Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 13:21:30

Annales UMCS
K R 012) Informatica
nnales UMCS Informatica AI XII, 3 (2012) 11-24 . .
DOI: 10.2478 /v10065-012-0025-2 Lublin-Polonia
Sectio Al

http://www.annales.umcs.lublin.pl/

Parameterized Hash Functions

Tomasz Bilski'*, Krzysztof Bucholc'f, Anna Grocholewska-Czurylo',
Janusz Stoklosa!$

Institute of Control and Information Engineering, Poznan University of Technology
pl. Marii Sktodowskiej Curie 5, 60-965 Poznan, Poland

Abstract — In this paper we describe a family of highly parameterized hash functions. This param-
eterization results in great flexibility between performance and security of the algorithm. The three
basic functions, HaF-256, HaF-512 and HaF-1024 constitute this hash function family. Lengths of
message digests are 256, 512 and 1024 bits respectively. The paper discusses the details of functions

structure. The method used to generate function S-box is also described in detail.

1 Introduction

Hash functions are used to generate a short form of an original message of any
size. This short form is called a hash of a message or a message digest and is used in
many cryptographic applications including message integrity verification and message
authentication, in which case a keyed hash function is used.

Hash function h operates on a message m of an arbitrary length. The result is a
hash value h(m) which has a fixed size.

A lot of recent cryptographic research has been devoted to methods of generating
new hash functions which resulted for example in 64 proposals being submitted to the
NIST SHA-3 competition for a new hash function in 2008 [1].

The objective while designing the HaF family of hash function was obviously the
highest security while maintaining the best possible performance, however, at the same
time the function should allow a flexible balance between security and performance
which was achieved through parameterization.

*tomasz.bilski@put.poznan.pl
fkrzysztof.bucholc@put.poznan.pl
fanna.grocholewska-czurylo@put.poznan.pl
$janusz.stoklosa@put.poznan.pl

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 13:21:30

12

Parameterized Hash Functions

The organization of this paper is the following: In Section 2 we describe the family
of the HaF hash functions in general. In Section 3 we concentrate on the details of
S-box generation along with our reasoning for designing and choosing this particular
method. Reference implementation is briefly described in Section 4. Finally Section 5
contains the concluding remarks.

2 Parameterized family HaF of hash functions

2.1 Design Principles

The following assumptions were taken into account during the design process:

family should be parameterized;

message digest length should be selectable;

flexibility between performance and security should be guaranteed;

iteration structure and compression function should be resistant to known

attacks;
e its iteration mode should be HAIFA (it provides resistance to long message
second preimage attacks, and handles hashing with a salt) [2, 3].

2.2 Description of HaF

The HaF family is formed of the three hash functions: HaF-256, HaF-512 and HaF-
1024, producing hash values (message digests) with the length equal to 256, 512 and
1024 bits, respectively. The general model of HaF family is presented in (Fig. 1). After
formatting the original message m we have the message M. We divide M into blocks
Mo, My, ..., M1, k € {1,2,...}, and each block M; is processed with the salt s by the
iterative compression function ¢ [2|. The output Hy, is the final result of the function.

2.2.1 Notation

In the paper we use the following notation:
a ® b — multiplication mod (2™ + 1) of n-bit non-zero integers a and b;
A, — working variable, r = 0,1,...,15;
F; — step function, j =0,1,...,15;
GF(2) — Galois field of characteristic 2;
length — bitstring representing the length of the original message m, |length| = 128;
Isby(v) — q least significant bits of the string v;
IV — initial value;
m — original message, |m| <
M — formatted message;
n — length of the working variable A, (16 or 32 or 64 bits);
s — salt, |s| = 16n;
|v] = length in bits of a string v;

128.
277

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 17/01/2026 13:21:30
Tomasz Bilski, Krzysztof Bucholc, Anna Grocholewska-Czurylo...

v

Append padding bits

v

Append length string

Formatted message
M= Mo || M || .|| M

Ho=1V L Mi
@ q—s
H;
Hisq
h(m) = Hx

Fig. 1. General model for HaF.

v < t — t-bit left rotation of a string v, |v| = 16n;

v @ w — bitwise XOR of strings v and w, |v| = |w;

v B w — addition mod 2™ of integers represented (in base 2) by strings v and w;

p1(x) @ pa(2z) — multiplication of polynomials p; and ps modulo an irreducible polyno-
mial R(z);

27 — bitstring of the length ¢; 2° means the empty string;

(p — compression function;

|| — concatenation of bitstrings.

