Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 13:21:30

Annales UMCS
K R 012) Informatica
nnales UMCS Informatica AI XII, 3 (2012) 25-35 . .
DOI: 10.2478 /v10065-012-0024-0 Lub]m-.Poloma
Sectio Al

http://www.annales.umcs.lublin.pl/

Attacks on StreamHash 2

Mateusz Buczek!*

L nstitute of Mathematics and Cryptology, Faculty of Cybernetics,
Military University of Technology
Kaliskiego 2, 00-908 Warsaw, Poland

Abstract — StreamHash 2 is a hash function proposed by Michal Trojnara at
the Cryptography and Security Systems in 2011 Conference. This algorithm is a
member of StreamHash family which was first introduced in 2008 during the SHA-3
Competition. In this paper we will show collision attacks on the internal state of
the StreamHash 2 hash function with complexity about 28" for the 32n-bit version
of the algorithm and its reduced version with complexity 2%7. We will also show
its application to attacking the full StreamHash 2 function (finding a collision on
all output bits) with complexity about 288 . We will try to show that any changes
made to the construction (for instance the ones proposed for StreamHash 3) will
have no effect on the security of the family due to critical fault build into the
compression function.

1 StreamHash and the SHA-3 Competition

On November 2nd, 2007 the National Institute of Standards and Technology (NIST)
announced a hash function competition for a new SHA-3 (Secure Hash Algorithm).
The goal of the competition was to replace the older constructions such as SHA-1 and
SHA-2 in all their variants with a new, more secure and faster algorithm. Another goal
of the competition was to improve knowledge in the field of hash functions and find
new attacks and new constructions for hash functions.

There were over 50 proposed algorithms and 51 of them were selected for the first
round. One of those 51 candidates was StreamHash (now, due to the family develop-
ment, called StreamHash 1) proposed by Michal Trojnara from Warsaw University of
Technology.

*mbuczek@wat.edu.pl

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 17/01/2026 13:21:30

26

Attacks on StreamHash 2

Unfortunately, before the First SHA-3 Candidate Conference which was held in Leu-
ven in late February, 2009 the algorithm was broken. Due to that it was officially
retracted from the competition.

But in the past years the algorithm was improved, presented at a few conferences
and in 2011 the new version of StreamHash was discussed at the Cryptography and
Security Systems Conference.

2 StreamHash 1 construction

The whole family of StreamHash function is based on basically the same construction
with just minor tweaks. We will start the presentation with the most basic 128-bit
StreamHash 1.

2.1 Mode of operation

StreamHash is an untypical algorithm using the Markle-Damgard construction. The
message block is disproportionally small in comparison to the internal sate (chaining
value) of the function. Additionally, the padding function is dependent on only the last
block of the message.

M M, M
v :
Y
IV H H
—» F H, » I - “ F —D-H" Fin 11 »

Fig. 1. StreamHash mode of operation.

In every compression function application only 8 bits of the message (blocks
My, My, ..., M,) are transformed, and the output is equal to the desired hash size
(Hy,Hs,...,H,, H - which should be a multiple of 32). The initial value (IV) of the
algorithm is a vector of zeros of length equal to the hash size.

After the final block of the message is transformed a finalization function working
only on the state H, is applied. It consists of several applications of compression
function with the message being replaced with chosen bits of the internal state. After
that final mixing is applied and the produced state is the algorithm output.

2.2 Compression function construction

Every block of message is transformed by a compression function which consists of
several mini-transformations (NLF) working in parallel. Every mini-transformation
has 3 inputs:

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 13:21:30

Mateusz Buczek

e chaining value input of length 32,
e message input of length 8,
e distinguishing input of length 8.
The chaining value inputted into the compression function is divided into n 32-bit
blocks and processed in parallel with the NLF transformation.
The only difference between the parallel lines of transformation is the 8-bit lane
number.

» NLF —»

UJ

Fig. 2. StreamHash compression function for the hash length of 128 bits.

2.3 NLF transformation

NLF transformation works as follows:

e 8 least significant bits of the internal state word inputted into the transfor-
mation are xored with the lane number and the message block,

e S-box function is performed on the xor output,

e output of the xor is xored into the internal state inputted to the transforma-
tion and then outputted as a result.

