
Annales UMCS Informatica AI XII, 3 (2012) 25–35

DOI: 10.2478/v10065-012-0024-0

Attacks on StreamHash 2

Mateusz Buczek1∗

1Institute of Mathematics and Cryptology, Faculty of Cybernetics,

Military University of Technology

Kaliskiego 2, 00-908 Warsaw, Poland

Abstract – StreamHash 2 is a hash function proposed by Michał Trojnara at

the Cryptography and Security Systems in 2011 Conference. This algorithm is a

member of StreamHash family which was first introduced in 2008 during the SHA-3

Competition. In this paper we will show collision attacks on the internal state of

the StreamHash 2 hash function with complexity about 2
8n for the 32n-bit version

of the algorithm and its reduced version with complexity 2
8n. We will also show

its application to attacking the full StreamHash 2 function (finding a collision on

all output bits) with complexity about 2
88 . We will try to show that any changes

made to the construction (for instance the ones proposed for StreamHash 3) will

have no effect on the security of the family due to critical fault build into the

compression function.

1 StreamHash and the SHA-3 Competition

On November 2nd, 2007 the National Institute of Standards and Technology (NIST)

announced a hash function competition for a new SHA-3 (Secure Hash Algorithm).

The goal of the competition was to replace the older constructions such as SHA-1 and

SHA-2 in all their variants with a new, more secure and faster algorithm. Another goal

of the competition was to improve knowledge in the field of hash functions and find

new attacks and new constructions for hash functions.

There were over 50 proposed algorithms and 51 of them were selected for the first

round. One of those 51 candidates was StreamHash (now, due to the family develop-

ment, called StreamHash 1) proposed by Michał Trojnara from Warsaw University of

Technology.

∗mbuczek@wat.edu.pl

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 13:21:30

UM
CS



26 Attacks on StreamHash 2

Unfortunately, before the First SHA-3 Candidate Conference which was held in Leu-

ven in late February, 2009 the algorithm was broken. Due to that it was officially

retracted from the competition.

But in the past years the algorithm was improved, presented at a few conferences

and in 2011 the new version of StreamHash was discussed at the Cryptography and

Security Systems Conference.

2 StreamHash 1 construction

The whole family of StreamHash function is based on basically the same construction

with just minor tweaks. We will start the presentation with the most basic 128-bit

StreamHash 1.

2.1 Mode of operation

StreamHash is an untypical algorithm using the Markle-Damgard construction. The

message block is disproportionally small in comparison to the internal sate (chaining

value) of the function. Additionally, the padding function is dependent on only the last

block of the message.

Fig. 1. StreamHash mode of operation.

In every compression function application only 8 bits of the message (blocks

M1,M2, . . . ,Mn) are transformed, and the output is equal to the desired hash size

(H1, H2, . . . , Hn, H - which should be a multiple of 32). The initial value (IV) of the

algorithm is a vector of zeros of length equal to the hash size.

After the final block of the message is transformed a finalization function working

only on the state Hn is applied. It consists of several applications of compression

function with the message being replaced with chosen bits of the internal state. After

that final mixing is applied and the produced state is the algorithm output.

2.2 Compression function construction

Every block of message is transformed by a compression function which consists of

several mini-transformations (NLF) working in parallel. Every mini-transformation

has 3 inputs:

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 13:21:30

UM
CS



Mateusz Buczek 27

• chaining value input of length 32,

• message input of length 8,

• distinguishing input of length 8.

The chaining value inputted into the compression function is divided into n 32-bit

blocks and processed in parallel with the NLF transformation.

The only difference between the parallel lines of transformation is the 8-bit lane

number.

Fig. 2. StreamHash compression function for the hash length of 128 bits.

2.3 NLF transformation

NLF transformation works as follows:

• 8 least significant bits of the internal state word inputted into the transfor-

mation are xored with the lane number and the message block,

• S-box function is performed on the xor output,

• output of the xor is xored into the internal state inputted to the transforma-

tion and then outputted as a result.

S-box table used in NLF looks like this:

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 13:21:30

UM
CS



28 Attacks on StreamHash 2

As we can see in every lane of compression function transformation the NLF mini-

transformation is the same and the only difference between the lanes is the number

used in xor. But due to the fact that the output of the xor is transformed by the

S-box operation, even the slightest change in the lane number will affect all the bits of

output.

It is not stated in the supporting documentation how to deal with hash lengths

larger than 2kB (the lane number in the binary code will will require more than 8

bits). But hash sizes like this will not be used in the near future and our attack should

be independent of the numbering used.

Below there is the NLF transformation scheme:

2.4 Padding

Padding in StreamHash consists of at most 16 bits. The last length mod 8 bits of the

message are appended with zeroes to a full byte. Then another byte which contains the

number of bits of the message that were used to create the previous byte is appended to

the message. So if the message has 17 bits, then 14 zeroes will be added (7 to complete

the byte and 7 as the start of a new byte) and then a 1 will be appended at the end

(number of bits used in previous byte 1=17 mod 8).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 13:21:30

UM
CS



Mateusz Buczek 29

Fig. 3. StreamHash 1NLF minitransformation scheme.