2.2.2 Message Padding

The original message m has to be formatted before hash value computation begins.
The length of formatted message should be a multiple of 16n bits. The message m is
formatted by appending to it a single 1-bit and as few 0-bits as necessary to obtain
a string whose bit-length increased by 128 bits is a multiple of 16n. Finally, we must
additionally append the original message length. As a result, we obtain the formatted
message M = My|| M| ... ||My-1 for some positive integer k, where M; is a block of M.

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 17/01/2026 13:21:30

14

Parameterized Hash Functions

Therefore, M = m/||10"|| length, where ¢ is the smallest nonnegative integer necessary
to format m, and |M| = 16nk.

2.2.3 Compression Function

In the proposed schema the compression function is defined as follows: ¢ : {0, 1}* x
{0,1}" x {0,1}” — {0,1}”. The integers u, n and o are the lengths of block M;,
chaining variable H;, and salt s, respectively, where |M;| = |H;| = |s| = 16n and
1 =0,1,...,k”1. The integer p is the length of the resulting hash value h(m) = Hy,
|h(m)| = 16n.

The block M; is processed in two rounds. The length of the block equals 16n bits,
where n is a parameter depending on the hash value we want to obtain. For HaF-256,
HaF-512 and HaF-1024 the parameter n equals 16, 32 and 64 bits, respectively. The
parameter n indicates, in fact, the length of the working variable A, used in the step
function.

The method of one block processing is presented in Fig. 2. M,;, H; and s are the
inputs for ¢. Before processing in round #[, [= 1 or 2, the block M; is modified. In
the round #1 four least significant bits of IV; = M; @ s indicate the number of bits the
string V; is rotated to the left: N = N; < lsby(1V;). Before processing in the round
#2, the blocks are permuted: N; = H} and H; = N;. After two rounds, the value H/
of chaining variable is split into 16 subblocks Ag, A1, ..., A15 of equal lengths. Each of
them is modified by adding (mod 2™) the respective input subblock of H; which is the
input to the round #1. Next, all subblocks Ag, Ay, ..., A15 are concatenated giving
Hi+1 = AOHAlH o oW HA15.

M o N N N, As o Ais
T § ox]
s
| s a2l A"_ Hiy
18- bits Round Round 3 —
#1 #2 Ay Ay

0l
H Hi Hi Hi s
16+ bits. Ao J-—lA"_

T

Fig. 2. Method of one block processing.

2.2.4 Round Function

The round function (Fig. 3) has two inputs N;, H; and two outputs N/, H.

The input block N; is rotated by the number of bits corresponding to lsbs(NN;)
and added (mod 2 of respective bits) to H;. Next the block H; & (N; < lsbs(Niy)
is divided into 16 subblocks of equal length: Ag, Ay,..., Ay5. They are processed

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 17/01/2026 13:21:30
Tomasz Bilski, Krzysztof Bucholc, Anna Grocholewska-Czurylo...

Isby(N)
—_— -
I Round #1!
N; N
tenbrs | L | | 16nbits
16 steps :
Ass Ais o
i .
H; X - % F; A) H;
tonbis | A A I 16nbis
I
| Ao Ao !
| |
' |

Fig. 3. Round function.

by a step function. After processing they are concatenated giving H}. The output
N} = N; < Isby(N;).
2.2.5 Step Function

The essential part of the round is the step function F; (Fig. 4). In each round the
step function is executed 16 times, for j =0,1,...,15.

Ag Ay Ay Ay Ay As Ag Ay Ag Ag Ay An A A Ay Ags
% ’}S‘J a []
kWl [T =T
0% -L
g
- \ ‘ré:’(.. £
muh
E"‘I
1
| -1 r'[‘\ ~
i e 1 '_.F
(n) | i —
5; "_w .
-
&
(((((((([[TTTT]
Ag Ay Ay Ay Ay As Ay Ay Ag Ay Ay Ay A A Ay Ags

Fig. 4. Step function Fj.