S-box table used in NLF looks like this:

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 17/01/2026 13:21:30

28

Attacks on StreamHash 2

8920430 cal®7c@l 88978567 32alfl2b B7eabbfe 62abBed7 acaa62ab c5873876
419274ca ff7d1382 78clddc9 4716ff7d 61d82dfa c@lfcb59 ele@al47 43648cfe
e52a95ad 005248d4 cd803aa2 4eb679af adldde9c e23b49ad4 01094072 bffdbace
66d3a9b7 b72854fd 4486dc93 4568f726 7f6b@536 5e9d753f 6e4568f7 6db34bcc
95ad1834 aB6f@6a5 9635d9e5 2332alfl 670aa371 dfef6ld8 bd4c6c731 1fcb5915
a789f204 8db4c6ec7 68F72623 c7312ec3 2a95adl8 d@609096 d27f6be5 586cbB8%a
24a6c¢507 c1ddc912 7abdcd86 5a4698e2 72l1ee9eb b34bcc27 b89a37b2 585e9d75
107c¢0109 8bceec83 ©aa3712c 803aa2la b679aflb b9db9fée edaebeSa f8elebal
fb630052 4698e23b 2c42f6d6 eb3cb6db3 6f@6a529 138211e3 cb59152f Bacf5f84
fc55ed53 37b23edl 6ffb636@ befc55ed d3a9b72e@ 94e7befc Sbe8c8bl ¢912395b
f577026a bac®lfcb 69ed4aebe ddc91239 42f6d64a ©6a5294c 77@26a58 f37eBact
di15170de ebY9edfef 819lacaa 38760ffb 3aa2lad3 821le34d 312ec333 c4889785
db9f6ed5 28ee99f9 e6f57702 d5b5d27f 55ed535@ lee9eb3c 56bSdbSf 3f25c2a8
b23ed151 85670aa3 7c@10940 738f738f 5f844f92 6a585e9d abc50738 198eebfs
e34d65bc 152f4eb6 395b57da 2054fd21 9274cale a@4716ff eed7edf3 ©3d5b5d2
da7abdcd eabbfe®c 16ff7d13 3d8bceec 7eBacf5f 1lcc48897 79aflb44 648cfel7
de9clcc4 dédaSca7 d7@df37e 4bcc273d a2lad364 a5294c5d 5248d419 8f738f73
517@deee bbfe@c8l cf5f844f 1b4486dc 86dc9322 35d9e52a 78d6608968 9clcc488
aebe5ad6 183428ee 53506cb8 d82dfald 49adldde ©26a585e alfl2beb bl56b9db
41f8ele@ 7262332 bdcd883a 9785670a 98e23b49 c2a86f06 6be853624 f6d6daSc
753f25c2 c33366d3 ©c819lac 9lacaab2 feBcB8191 d9e52a95 99f969e4 2f4eb679
932294e7 149be8c8 6cb89a37 e9eb3ced 294c5d8d 217b@3d5 59152f4e 3366d3a9
ed53506¢c e8c8bl56 3008bff4 fOl787ea 1lle34d65 S5b57da7a f969%edae 12043008
e8bff4ba 4d65bc78 9d753f25 c6c7312e 1ldde9clc ©53624a6 4c5d8db4 5d8db4ce
fald9be8 bc78cldd 84419274 f4bac®lf 3c6db34b 57da7abd cc273d8b edf37eBa
3ed15170 9a37b23e 7bB3d5b5 2ec33366 63005248 fd217be3 712c42f6 aa62able
9edfef6l 60909635 12395b57 c8bl56b9 aflb4486 65bc78cl 3b49a4ld fl2beboe
8341f8el ec8341f8 be5a4698 7d138211 ee99f969 909635d9 48d4198e dc932294
2dfald9b ©948721e 8cf01787 40721ee9 273d8bce e7b0fc55 adl83428 2bebSedf
1a43648c 262332al 4a5ca789 abBed76d 643008bf d4198ee6 a3712c42 9f6e4568
ceecB8341 3428ee99 ef6ld82d ©738760f 2294e7b8 a9b72854 1787eabb eBab4716

As we can see in every lane of compression function transformation the NLF mini-
transformation is the same and the only difference between the lanes is the number
used in xor. But due to the fact that the output of the xor is transformed by the
S-box operation, even the slightest change in the lane number will affect all the bits of
output.

