Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 23:44:53

Annales UMCS
R . K 012) Informatica
nnales UMCS Informatica AI XII, 2 (2012) 7-18 . .
DOT: 10.2478 /v10065-012-0002-6 L”bh“‘_POIOI”a
Sectio Al

http://www.annales.umcs.lublin.pl/

Fast multidimensional Bernstein-Lagrange algorithms

Joanna Kapusta'*, Ryszard Smarzewski'f

Institute of Mathematics and Computer Science,
The John Paul II Catholic University of Lublin,
ul. Konstantynow 1H, 20-708 Lublin, Poland

Abstract — In this paper we present two fast algorithms for the Bézier curves and surfaces of an

arbitrary dimension. The first algorithm evaluates the Bernstein-Bézier curves and surfaces at a set

of specific points by using the fast Bernstein-Lagrange transformation. The second algorithm is an

inversion of the first one. Both algorithms reduce the initial problem to computation of some discrete

Fourier transformations in the case of geometrical subdivisions of the d-dimensional cube. Their orders

of computational complexity are proportional to those of corresponding d-dimensional FFT-algorithm,

i.e. to O(NlogN)+ O (dN), where N denotes the order of the Bernstein-Bézier curves.

1 Introduction

Let n = (ny,na,...,nq) be a d-tuple of positive integers and K be a field. Moreover,
let @, be a lattice of all N = nyns...ng multi-indices o = (a1, ag, ..., aq) with the

integer coordinates satisfying inequalities

0<aq;<n;fori=1,2,...,d.

Using the multi-index notation, we write Bernstein-Bézier vector polynomials of the

variable = (71,22, ...,74) € K% in the form
Pn (m) = Z faBa (CL‘))
acQn

*jkapusta@kul.lublin.pl
frsmax@kul.lublin.pl

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 23:44:53

8

Fast multidimensional Bernstein-Lagrange algorithms

where f, € K® are the control points, the summation extends over all nins---ng
multi-indices « from the lattice @,,, and

Batw) = ("~ Nara— oyt ST (1 e (1 — a9
(") (",

wheren—1=(ny —1,no — 1,...,nq — 1). Note that p,(z) is a Bézier curve or surface
in the case when d = 1 or d = 2, respectively.
Additionally, suppose that

xa:(xl,aUxQ,agw--?xd,ad)a a:(alaa27"'7ad) eQ’na (4)
are the points in K% such that coordinates
$i,0,ﬂfi71,...,$i7ni_1 (ZZ 1,2,...,6{) (5)

are pairwise distinct, i.e. x;; # x; %, whenever j # k. Then the Bernstein-Bézier
vector polynomial p, (z) can be written in the Lagrange form

Pn (7) = Z Yo Lo (), (6)
a€Qn
where yo, = pn (z4) € K* and

n;—1

d
Lo (2) =[] La, (@), La, (21) = [] -5 (7)
=1

j=0 Li,oy = Tij

JF;
In this paper we present two fast algorithms of the order
O(NlogN)+ O(dN), N =|Qn| = nina...ng, (8)

for the Bernstein-Lagrange transformation T : (f3)scq, — (Ys)seq,., and its inverse,
which is defined by

Tiys= > faBalzp), BE Qu, (9)
O‘eQn
where the coordinates of points x5 are such that
v =Nyl (i=12,...,d, j=0,1,...,n; — 1) (10)

with the scalars A; # 0,v; #Oandy; # 1 (i = 1,2,...,d) fixed in K. For the simplicity,
these algorithms will be established under the additional assumption that s = 1, which
does not restrict the generality of our considerations.

