is to determine whether the number
of occurrences of the 2™ m-bit overlapping patterns is approximately the
same as would be expected for a random sequence. Random sequences have
uniformity; that is, every m-bit pattern has the same chance of appearing as
every other m-bit pattern.
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Table 3. Minimal size of the tested sequence given to each NIST test to
fulfill both the GEPHASHSEARCH context and the NIST recommendations.

’ Test ‘ min [s| (bits) H Test ‘ min |s| (bits) H Test ‘ min |s| (bits) ‘

T 100 Ts 1,000 Ti1 1,024
Ta 100 Tz 108 Tio 1,024
T 100 Ts 108 Ti3 100
Ta 6,272 To 904,960 Tia 10°
Ts 38,912 Tio 10° Tis 10°

Ti2: Approximate Entropy Test: similarly to 711, this test compares the fre-
quency of overlapping blocks of two consecutive/adjacent lengths against the
expected result for a random sequence.

Ti3: Cumulative Sums (Cusum) Test: this test determines whether the cu-
mulative sum of the partial sequences occurring in the tested sequence is too
large or too small relative to the expected behaviour of that cumulative sum
for random sequences.

T14: Random Excursions Test: the focus of this test is the number of cycles
having exactly K visits in a cumulative sum random walk.

Ti5: Random Excursions Variant Test: this test detects deviations from
the expected number of visits to various states in the random walk.

In algorithm 2, the minimum length [ of the tested sequence should be selected
carefully, in accordance with the NIST recommendations for each test. We adapt these
recommendations with regards of the GEPHASHSEARCH context to produce the results
presented in Table 3. Based on this analysis, GEPHASHSEARCH uses the value [ = 108
bits for the computation of RC' in algorithm 2.

Complexity W;. This metric measures the complexity of the compression function
seen as the accumulated number of cycles require to execute the operators that compose
the evaluated individual i.e. Wi =3 cran A Wi (op). This assumes that the cost
(in terms of a number of cycles) of all the operators that compose the set A is known.
The examples of such evaluations can be found in various speed benchmarks of hash
functions. For instance, those made in Blake [16] estimate that W (>>7) = 12 cycles,
Wi (addmod,s2)= 24 cycles etc. The notation W1 is used as this criterion reflects the
sequential work required to perform the execution of the compression function.

Efficiency E. This metric makes a raw estimation of the efficiency of the tested
individual by translating automatically its ET into an C code which is compiled and
executed on a reference platform to determine the average time required by the asso-
ciated compression function to get the fingerprint of random message chunks.

In practice, GEPHASHSEARCH benchmarks the time ¢ required to generate consecu-
tively fingerprints of the e first elements of the set A, (the one used for the evaluation
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of RC, each of n bits). Then, the average hash efficiency (expressed in kB/s) of the

exn
1000xt

individual is returned as follows: E =

4.2 Multi objective optimization in GEPHASHSEARCH

If the first implementation of the GEPHASHSEARCH framework targets the opti-
mization of each fitness object PCy(t), RC, Wi and E independently, the real goal is
to effectively explore and measure the trade-off that might be selected among these four
objectives. In practice, we plan to build the set of optimal solutions (largely known
as the Pareto-optimal solutions) using the NSGA-IT algorithm [23], which works ex-
pressly with the notion of dominance. Just as all the individuals in the Pareto front are
dominant by definition, NSGA-II is an elitist algorithm that selects across the pareto
dominant individuals. One point worth noting is that evaluating over multiple criteria
takes a greater amount of time for each additional test, as does checking for dominance
over other individuals. While classical Multi-objective EAs that use non-dominated
sorting and sharing have been criticized for their non-elitism approach and their com-
putational complexity — O(|Pop|?) in our case (more precisely O(4 x |Pop|?) where
|Pop| is the population size as there are 4 objectives to optimize), NSGA-II is faster
as this non-dominated sorting approach has a computational complexity of O(|Pop|?)
in the GEPHASHSEARCH context which explains why it received our preference.

5 Experiments

As mentioned before, we present here a work in progress and we are now in the
process of validating the design choices proposed in the article. The implementation
of GEPHASHSEARCH consists in two fundamental components: (1) LibGEP? (version
0.4.1), a C++ library partly developed by one of the authors which provides a con-
venient interface to the GEP heuristic; (2) ParadisE0? (version 1.3), a portable C++
middleware for the manipulation of EAs heuristics. While at the moment of writing
this implementation this has not been finished, we can propose here the first experi-
mental results that were obtained in a mono-objective context. They were obtained
by running GEPHASHSEARCH on the resources of the computing cluster of the Uni-
versity of Luxembourg (see http://hpc.uni.lu). The parameters of the evolutionary
processes executions are as follows:

e 100 executions on a population of 100 individuals, 20 generations
Fingerprint size n = 128 bits (i.e. N =4)

Message chunk size b = 128 bits (i.e. B =4)

Level of confidence o« = 0.05

Probability of linking function mutation: 0.05

Probability of individual (resp. gene) mutation: 0.3 (resp. 0.1)

3See http://libgep.gforge.uni.lu
4See http://paradiseo.gforge.inria.fr/
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e Probability of two-point crossover: 0.5

Figure 7 depicts the mono-objective optimization of the propagation criteria
PCio00(4). More precisely, it illustrates the evolution of the average fitness of the
best individual (over 50 executions) — Mean Best Fitness (MBF). We can see that
GEPHASHSEARCH converges quickly to optimal solutions (for which the x? statistic
observed at the end (42.02559) is below the expected value (46) for the selected
level of confidence. This is obviously encouraging and we are now finalizing the
implementation of the other criteria, namely RC', W7 and E to permit concrete runs
over NSGA-II withing GEPHASHSEARCH.

2000000000 3000000000
1 ]

Mean Best Fitness (MBF)

1000000000

T T T T T
0 5 10 15 20

Generation

Fig. 7. Mono-objective optimization of the Propagation Criteria PCy(t)
(with & = 1000 and ¢ = 4) in GEPHASHSEARCH.

6 Conclusion

Cryptographic hash functions are fundamental primitives in modern cryptography
and have many security applications. In this paper, the GEPHASHSEARCH frame-
work was proposed. The objective is to build compression functions with reasonably
"good" properties by means of the Gene Exprassion Programming (GEP) heuristic
— an efficient alternative to the classical Genetic Programming (GP). As it is still a
work in progress, this article focuses on the design aspects of this framework rather
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than on complete implementation details and validation results. In particular, the
complete description of the GEP individuals encoding together with four fitness ob-
jectives has been detailed. While the way GEP individuals are encoded reflects the
organization of the most known hash functions (MD5, SHA-1 but also the five finalists
of the SHA-3 contest organized by the NIST were studied), the defined objectives try
to catch the expected properties of the underlying compression functions: a descent
propagation of small modifications in the input message (captured by the propagation
criteria PCY(t)), reasonably good randomness (attested by the RC fitness value which
reflects the successful passing of the 15 tests provided by the NIST Statistical Test
Suite) and good performances (as measured by the complexity W; and the efficiency of
the hashing F). The first experimental results are quite promising. Without doubts,
the multi-objective optimization of this problem over these four criteria will lead to
fruitful contributions to the cryptographic community.
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