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 17/01/2026 13:21:30

16

Parameterized Hash Functions

Let GFx], be a set of polynomials over GF(2) of the degree smaller than n. If
w(z) € GF[x], then w(z) = wp12" ' @ wp22™ 2 @ ... O wex® © wir @ wp or sim-
ply w(z) = wpqwp-2 ... wewjwy, where w, € GF(2) for r € {0,1,...,n°1}. Let
u(z), v(z), w(z) € GF[z],. We define two operations on polynomials, addition (&)
and multiplication (®): wu(z) = v(z) ® w(x) <> up = vy Dwe, t = 1,2,...,n, and
u(z) = v(x) @ w(x) = v(zr) - w(zr) mod R(z), where R(x) is a reduction polynomial of
degree n. In the construction of the step function, the multiplication of polynomials is
performed four times: ag ® Ag, a2 ® Az, a3 ® As, and as @ A;. The polynomials ay,
as, az and as, presented in the hexadecimal form, are given in Table 1.

Table 1. Polynomials used in the step function.

Hexadecimal

" RGO representation

16 | x"“ex"ex"ex’®l | 10c21

32 | Xexex’ex’®l 1000000C5

64 | x*ox'ex’@x®1 1000000000000001B

The reduction polynomials must be irreducible; they are presented in Table 2.

Table 2. Reduction polynomials used in the step function.

n (e[2 [#F] s
16 89CB D549 0001 0001
32 ACZ2D 00ao0 0000 0000

B263 0110 0001 0001
04 EDCO 0000 0000 0000
28BY9 2500 0000 o000
Adel oooo 0Qoo0 o000
Ad403 0ool 0oal1 0001

After performing multiplications of polynomials, a few additions modulo 2 (@) and
additions modulo 2" (H) are done (Fig. 4). In each step the masking constant ¢ =
32368539391 F D066 (in the hexadecimal representation) is used. The particular value
of ¢ depends on n and j, and is indicated by a window of the length n sliding (cyclically,
if necessary) from left to right on bits of ¢. For example, if n = 16 and j = 0 then
¢ = 3236; if n = 32 and j = 31 then ¢ = 391F D066; if n = 64 and 7 = 5 then
¢ =6D6AT2723F A0OC D9 (cyclic rotation of ¢ to the left by 5 bits).

In each step a substitution SJ(-n) depending (as the masking constant ¢) on
n and j is used. It conmsists of four S-boxes Sy, Si, S and S3, each of

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 17/01/2026 13:21:30
Tomasz Bilski, Krzysztof Bucholc, Anna Grocholewska-Czurylo...

the dimension 16 x 16, working in such a way that for n = 16, S](-w)
S(jymods; for m = 32, S](-SQ) = S(jymodal|S(j+1)ymoas; and for n = 64, 5;64) =

S(jymodallS(j+1ymodallS(j+2)modall S(j+3)ymoda-
The multiplication modulo 2" + 1 of n-bit integers with the zero block corresponding
to 2™ is denoted by ® [4].

Table 3. Initial values of chaining variable.

n ng h(}“ hI ” ;?3”” ;?15

16 34D906D3E3ES298EAC26F9FD2ACSAD23
DB84B0576C82CCAS52517CF6B88B0OAY0C

32 34D906D3E3ES298EACZ6F9FD2ACSAD23
DBB84B0576C82CCAS52517CF6BESBOASOC
OBC6Y9C6F64D4B2664579E064AE220A5A
3DATC5451DA429EF2AESBF289D0F01ES

64 34D906D3E3E5298EAC26F9FD2ACSAD23
DB84B0576C82CCAS52517CF6B88BOAS0OC
OBCG69C6F64D4B2664579E064RAE220A5A
3DATC5451DA429EF2AESBF289D0OF01ES
8C6595B7B088DOCT74BB82ZBF3CFDESARAL
ABBOBBTET7425BCYEFAL101925CBB0OD528
3FAT76FCBDF7B50D776DE280C8E2EESBL
69D154F43B096994FDF52B5F148CC134

The initial values Hy = hgl|h1||hz]| .. . ||h15 of chaining variable (depending on n) are
given in Table 3 (Hy for n = 64 is obtained as the hexadecimal form of consecutive
512 decimal places after the decimal point of 7 broken up into groups of 32). Before
processing they must be assigned to Ag||A1|| Az ...]||A15 in such a way that h, = A,,
r=0,1,...,15.