2.5 Finalization function

After a final call of compression function (on the second byte of padding), a vector

is built from lower 16 bits of each internal state word (in the high-endian byte order).

Then this vector is used as another padding in several new calls of compression function.

Then the state words are added modulo 232 to each other (the word i is added to

the word i + 1 and the last word is added to the first one) 3 times. This is the first

diffusion operation.

After that the state vector of 32-bit integers is transformed to a vector of 8-bit bytes

with the high-endian byte order.

At the end diffusion operation similar to the first one is preformed. Its output is the

hash function output.

3 Attacks on StreamHash 1

Several works on cryptanalysis were preformed by the community before the first

SHA-3 Candidate Conference. The most significant achievement was finding a practical

collision by Tor E. Bjorstad from University of Bergen, Norway. This caused the author

to resign from further participation in the contest.

4 StreamHash 2

As stated before in 2011 a new version of the algorithm was presented. It includes

a few changes which were supposed to strengthen the algorithm against the proposed

attacks.

The biggest change is adding a Pseudo-Random Number Generator XORShift to the

design. The algorithm was proposed by Marsaglia in 2003. It has a period of 264 − 1

based on a 64 bit internal state, and only 32 least significant bits of its output are

taken to the function.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 13:21:30

UM
CS



30 Attacks on StreamHash 2

The output of the PRNG is added modulo 232 to the previous state word and the

S-box output. The adding replaces the xor operation from StreamHash 1.

This change is supposed to protect the design from falling into cycles like the previous

versions, but as we will show it only increases the cycle period and the internal state

collision is still quite easy to find.

Changing of the NLF transformation also affects the finalization function and this

new feature is a key to StreamHash 2 security.

Fig. 4. StreamHash 2 NLF mini-transformation scheme.

5 Attacks on StreamHash 2

The proposed attack works in two parts. First we create an internal state of the

algorithm with desired properties by injecting a few first bytes of the message (prefix).

Then we iterate the algorithm with carefully chosen last bytes of message (postfix)

until a collision appears.

5.1 Basic idea of attack

The basic idea of the attack is to find an internal state of the function that will not

be changed in the iteration of the algorithm, or at least a part of it will stay unchanged.

Finding a fixed-point for the compression function is almost impossible due to the fact

that depending on the output of PRNG we use a different function in every iteration

(not completely different, but one of 232 functions). Moreover, the functions repeat

themselves in the same order once per the PRNGs period.

We got only 256 different message blocks and at least 232 internal states so we can

not even cover 1% of the outputs in the single compression function iteration.

What we will try to show is that we do not need a whole internal state collision in

one iteration but a near fixed-point. If we are able to keep a few least significant bits

of each of the internal state words unchanged, we should be able to mount a collision

attack on the whole state.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 13:21:30

UM
CS



Mateusz Buczek 31

5.2 Internal state requirement

Of course, the least significant bits of the state we want to keep can not be chosen

randomly. We need them to fulfill a simple requirement that for every state word they

xor to the same 8-bit vector with the state word number.

If this happens, the xor input of the S-box function is the same for all the parallel

computational lanes. It is simply the xor of the message and the chosen 8-bit vector

results from the requirement.

This will give us a full control over the S-box function and as a result, a control over

the next 8 least significant bits of the state.

Fig. 5. Data flow in the compression function.

The compression function for every lane looks like this:

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 13:21:30

UM
CS



32 Attacks on StreamHash 2

Fig. 6. StreamHash 2 NLF mini-transformation scheme while using a correct

internal state for the attack.

To be honest, as we get a full control over Mj , even the xor function is non existent

and can be included into S-box.

Fig. 7. Stream hash 2 NLF transformation true working scheme while using

the correct internal state.

5.3 Choosing the prefixes

We do not need to choose a specific prefix. What we will do is to iterate through

every message of the length 8n for 32n-bit state size which should result in finding at

least one state vector fulfilling the requirements.

5.4 Iterating the function (Choosing postfixes)

As we know the goal of the attack is to keep the 8 least significant bits unchanged

during the iteration. The only place those bits could be changed is the addition mod

232 at the iteration end. The addition has 3 inputs:

• previous state word,

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 13:21:30

UM
CS



Mateusz Buczek 33

• Pseudo-Random Number Generator output,

• message block (not exactly, but as shown above the third input can be sim-

plified to act just like the message block).

The idea is to negate the influence of adding the PRNGs output by choosing a correct

S-box output. We can easily find a message block that will make the addition of the

two to be equal to 0 modulo 28 (we know the previous state of PRNG so we can easily

calculate the output of current iteration and choose correct S-box output). So every

compression function call will just change 24 most significant bits of every state word.

But not only will it leave the least significant bits unchanged, it will also change all

the most significant bit in every word in the same way. The change will simply be the

addition of a random 24 bit number.

So when we look at the full state of the function, every iteration is just the addition

of a random number to 24 most significant bits of every word.