Since the coordinates z; ; (j =0,1,...,n; — 1) form geometrical progression, it fol-
lows that the points zz can be used e.g. in extrapolation problems [1]. It is not clear
if it is possible to extend our fast algorithms to the case of arithmetic progression, or
more generally to the case when

IL]' :Ail'i,j—l +(57 (Z: 1,27...,d, j:].,2,...,’/7,1'7]_)7 (11)

where \; # 0, ¢; and z; o = 5 belong to the field K [2]. Of course, in order to evaluate
the transformation 7 for the last coordinates one can use multidimensional algorithms

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 23:44:53

Joanna Kapusta, Ryszard Smarzewski

based on the de Casteljau algorithm, which have the computational complexity of the
order greater than our algorithms, cf. [3], [4], [5] and [6].
Following |7] and [8], our algorithms will use the discrete Fourier transformation

Fo:K"2a—be K™ (12)
and its inverse, which are defined by
m—1 1 m—1
b; = Foand a;=— > bt (i=0,1,...,m—1
I;) G/k’ll},m an a m k;) k?,(/Jm (Z 5 Ly ,m)7

where 1), is supposed to be a primitive root of the unity of order m in the field K.
It is well known that discrete Fourier transformations can be computed by the famous
FFT-algorithm, which has a running time of order O(mlogm) [9].

2 Fast multidimensional convolutions and deconvolutions

In order to present fast algorithms for computation of the Bernstein-Lagrange trans-
formations 7 and 7!, we need fast algorithms for multidimensional convolutions and
deconvolutions. For this purpose, suppose that a = (agp,a1,...) and b = (bg, b1, ...) are
two finite or infinite sequences. Then the wrapped convolution

c=(co,C1y 0 yCm-1) =aRp b (13)
is defined by

Cizzak‘bi—k‘ (i:O,l,...,m—l), (14)
k=0

while its deconvolution
A4=CcOmb=c®,b"" (b #0)

is supposed to be the solution

ap = co/bo,
1—1 15
ai—<ci—Zakbik>/bo (i:172,...7m—1) ()
k=0
of the lower triangular system of equations (14). Moreover, the convolutionary inverse
d=(do,dy,...dp_1) =01 (16)
is such that
r—1
1/b(x) =Y dra® + O(a"), (17)
k=0
where
m—1 dk 1
b(z) =Y bpz"and dp=— (: 18
(x) 2 gx” and dj e (b(a:)) L (18)

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 23:44:53

10 Fast multidimensional Bernstein-Lagrange algorithms

The wrapped convolution satisfies the formula

@ ®mb={F," [Fn(a) Fn(b)] + F,," [Fn (¥ - a) - Fu (V- 0)] /T /2, (19)
where a = (ao,al,...,am_l), b= (bo,bl,...7bm_1), U = (1,’(/)%7”,...7 ;nm_l), U)Qm is

the primitive root of order 2m of the unity in K, and vector operations of multiplication
and division are defined coordinatewise. Formula (19) gives an extremely effective and
fast algorithm of the order O(mlogm) to evaluate wrapped convolutions, which is
observed implicitly in [7], see also [8]. Note that it can be also applied to evaluate

m—1
b= an? (j=12...,m—1). (20)
i=0

Indeed, we have

m—1 7 m—1

b= aiv =r; | Y pigi_i+ Y pig—g-isy | (G=0,1,..,m—1), (21)

i=0 i=0 i=j+1

where
J Jj—1 1
rj:H'yk, pj:ajH’yk, 4% = = (j=0,1,....m—1).
k=0 k=0 H Ak
k=0
Hence
J
bi—(m—1) = Tj—(m—1) Zdicj,i (j=m-—-1,m,...,2m —2)
i=0
with
g =P for i=0,1,...m—1,
10 for i=m,m+1,....2m—2

and

- qm—2—i for ¢=0,1,....m—2,
e Gi—(m-1) for i=m—1,m, .., 2m—2.

Consequently, if d = (d;)"72, ¢ = (¢;)2"2

i=0 € 22 and r = (r;)I",", then we get
b= (dBme) -, (22)
where
d@me = P, (d @2im—1 €)
and the projection P, : K?™~1 — K™ is defined by
P(€) = (em—1,€m,---s€am—2), €= (€g,€1,...,€3m—_2) . (23)

Tt is clear that the order of algorithm (22) is equal to O (mlogm). Note, that another
algorithm for computing (20), which has the same order of complexity, was presented
in [10].