It is not stated in the supporting documentation how to deal with hash lengths
larger than 2kB (the lane number in the binary code will will require more than 8
bits). But hash sizes like this will not be used in the near future and our attack should
be independent of the numbering used.

Below there is the NLF transformation scheme:

2.4 Padding

Padding in StreamHash consists of at most 16 bits. The last length mod 8 bits of the
message are appended with zeroes to a full byte. Then another byte which contains the
number of bits of the message that were used to create the previous byte is appended to
the message. So if the message has 17 bits, then 14 zeroes will be added (7 to complete
the byte and 7 as the start of a new byte) and then a 1 will be appended at the end
(number of bits used in previous byte 1=17 mod 8).

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 13:21:30

Mateusz Buczek

LSB —*XOR—* S-box

i1 o\
~XOR) >

Fig. 3. StreamHash 1NLF minitransformation scheme.

2.5 Finalization function

After a final call of compression function (on the second byte of padding), a vector
is built from lower 16 bits of each internal state word (in the high-endian byte order).
Then this vector is used as another padding in several new calls of compression function.

Then the state words are added modulo 232 to each other (the word i is added to
the word ¢ + 1 and the last word is added to the first one) 3 times. This is the first
diffusion operation.

After that the state vector of 32-bit integers is transformed to a vector of 8-bit bytes
with the high-endian byte order.

At the end diffusion operation similar to the first one is preformed. Its output is the
hash function output.

3 Attacks on StreamHash 1

Several works on cryptanalysis were preformed by the community before the first
SHA-3 Candidate Conference. The most significant achievement was finding a practical
collision by Tor E. Bjorstad from University of Bergen, Norway. This caused the author
to resign from further participation in the contest.

4 StreamHash 2

As stated before in 2011 a new version of the algorithm was presented. It includes
a few changes which were supposed to strengthen the algorithm against the proposed
attacks.

The biggest change is adding a Pseudo-Random Number Generator XORShift to the
design. The algorithm was proposed by Marsaglia in 2003. It has a period of 264 — 1
based on a 64 bit internal state, and only 32 least significant bits of its output are
taken to the function.

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 17/01/2026 13:21:30

30

Attacks on StreamHash 2

The output of the PRNG is added modulo 232 to the previous state word and the
S-box output. The adding replaces the xor operation from StreamHash 1.

This change is supposed to protect the design from falling into cycles like the previous
versions, but as we will show it only increases the cycle period and the internal state
collision is still quite easy to find.

Changing of the NLF transformation also affects the finalization function and this
new feature is a key to StreamHash 2 security.

LSB —XOR—= S-box 1

H, i T -
i ADD

PRNG())

Fig. 4. StreamHash 2 NLF mini-transformation scheme.

5 Attacks on StreamHash 2

The proposed attack works in two parts. First we create an internal state of the
algorithm with desired properties by injecting a few first bytes of the message (prefix).
Then we iterate the algorithm with carefully chosen last bytes of message (postfix)
until a collision appears.

5.1 Basic idea of attack

The basic idea of the attack is to find an internal state of the function that will not
be changed in the iteration of the algorithm, or at least a part of it will stay unchanged.

Finding a fixed-point for the compression function is almost impossible due to the fact
that depending on the output of PRNG we use a different function in every iteration
(not completely different, but one of 232 functions). Moreover, the functions repeat
themselves in the same order once per the PRNGs period.

We got only 256 different message blocks and at least 232
not even cover 1% of the outputs in the single compression function iteration.

What we will try to show is that we do not need a whole internal state collision in
one iteration but a near fixed-point. If we are able to keep a few least significant bits
of each of the internal state words unchanged, we should be able to mount a collision
attack on the whole state.

internal states so we can

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 17/01/2026 13:21:30
Mateusz Buczek 31

5.2 Internal state requirement

Of course, the least significant bits of the state we want to keep can not be chosen
randomly. We need them to fulfill a simple requirement that for every state word they
xor to the same 8-bit vector with the state word number.