2.3 Security Considerations

The round function composed of 16 steps can be represented in the equivalent form
as a linear shift register (FSR) over GF(2") generating maximum length sequences,
additionally equipped with nonlinear feedback, and clocked 16 times [3]. The corre-
sponding approach dealing with the use of feedback shift registers (over GF(2)) in the
construction of hash functions has been presented in [5]. The function defined by the
nonlinear circuit is a nonlinear 8n-argument function, n = 16 or 32 or 64. For the func-
tion with such a number of arguments (128, 256 and 512, respectively), it is difficult,
from the computational point of view, to perform the best affine approximation attack
[6]. The time needed for the attack is equal to that of the birthday attack, i.e. O(25").

The sequence produced by the nonlinear circuit is resistant to correlation attack [6].

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 13:21:30

18 Parameterized Hash Functions

3 S-boxes

3.1 Involutional S

Let F5 be the Galois field GF(2) and F3' be the n-dimensional vector space over Fj.
A substitution operation or an n x n S-box (or S-box of the size n x n) is a mapping:

S:Fy — FY (1)
where n is a fixed positive integer, n > 2. An m-argument Boolean function is a
mapping:
[FY — Fy. (2)
An S-box S can be decomposed into the sequence S = (f1, fo, ..., fn) of the Boolean
functions such that S(z1,22,...,2,) = (fi(z1,22,...,2), fo(z1, 20, .., 20),. ..,
fo(x1,22,...,2,)). We say that the functions fi, fs,..., f, are component functions
of S.

In the case of HaF’s S-box n = 16. HaF’s S-box therefore is a function that takes 16
input bits and outputs also 16 bits — it is a 16 x 16 S-box. Additionally, it is generated
in such a way that it is its own inverse, i.e., S™! = S.

HaF’s S-box has been generated using the multiplicative inverse procedure similar to
AES [7] with randomly chosen primitive polynomial defining the Galois field. Nonlin-
earity of this S-box is 32510 and its nonlinear degree is 15. Sixteen Boolean functions
that constitute this S-box have nonlinearities equal to 32510 or 32512. The degree of
each function is equal to 15.

The 16 x 16 S-box can be stored as a table of 65536 word values. The index for
this table is an input of the S-box function, i.e., x1,xs,...,216. The values stored are
S-box outputs (16 bits: f1(z1, 22, ..., 216), fo(T1, 22, ..., Z16)s - - -, f16(T1, T2, ..., T16))-
To simplify the description of S-box generation let us consider a smaller S-box of the size
8 x 8. For presentation convenience such S-box can be displayed as a 2-dimensional
table (Table 4). The input represented as a two digit hexadecimal number HL is
divided — the low order digit (L) is on the horizontal axis and the high order digit (H)
is on the vertical axis. For example, to see what is the S-box output at input 6F take
6 on the vertical axis and F on the horizontal axis. The S-box output is DA.

Cryptographically a strong S-box should possess some properties that are universally
agreed upon among researchers. Such S-box should be balanced, highly nonlinear,
have the lowest maximum value in its XOR profile (difference distribution table), have
complex algebraic description (especially it should be of high degree). The above
criteria are dictated by linear and differential cryptanalyses and algebraic attacks.

It is a well-known fact that S-boxes generated using finite field inversion mapping
fulfill these criteria to a very high extent. However, they are susceptible to (theoretical)
algebraic attacks. To resist algebraic attacks, multiplicative inverse mapping used to
construct an S-box is composed of an additional invertible affine transformation. This
affine transformation does not affect the nonlinearity of the S-box, its XOR, profile nor

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 17/01/2026 13:21:30
Tomasz Bilski, Krzysztof Bucholc, Anna Grocholewska-Czurylo...

Table 4. Sample 8 x 8 S-box S.