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 23:44:53

Joanna Kapusta, Ryszard Smarzewski

The wrapped convolution can be also applied to evaluate the multidimensional con-
volution
u=a®b, (24)
of a hypermatrix a = (a4)acq, and vector b= (b;)%_;, with b; = (b;.0,bi 1+, bin;—1)-
Here coordinates of u are equal to

Uy = Z agba—p, = (a1, a9,...,04) € Q. (25)
BEQq

Definition 1 ([2]). A hypermatrix

W= (W) geq, =a®W by € KMXm2xxmi 1 < <d, (26)
is said to be the i-th partial hypermatrix convolution of a hypermatrix a = (aa)aeQ"
and a vector b; = (b 0,bi1,...,bin,—1), whenever each column

WB,....Bi—1,0,Bi41Ba = AP, Bi1,0,Bix1, B0 Ony bi, 0 < BJ < Mj—1,
j=12...i—1i+1,....,d,
of the hypermatrix w is equal to the wrapped convolution of the column
ni—l
aBy,...,Bi—1,8,Bit1,....080 — (aﬁl,m,ﬁi—l¢j,ﬁi+1,mﬁd)j:0 : (27)

and vector b;.

The notation of the partial hypermatrix convolutions enables to rewrite the multi-
dimensional convolution u = (u,) acQ, I the following hypermatrix form

u=a®b= (N <(a 21 bl) ®® bz) ®®) @ by (28)

with b, = (bi0,bi1,...,bin,—1) and a = (aa)aeQn [2]. Hence it is clear that the
fast algorithm for computing an i-th partial hypermatrix convolution should evaluate
N/n; one-dimensional convolutions for vectors of size n;. Therefore, algorithm (28) for
computing the multidimensional convolution is of the order

(N/n1) O(nylogni) + ... + (N/ng) O(nglogng) = O(Nlog N), N = ninz..ng. (29)

The same order is in the algorithm

v=adb= (oo (300) 5%%) 5 ..) 3%,)
where the i-th extended convolution aé(i)bi 1=1,2,...,d is defined as in Definition 1
with
ABy,...,Bim1,0,Bis1,mensBa Oy i (31)
replaced by
Pr (g ...ofims0.Bisrfa ®2mi—1 bi) (32)

and a, =0 for a ¢ Q.
In a similar way one can define the hypermatrix deconvolution

a=uQb, (33)

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 23:44:53

12

Fast multidimensional Bernstein-Lagrange algorithms

whenever b; g # 0 for ¢ = 0,1,...,n; — 1. The only difference consists in replacing
the operator ®* of the i -th partial hypermatrix convolution in Definition 1 by the
corresponding operator @9 of the i-th partial hypermatrix deconvolution. In other
words, each column of the hypermatrix

0= (aa)yeq, =w W by € KMXm2XXnd 1 < < d, (34)
should be equal to

AB1,...,Bi—1,8,Bit1,..,Bd = Wgy,....8—1,8,Bi41,-,Ba Oni bi
—1
= Wgy,...,Bi—1,0,Bi+1,84 Ony bi)
where 0 < 3; < n;. Then we have

a= ((.. (u o@ bd)) o® b2> oW b,

— ((i, (u @ b;l)) ®® b;l) oW bt

One can prove that the last algorithm for hypermatrix deconvolution is of the order

(35)

O(NlogN),N = nins...ng. (36)

For this purpose, it is sufficient to observe that the convolutionary inverse of a vector
b= (bo,b1,...,bm—1) € K™ with by # 0 can be computed by the Newton method of
the order O (mlogm) [11]. More precisely, let

Ti+1 :2Ii—$$b7 i:O,l,..., (37)

be the Newton iterative formula for the function f(x) = 271 —b (z # 0). Moreover,
suppose that the coefficients

do,dy,...,dyi_q (1>1) (38)
of the inverse
(bo+ b1+ b 12™) =do+ diz+ . dyi_y2® TP+ 0ED) (39)
are already computed and that di = 0 for all k > 2%, Then the single Newton iteration
d=2-d—d®gi+1 d ®g9i+1 b.

doubles the number of evaluated coeflicients dj, (k =0,1,...,201 — 1) of the convolu-
tionary inverse. Hence we finally conclude that the iterative Newton formula

d=2-d—d®y d®yi b, i =2,3,...,[logym], (40)
with the starting vector d of the form

1 b
d={-—,—-35,0,0...
<b07 b?)’ 9)a

generates the required convolutionary inverse

d = (do,d1,...,dm—1) (41)

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 23:44:53

Joanna Kapusta, Ryszard Smarzewski

of b= (by,b1,...,bm—1), by # 0. Since the computational complexity of the convolution
®q: is equal to O(i2%), it is clear that the computational complexity of algorithm (40)
is of the order

O<m10g2m+%log2%+...+210g22>:O(mlogm). (42)

This completes the proof that the algorithm (35) is of the order O (Nlog N).