If this happens, the xor input of the S-box function is the same for all the parallel
computational lanes. It is simply the xor of the message and the chosen 8-bit vector
results from the requirement.

This will give us a full control over the S-box function and as a result, a control over
the next 8 least significant bits of the state.

| 24bits | 8bits | 24bits | 8bits | 24bits | Sbits | 24bits | Sbits |

Lengths Tnput
‘ random ‘ 1 ‘ random ‘ | 2 ‘ random | 3 ‘ random ‘ 4 ‘
Value .
Xor with lane
number
‘ random ‘ 0 ‘ random ‘ | 0 ‘ random | 0 ‘ random ‘ 0 ‘
Value .
Xor with chosen
message

‘ random ‘ chosen ‘ random ‘ chosen ‘ random | chosen ‘ random ‘ chosen ‘

Value
Adding the known
output of PRNG
~_
‘ random ‘ 0 ‘ random ‘ 0 ‘ 1'andqm | 0 ‘ random ‘ 0 ‘
Value
Adding the input
~_
‘ random ‘ 1 ‘ random ‘ 2 ‘ random | 3 ‘ random ‘ 4 ‘
Value .

Output

T~

Fig. 5. Data flow in the compression function.

The compression function for every lane looks like this:

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 17/01/2026 13:21:30
32 Attacks on StreamHash 2

M.

]

|

const 77N

— XOI}.!;P S-box 1

Hj-1

= ADD —

TPRNGU}

Fig. 6. StreamHash 2 NLF mini-transformation scheme while using a correct
internal state for the attack.

To be honest, as we get a full control over M}, even the xor function is non existent
and can be included into S-box.

—L—— S-box

= > ADD —>

}RNGQ)

Fig. 7. Stream hash 2 NLF transformation true working scheme while using
the correct internal state.

5.3 Choosing the prefixes

We do not need to choose a specific prefix. What we will do is to iterate through
every message of the length 8n for 32n-bit state size which should result in finding at
least one state vector fulfilling the requirements.

5.4 TIterating the function (Choosing postfixes)

As we know the goal of the attack is to keep the 8 least significant bits unchanged
during the iteration. The only place those bits could be changed is the addition mod
232 at the iteration end. The addition has 3 inputs:

e previous state word,

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 13:21:30

Mateusz Buczek

e Pseudo-Random Number Generator output,
e message block (not exactly, but as shown above the third input can be sim-
plified to act just like the message block).

The idea is to negate the influence of adding the PRNGs output by choosing a correct
S-box output. We can easily find a message block that will make the addition of the
two to be equal to 0 modulo 2% (we know the previous state of PRNG so we can easily
calculate the output of current iteration and choose correct S-box output). So every
compression function call will just change 24 most significant bits of every state word.

But not only will it leave the least significant bits unchanged, it will also change all
the most significant bit in every word in the same way. The change will simply be the
addition of a random 24 bit number.

So when we look at the full state of the function, every iteration is just the addition
of a random number to 24 most significant bits of every word.

When we add random numbers modulo 224 we should get the same result once per
924 924

every + 1 iterations. This results in a collision of the internal state after about

iterations.

5.5 Attack on full function

Due to the fact that PRNGs state inflicts the finalization round of the algorithm, we
require that this state is the same before we start this round. The same state appears
once every 254 — 1 iterations. So we can estimate that we get a collision of both internal
224264 — 288

states (of the compression function and the PRNGs) in about iterations.

5.6 Attack complexity and trade-offs

The attack complexity need to be divided into two parts:

e finding a correct message prefix,
e iterating a function to find a collision.

Complexity of finding a prefix depends only on the desired hash length. We need to
have an internal state fulfilling the attack criteria. This means that n internal state
words need to have the least significant bytes set to correct values. The probability
of setting a single byte is 27® and as the first byte can be set to any value (only the
other n-1 bytes need to be set in accordance) . So the probability of getting a correct
internal state by injecting random messages is 278". So for 1024-bit hash size we need
about 22°6 hash function calls to get the correct internal state.