L 01 2 3 4 5 & 7 8 9% A B C D E F
H __
0 | 9E BC C3 82 A2 7E 41 5A 51 36 3F AC E3 68 2D 2A
1 | EB 98 1B 35 DC 1E 56 A5 B2 74 34 12 D5 64 15 DD
2 | B6 4B BE FB CE E9 D9 Al 6E 2B OE 91 F1
3 | 59 D7 3A F4 1A 13 09 50 A9 63 32 F5 CY9 CC AD OA
4 | 5B 06 E6 F7 47 BF BE 44 &7 7B B7 21 AF 53 93 FF
5 | 37 08 AE 4D €4 D1 16 A4 D6 30 07 40 SB 9D BB 8C
€ | EF 81 A8 39 1D D4 7A 48 0D E2 CA BO C7 DE 28 DA
7 | 97 D2 F2 84 19 B3 BY 87 A7 E4 €6 49 95 99 05 A3
8 | EE 61 03 C2 73 F3 BB 77 E0 F8 9C 5C 5F BA 22 FA
9 | FO 2E FE 4E 98 7C D3 70 94 7D EA 11 8A 5D 00 EC
A | D8 27 04 7F 57 17 E5 78 62 38 AB AA OB 3E 52 AC
B | 6B CB 18 75 CO FD 20 4A 86 76 8D 5E 01 ED 46 45
C | B4 FC 83 02 54 DO DF 6C CD 3C 6A Bl 3D CB 24 EB
D | C5 55 71 96 65 1C 58 31 A0 26 6F 29 14 1F 6D C6
E | 88 F9 69 DC 79 A6 42 Fé CF 25 9A 10 9F BD 80 60
F | 90 2F 72 85 33 3B E7 43 89 E1 SF 23 C1 B5 92 4F

its algebraic degree. The best known example of such an S-box is the S-box of AES.
It has been publicly known and it does not affect its security.

The algorithm used for generating the S-box for the purpose of HaF function pre-
sented in this paper uses a similar method of generating S-boxes. Additionally, it takes
into account the results of some recent studies [8, 9] and incorporates changes in the
S-box generating procedure to make it even more secure.

3.2 Generating Inverse Mapping

HaF S-box is based on the so called inverse mapping — 2~ ', where 2~ denotes
the multiplicative inverse in a finite field GF(2"):

S(x) =

{O forz =0 3)

x~1 for x #0.

As mentioned earlier, inversion mapping can be used to generate cryptographically
strong S-boxes.

For any prime integer p and any integer n (n = 1,2, ...), there is a unique field with
p" elements, denoted GF(p™). In cryptography p almost always takes the value of
2. To generate an inverse mapping in GF(2") we need an irreducible polynomial that
defines a Galois field and another polynomial that would be the so called generator (see
below). A polynomial is said to be irreducible if it cannot be factored into nontrivial
polynomials over the same field. The n-bit elements of the Galois field are treated as
polynomials with coefficients in F,. For example, in the case of AES, where S-box
is of the size 8 x 8 we operate mostly on bytes represented as bybgbsb4b3b2b1bg which
corresponds to the following polynomial:

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 17/01/2026 13:21:30

20

Parameterized Hash Functions

bra” + bea® + bsa® + baxt + bz + box® + bz + by (4)

where b; € {0,1}.

An irreducible polynomial mentioned above is used to calculate a multiplication in
GF(2™). When two polynomials are multiplied, the resulting product is a polynomial
of degree at most 2(n”1) — too much to fit into the n-bit data word that represents
polynomials in GF(2"), so the intermediate product of this multiplication is divided
by the irreducible polynomial and the remainder of this division is the result of the
multiplication. For GF(2") an irreducible polynomial should be of degree n. For
example, in AES (with GF(2%)) an irreducible polynomial selected for construction of
the S-box is 11B (in the hexadecimal notation).

A generator in the Galois field is a polynomial whose successive powers take on
every element except zero. Which polynomials are generators in a particular Galois
field depends on the irreducible polynomial selected. So say the polynomial 03 is a
generator in GF(28) with the irreducible polynomial 11B (as in AES), but it is not a
generator in GF(2®%) with the irreducible polynomial 1BD, for which the generator is
for example 07.

For n = 8 the nonlinearity of this mapping treated as an S-box is 112. For n = 16 it
is 32512. In a general case, the nonlinearity of such a mapping is 2"~ — 27/2,

However, such an S-box would always have 0 and 1 as the first two entries. This is
because for = 0, 27! = 0 and for x = 1, 2= = 1. These would be undesirable fixed
points of an S-box. We remove them in the next step.