3 Fast Bernstein-Lagrange transformation

Now we establish a fast algorithm for evaluating the multivariate polynomial

n—1 a n—a—1
po(@)=) fa< N >x (1—z) (43)
OZEQH
at the points xg = (z1,8,,%2,8,, .., %d3,) with the coordinates of the form
zij =My, (i=1,2...,d, j=01,...,n; —1). (44)

For this purpose, note that

@=3 f 3 (n;l)(n—g—1>xa+6(_l)5

a€Qy BEQn—a

DO o O | G

BEQn a€Qpi1

__(n-=1)! fo (=1)""
% -f-T, 2 aloal

Hence one can use the multidimensional convolution in order to get the algorithm

L (f@p) L (((i ®(1)p1> ®(2)p2> 2@ "'®(d)pd> 4, (46)

where ¢t = (ta)aeQn - (ra)aeQn and p; = (Pi0,Di1s- -+ Dins—1) are defined by

(n—1)!

—a-ny “€9)

ra =al, ty,=

and

(_1)l . 4
Pl = Ol (i=1,2,.,d, 1 =0,1,...;m; — 1). (48)

Therefore, it follows from (28) and (29) that the coefficients ag can be computed by
the algorithm (46) of the order O(N log N). Furthermore, by inserting formula (44)

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 08/02/2026 23:44:53

14

Fast multidimensional Bernstein-Lagrange algorithms

into (45), we get
Yoo = Pn (:Coc) = Z aﬂ)‘ﬁ’yaﬁ
BEQN
Hence, we obtain

ng—1 na—1 [fni—1

Yo = Z Z Zaﬁbﬁwl,alfﬁl W20—Bs | -+ Wd,ag—Ba | Qo (49)

Ba=0 B2=0 \ p1=0

whenever we set

d Bj d 51‘71
o =]1]"% ve=1]> I] % Bean (50)
j=1k=0 j=1 k=0
and |
wji = — (j=12,...,d,1=0,1,...,n; — 1). (51)
[T}
k=0

Finally, formula (49) yields the following theorem.

Theorem 1. If 7 : (fa),eq, = (Wa)aeq, denotes the d-dimensional Bernstein-

Lagrange transformation with the points 2o = (Z1,a,:%2.as5 - - -+ Td,a,) defined as in
(44), then T can be evaluated by the algorithm
= ~ ~ ~(d
T:y = (.. (((a -b) ®(1)w1) ®(2)w2) ®(3) .. ®()wd) - q, (52)
. (B ((f 20 p1> e p2> 26 ... g pd> - (53)
where elements of b = (ba)aeQn ,q = (q(x)aean Wi = (Win,—2, -+, Wi05 Wi,0, Wil, .-
Win—1),7 = (Ta)weq,: t = (ta)aeg, a0d Pi = (Pin;—2,- - Pi,05Pi,0, Wi1s- -y Pini—1)

are defined as in formulae (47), (48), (50) and (51). Moreover, this algorithm has the
running time of O(Nlog (N)) + O(dN), where N = njng - - - ng.

We note that the term O (dN) in the running time is an estimate of all auxiliary com-
putations (47), (48), (50) and (51), which do not use convolutions. For the complete-
ness of consideration, we summarize the algorithm for computing the multidimensional
Bernstein-Lagrange transformation in more detail.

Algorithm 1. The d - dimensional Bernstein-Lagrange transformation 7 with
respect to the points zo = (21,01, T2,a0s - - - » Td,ag)s Where a = (a1, aa, ..., 0q) € Qn,
n=(ni,ng,..., ng)and 7, ; = Ayl (i=1,2,...,d, 7=10,1,2,...,n; — 1).