Another way of finding the correct prefix is to use the same idea as in the second part
of the attack. First we choose the first 8 bits of the message to set 8 least significant
bits of first lane to desired state (any state will do, but as we have full control over
it, we can choose the one we like). Then we iterate the function with message blocks
chosen in the same way as in the second part of the attack, so that those 8 bits don’t
change. We do that until the least significant bits of all lanes are set to correct values
(presented in prefix section).

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 17/01/2026 13:21:30

34

Attacks on StreamHash 2

Each least significant byte is set with probability 278 but as soon as it hits the
correct value it won’t change in next iterations. This means that the complexity of
finding the correct prefix can be lowered to 28 compression function calls (as every byte
is independent), but at the cost of making the message longer. Still the prefix length
is nothing compared to postfix length, so this attack is preferred.

This means that the complexity of finding the prefix is either 287 if we want it to
be as short as possible or 2% if we can use a longer one. For postfix the complexity
is constant and about 2%%. So the full attack should need slightly more then 2%
compression function calls

This means that this attack can be applied to any hash size longer or equal to 192
bits and easily breaks both the required SHA-3 lengths.

Attacks memory complexity is almost non existent as we need to keep only one state
size, and for longer messages we only need to keep their length as we can recreate them
with ease.

6 Supposed attack application to StreamHash 3

In the same paper as StreamHash 2, one can find a proposal of even a better version
of the algorithm. StreamHash 3 is supposed to be more secure against side channel
attacks and faster in parallel implementation than its predecessor.

The solution for the planned StreamHash3 is to replace S-BOXes
with the constructions based on shifts («and>) and modular ad-
dition should allow to process input stream word-by-word instead
of octet-by-octet, and to implement non-linearity with the SIMD
instructions.

Using different octet-by-octet transformation with the rest of the algorithm un-
changed leads to the same problem. The flaw that was shown in this paper is based
on the untypical parallel construction of the algorithm, not on the underlying S-Box.
So unless there are more severe changes to the algorithm, then those involved in this
attack should still hold.

Using the bijective word-by-word transformation, it may be trivially easy to keep
the selected lane of transformation unchanged. We just need to select such an input
to the transformation (which will replace the S-box) of one of the lanes that produces
the output which added to the PRNGs output in current round gives us zero. This
will lead to the collision-attacks on the internal state with the complexity of 232.

This attack can also be applied to the full function using the same framework as in
the attacks on StreamHash 2, but with much lower complexity as we get a full internal
state collision in every iteration. This means that we will get a full function collision
in about 24 (PRNGs period).

And this is just a generic attack that can be derived from the hash function design
without any knowledge of the transformation itself (we only assume that the trans-
formation is bijective, if not it will just appear after a few rounds, but non bijective

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 17/01/2026 13:21:30
Mateusz Buczek 35

transformation will lead to other problems). If the transformation has some additional
features, it may be even easier to mount the attack.

7 Conclusions

We have shown that the StremHash family is still insecure. The changes made
between StreamHash 1 and StreamHash 2 do not improve the security of the design
to the desired level. Finding a collision is still possible below the birthday bound with
the complexity 23% for the hash sizes of m of at least 192 bits.

The round function of the algorithm is totally insecure and it is quite easy to find
the internal state fixed points. The method of creating them can lead to new attacks
on the algorithm.

The whole security of the algorithm depends on the impact that newly included
PRNG has on a finalization function but after some additional research we believe the
effect and the attack complexity could be lowered.

But even without any improvements, our attack shows that the StreamHash com-
pressions function construction is not a good starting point to create a good hash
function. It sacrifices too much of the security for the ease of algorithm parallelisation.

References

[1] Trojnara M., StreamHash Algorithm Specifications and Supporting Documentation, SHA-3 Sub-
mission package (2008).

[2] Trojnara M., Evolution of the StreamHash Hash Function Family, Annales UMCS Informatica
11(2) (2011): 25; DOI: 10.2478 /v10065-011-0013-8.

http://www.tcpdf.org