3.3 Affine Transformation

To avoid algebraic attacks (given multiplicative inversion simple algebraic form) ev-
ery element of the table of multiplicative inverses is changed using an affine transfor-
mation. Such transformation has to be a full permutation, so every element is changed
and all possible elements are represented as the result of a change, so that no two
different bytes are changed to the same byte. After applying this transformation, the
table is still a bijective mapping which is inversible and that is a prerequisite for most
applications of S-boxes. In the case of AES cipher, this affine transformation is given
by the following equation:

b; = bi ® b(i14) mod 8 D D(i45) mod 8 P D(i46) mod 8 B D(i4+7) mod 8 ® i (5)
where ¢ is an 8-bit constant (in the case of AES, it equals 63 in the hexadecimal

notation). ¢ is the bit position. This transformation can be also represented as the
matrix multiplication:

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 17/01/2026 13:21:30
Tomasz Bilski, Krzysztof Bucholc, Anna Grocholewska-Czurylo...

] L0 0 0 1 1 1 17 [1
b, 11000 1 1 1]|b 1
b, 11100 0 1 1|k |0
b, 111100 0 1f[bs| |0
ATt 110 0 o] (el o (©)
L 01 11110 0f]bs 1
A 001111 1 0f]bg 1
bl oo o 1 1 11 1] [b] o]

The algorithm used for generating S-box S of HaF function in this paper uses the
same transformation, however, adopted for the 16 x 16 S-box size and with the constant
part of this transformation (namely ¢;) taken at random so that the resulting S-box
does not have fixed points (such that S(z) = z). Particularly, the two fixed points
mentioned in the previous paragraph (0 and 1) are removed by this transformation.

3.4 Removing Cycles

One of the requirements for the HaF S-box is the absence of cycles. A cycle is such
a sequence of S-box values So, Sti,...,Sk-1 where S 1) moa r = S(S5;). HaF S-box
should have only one such cycle containing all the values of the S-box (a cycle for
which k = 2").

The affine transformation described in the previous paragraph changes the number
of cycles in an S-box, without changing its nonlinear properties. Note that the fixed
points are also short cycles where k£ = 1.

The cycles are removed in a procedure with two steps. The first step is actually the
aforementioned affine transformation. It is applied repeatedly with a random value of
¢ until the S-box with only 2 cycles is found. This might not always be possible. In
such a case, a new S-box has to be generated with another randomly chosen primitive
polynomial using the inverse mapping as described earlier.

When the 2-cycle S-box is found, we move on to the next step, which is performed
together with removing the affine equivalence.

3.5 Removing Affine Equivalence

According to [8, 9], S-boxes based on the multiplicative inverse in a finite field have
such a peculiar property that all component functions of the S-box are from the same
affine equivalence class (all the output functions of the S-box can be mapped onto
one another using the affine transformations). The HaF’s S-box has been processed
to remove this linear redundancy, so that all Boolean functions are now from different
affine equivalence classes, while still maintaining exceptionally high nonlinearity of the
inverse mapping. The proposed S-box has the maximum XOR difference distribution
table value of 6, which is extremely good.

Removing this linear redundancy in the 2-cycle S-box is carried out in such a way
that at the same time it will reduce the number of cycles to only 1. It is done by

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 13:21:30

22

Parameterized Hash Functions

choosing randomly two S-box entries and y, each belonging to another cycle, and
rearranging S-box entries in such a way, that both cycles are joined into one.

After such change a test for linear redundancy is performed. If the affine equivalence
is still present (between any component functions), the change is reversed and different
S-box entries are randomly selected and tested — this procedure is carried out until
S-box without the linear redundancy is found. If such an S-box cannot be found, we
need to generate another S-box with inverse mapping.

Many properties of the Boolean functions covered by various cryptographic criteria
(such as algebraic degree and nonlinearity) remain unchanged by affine transformations.
The absolute values of Walsh transform as well as the autocorrelation function are only
rearranged by the affine transformations. The frequency distribution of the absolute
values in these transforms is invariant under such affine transformations. To prove that
two functions are from different equivalence classes, it is therefore sufficient to show that
their respective Walsh transform or autocorrelation function frequency distribution is
different.