Input: A hypermatrix f = (fa),cq, scalar vectors A = (A1, A2,...,Aq) and v =
(71,72, - - -»va) in K9 and the vector n = (ny,ns,...,nq) of positive integers.
Output: A hypermatrix y = (ya),ecq, of values yo = pn(za).

1. Use (47) to evaluate 1, to for each a € Q.
2. Use (48) to evaluate p;; for j =1,2,...,d,1=0,1,...,n; — L.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 23:44:53

Joanna Kapusta, Ryszard Smarzewski 15

3. Perform the componentwise division v = f/r.
For ¢ from 1 to d do the following:

=~

4.1. Compute the partial hypermatrix convolution v = v @@ p;.
Perform the componentwise multiplication a = v - t.

Use (50) to evaluate bg, gg for cach 8 € Q.

Use (51) to evaluate w;,; for j =1,2,...,d,l=0,1,...,n; — L.
Perform the componentwise multiplication © = a - b.

For i from 1 to d do the following:

© 0N o

9.1. Compute the extended partial hypermatrix convolution u = ué(i)wi.

10. Perform the componentwise multiplication y = u - q.
11. Return (y).

4 Inverse multidimensional Bernstein-Lagrange
transformation

Now we consider the inversion of the multidimensional Bernstein-Lagrange transfor-

mation
Q. (Ya)acq, = (fa)acq, - (54)
If we know coefficients y, = p(x,) of the Lagrange polynomial (6) at the knots
To = (T1a1s 2,00 - -+ Tdyay) (55)
of the form
Tig =yl i=1,2,.,d, j=0,1,...,m; — 1, (56)
then we can find the multivariate divided differences
Ca = DnlT10s- - Tlars - iTd0s-- s Tdoy] = Z FE— Ys 57)
AeQarr [T II (wip, — wiy)
1=17j=0,j7#8:

of the Newton polynomial

d 04,;—1

Do () Z Ca H H — ;) (58)

a€Q, i=1 j=0

by using an algorithm of the order O(N log (N)) + O(dN) presented in [12]. Moreover,
by using equality (56) the formula (58) can be rewritten in the following form

ni d a;—1]
S S W T () e
1 i

1= 0042 0 xg= 0]:0
Since we have (see [13])

n—1 n

[T (1 —ad) = {nL(—l)”””wmqw (60)

k=0 m=0

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 08/02/2026 23:44:53

16 Fast multidimensional Bernstein-Lagrange algorithms
with
L .
1 Aot
{n} - 2];[0(q) o [’n’}q'

mlq m | n—m [n—=m] ! [m]

Cfa-e T e
=0 =0

it follows from (59) and (60) that

ni—1lng—1 ng—1

Z Z Zaﬁlﬁ2 ----- 5dH$z 9

B1=0 B2=0 Ba=0
where

ny—pfr1—1nz—pF2—1 ng—PBq—1 ,1)

Il + B, o
1D DD DI ST | e WA

a1=0 as=0 ag=0 =1 q

Hence we get

1 a + 5 a(a—1) o
Ao = T § —w) € (7>‘) , € Qna
€EQn—

q

or equivalently

—(d) «(d—1) +—(d-2) «—(1)
a=[...[{(cv)® z]® Zd—1] ® e ® oz g, (62)

where the elements of v = (v,), ¢ = (9a) and z; = (25,0, 2i,1, - -, Zin;—1) are defined by

L(a -1

(_At) y Ga = [O[} 1 (OS Q’r‘m

d
i=1 q
- (63)
H =1,2,...,d,1=0,1,...,n; — 1),
and the reversed i-th partial hypermatrix convolution
(4) —
w® z=0o0 2 (64)

is defined as the i-th partial hypermatrix convolution with its elements written in the
reverse order, where @ is the hypermatrix with i-th column written in the reverse order,
too. Finally, one can apply (46) to get the following theorem.