When we add random numbers modulo 224 we should get the same result once per

every 224 + 1 iterations. This results in a collision of the internal state after about 224

iterations.

5.5 Attack on full function

Due to the fact that PRNGs state inflicts the finalization round of the algorithm, we

require that this state is the same before we start this round. The same state appears

once every 264−1 iterations. So we can estimate that we get a collision of both internal

states (of the compression function and the PRNGs) in about 224264 = 288 iterations.

5.6 Attack complexity and trade-offs

The attack complexity need to be divided into two parts:

• finding a correct message prefix,

• iterating a function to find a collision.

Complexity of finding a prefix depends only on the desired hash length. We need to

have an internal state fulfilling the attack criteria. This means that n internal state

words need to have the least significant bytes set to correct values. The probability

of setting a single byte is 2−8 and as the first byte can be set to any value (only the

other n-1 bytes need to be set in accordance) . So the probability of getting a correct

internal state by injecting random messages is 2−8n. So for 1024-bit hash size we need

about 2256 hash function calls to get the correct internal state.

Another way of finding the correct prefix is to use the same idea as in the second part

of the attack. First we choose the first 8 bits of the message to set 8 least significant

bits of first lane to desired state (any state will do, but as we have full control over

it, we can choose the one we like). Then we iterate the function with message blocks

chosen in the same way as in the second part of the attack, so that those 8 bits don’t

change. We do that until the least significant bits of all lanes are set to correct values

(presented in prefix section).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 13:21:30

UM
CS



34 Attacks on StreamHash 2

Each least significant byte is set with probability 2−8 but as soon as it hits the

correct value it won’t change in next iterations. This means that the complexity of

finding the correct prefix can be lowered to 28 compression function calls (as every byte

is independent), but at the cost of making the message longer. Still the prefix length

is nothing compared to postfix length, so this attack is preferred.

This means that the complexity of finding the prefix is either 28n if we want it to

be as short as possible or 28 if we can use a longer one. For postfix the complexity

is constant and about 288. So the full attack should need slightly more then 288

compression function calls

This means that this attack can be applied to any hash size longer or equal to 192

bits and easily breaks both the required SHA-3 lengths.

Attacks memory complexity is almost non existent as we need to keep only one state

size, and for longer messages we only need to keep their length as we can recreate them

with ease.

6 Supposed attack application to StreamHash 3

In the same paper as StreamHash 2, one can find a proposal of even a better version

of the algorithm. StreamHash 3 is supposed to be more secure against side channel

attacks and faster in parallel implementation than its predecessor.

The solution for the planned StreamHash3 is to replace S-BOXes

with the constructions based on shifts (≪and�) and modular ad-

dition should allow to process input stream word-by-word instead

of octet-by-octet, and to implement non-linearity with the SIMD

instructions.

Using different octet-by-octet transformation with the rest of the algorithm un-

changed leads to the same problem. The flaw that was shown in this paper is based

on the untypical parallel construction of the algorithm, not on the underlying S-Box.

So unless there are more severe changes to the algorithm, then those involved in this

attack should still hold.

Using the bijective word-by-word transformation, it may be trivially easy to keep

the selected lane of transformation unchanged. We just need to select such an input

to the transformation (which will replace the S-box) of one of the lanes that produces

the output which added to the PRNGs output in current round gives us zero. This

will lead to the collision-attacks on the internal state with the complexity of 232.

This attack can also be applied to the full function using the same framework as in

the attacks on StreamHash 2, but with much lower complexity as we get a full internal

state collision in every iteration. This means that we will get a full function collision

in about 264 (PRNGs period).

And this is just a generic attack that can be derived from the hash function design

without any knowledge of the transformation itself (we only assume that the trans-

formation is bijective, if not it will just appear after a few rounds, but non bijective

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 13:21:30

UM
CS



Mateusz Buczek 35

transformation will lead to other problems). If the transformation has some additional

features, it may be even easier to mount the attack.

7 Conclusions

We have shown that the StremHash family is still insecure. The changes made

between StreamHash 1 and StreamHash 2 do not improve the security of the design

to the desired level. Finding a collision is still possible below the birthday bound with

the complexity 288 for the hash sizes of m of at least 192 bits.

The round function of the algorithm is totally insecure and it is quite easy to find

the internal state fixed points. The method of creating them can lead to new attacks

on the algorithm.

The whole security of the algorithm depends on the impact that newly included

PRNG has on a finalization function but after some additional research we believe the

effect and the attack complexity could be lowered.

But even without any improvements, our attack shows that the StreamHash com-

pressions function construction is not a good starting point to create a good hash

function. It sacrifices too much of the security for the ease of algorithm parallelisation.

References

[1] Trojnara M., StreamHash Algorithm Specifications and Supporting Documentation, SHA-3 Sub-

mission package (2008).

[2] Trojnara M., Evolution of the StreamHash Hash Function Family, Annales UMCS Informatica

11(2) (2011): 25; DOI: 10.2478/v10065-011-0013-8.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 13:21:30

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