4 Reference implementations

The HaF family is formed of the three hash functions: HaF-256, HaF-512 and HaF-
1024, producing hash values (message digests) with the length equal to 256, 512 and
1024 bits. Each function has been implemented in C language and Microsoft Visual
Studio 2008 environment. The HaF test suite gives the following results (for the purpose
of this paper we present only two tests for each representative of the family):

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 17/01/2026 13:21:30
Tomasz Bilski, Krzysztof Bucholc, Anna Grocholewska-Czurylo...

HaF can be easily implemented for 32, and 64-bit processors. Here we present
tentative evaluation of HaF performance. The results were obtained for reference (non-
optimized) implementations in ANSI C for HaF-256, HaF-512, and HaF-1024. We
compiled our programs with Intel C++ Compiler Professional 11.1 for Windows.

Both 32-bit and 64-bit codes were generated. Then the programs were executed on
a PC computer with the 2.2 GHz Athlon-64 processor. We measured processing time
for 20MB text file. The results are presented in Tables 5 and 6 respectively.

Table 5. HaF family performance — 32-bit code.

Function | MB/s | Cycles/byte
HaF-256 | 2.86 [769.2
HaF-512 [3.63 | 606.7
HaF-1024 [0.84 | 2611.1

Table 6. HaF family performance — 64-bit code.

Function | MB/s | Cycles/byte
HaF-256 | 3.12 704.2
HaF-512 | 3.69 | 595.9
HaF-1024 | 2.09 | 10509

As we can see in Tables 5 and 6, the best performance is achieved for HaF-512. For
HaF-1024, 64-bit code performs much better than 32-bit code (speed up to 150%).
The measured processing speed is relatively slow. But we expect substantially better
performance for optimized implementations.

5 Conclusions

Most cryptographic hash functions designers focus on high processing speed. There-
fore relatively simple algorithms are preferred. Implementations of these algorithms
may be vulnerable to fault attack and side channel attack.

In the HaF hash functions the family processing scheme is more elaborated and we
use relatively big 16 x 16 S-boxes. It leads to more complex implementation.

We expect it to give greater robustness against fault attack and side channel attack.

The processing speed is relatively small. But we expect that optimised implemen-
tation will perform substantially better. Especially, multithreaded implementation
exploiting parallelism of the algorithm.

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 17/01/2026 13:21:30

24

Parameterized Hash Functions

Acknowledgement

This work was supported by the Polish Ministry of Science and Higher Education as
the 2010-2013 research project and partially by the grant DS-PB/45-085/12.

References

[1] Regenscheid A., Perlner R., Cjen Chang S., Kelsey J., Nandi M., Paul S., Status Report on the First
Round of the SHA-3 Cryptographic Hash Algorithm Competition, Technical Report 7620 NIST
(2009); http://csrc.nist.gov/groups/ST /hash/sha-3/Roundl/documents/sha3 NISTIR7620.pdf

[2] Biham E., Dunkelman O., A framework for iterative hash functions - HAIFA, NIST 2nd Hash

Function Workshop, Santa Barbara (2006); also: Cryptology ePrint Archive: Report 2007/278,

http://eprint.iacr.org/2007/278.

Bilski T., Bucholc K., Grocholewska-Czuryto A., Stoklosa J., HaF — A new family of hash func-

tions, Proceedings of the 2nd International Conference on Pervasive Embedded Computing and

Communication Systems, PECCS 2012, Rome, Italy, 24-26 February, 2012, SciTePress (2012):

188.

[4] Lai X., Massey J. L., A proposal for a new block encryption standard, Damggard I. B. (ed.),

Advances in Cryptology — EUROCRYPT ’90. LNCS 473, Springer, Berlin (1991): 389.

Janicka-Lipska I., Stoklosa J., Boolean feedback functions for full-length nonlinear shift registers,

[3

[5

Journal of Telecommunications and Information Technology 5 (2004,): 28.
[6] Rueppel R. A., Analysis and Design of Stream Ciphers, Springer, Berlin (1986).
[7] Daemen J., Rijmen V., AES Proposal: Rijndael, AES’99 (1999);
http://csrc.nist.gov/CryptoToolkit /aes/ rijndael /1999
Fuller J., Millan W., On Linear Redundancy in the AES S-Box (2002);
http://eprint.iacr.org/2002/111.
Fuller J., Millan W., On Linear Redundancy in S-Boxes, FSE 2003, LNCS 2887, Springer(2003):
74.

[8

[9

http://www.tcpdf.org