Theorem 2. Let 7! : (Ya)acq, — (fa)aeq, be the inverse multidimensional
Bernstein-Lagrange transformation with respect to the points z, = (1,015 %2,a4,
., Zd,a,) With the coordinates of the form

zig =Nyl i=1,2,.,d, j=0,1,2,...,n; — 1, (65)

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 23:44:53

Joanna Kapusta, Ryszard Smarzewski

where \; # 0, v; # 1 and 7; # 0. Then it can be evaluated by the algorithm

Tf = (((% o@ pd) o1 pd_1)) oW py -, (66)

«(d) +—(d-1) «—(d—2) «~(1)
L err)® za | ® Zd—1 | ® e ® 2)g, (67)

where the elements of t = (ta),cq, 7

a

= (Ta)aeQn7 g = (goz)aean ¢ = (Ca)aeQn7
v = <Ua)aeQn s Zi = (20, %15+ -+ Zims—1) and p; = (Pi,0,Pits- -, Pin;—1) are defined
as in formulae (47), (48), (57) and (63). Moreover, this algorithm has the running
time of O(Nlog (N)) +O(dN), where N = nyng - - - ng.

Algorithm 2. The inverse d-dimensional Bernstein-Lagrange transformation 7 !

with respect to the points 2o = (Z1,015 2,040, - - - s Td,ay), Where a = (a1, aa,...,aq) €
Qn, n=(n1,n9,..., ng) and x; j =)\,»fyg (i=1,2,...,d, j=0,1,2,... ,n; — 1).
Input: A hypermatrix y = (ya)aeQn’ scalar vectors A = (A1, Aa,...,\q),
v = (71,72,---,74) in K% and the vector n = (ni,ns,...,nq) of positive inte-
gers.

Output: A hypermatrix f = (fa),ecq, -

1. Use Algorithm 8 from [12] to evaluate ¢, for each a € @,,.
Use (63) to evaluate v, g, for each o € Q,,.

Use (63) to evaluate z;; for j =1,2,...,d,l=0,1,...,n; — 1.
Perform the componentwise multiplication v = ¢ - v.

For ¢ from d down to 1 do the following:

AN

«(4)
5.1. Compute the reversed partial hypermatrix convolution v =v ® z;.

Perform the componentwise multiplication a = v - g.
Use (47) to evaluate t,, 7, for each a € Q.
Use (48) to evaluate p;; for j =1,2,...,d,1=0,1,...,n; — 1.
Perform the componentwise division a = a/t.
10. For i from d down to 1 do the following:
10.1. Compute the partial hypermatrix deconvolution a = a @® p;.
11. Perform the componentwise multiplication f =a - r.
12. Return (f).

© N>

5 Conclusions and remarks

In this paper, we present two new algorithms for the d-dimensional Bernstein-
Lagrange transformation and its inverse for the points

To = (T1,01+T2,00y -+ Tdyay) » & € Qn (68)
with the coordinates defined by the formulae
zij =Nl i=1,2,...,d, §=0,1,...,n; — 1,
where ~; # 0, v; # 1 and \; # 0 are fixed.

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 08/02/2026 23:44:53

18

Fast multidimensional Bernstein-Lagrange algorithms

Roughly speaking, the main feature of these algorithms consists in splitting the
computations into two steps. In the first step we compute only quantities, which
require to perform only O (dN) operations. The second step includes computations
of d-dimensional convolutions or deconvolutions of the order O (N log N). Thus, the
computational complexity of this algorithms takes only

O(Nlog N) + O(dN) (69)

operations, where N = nins...ng. Moreover, if we make natural assumption that
n; > 2 for v =1,2,...,d, then logy N > d and the order of the algorithm can be
reduced to O(N log (N)).

It should be emphasized, that parts (53) and (66) of the algorithms presented in
Theorems 1 and 2 are valid for arbitrary points z,,a € @,. However, we do not know
if the remaining parts of these algorithms are true for the points defined in (11).

References

[1] Stoer J., Bulirsch R., Introduction to Numerical Analysis, Springer - Verlag, New York 1993.

[2] Kapusta J., Smarzewski R., Fast algorithms for multivariate interpolation and evaluation at
special points, Journal of Complexity 25 (2009): 332.

[3

Farouki R., Rajan V. T., Algorithms for polynomials in Bernstein form, Computer Aided Geo-

metric Design 5 (1988): 1.

Mainara E., Peiia J. M., Evaluation algorithms for multivariate polynomials in Bernstein-Bézier

form, Journal of Approximation Theory 143 (1) (2006): 44.

Peters J., Evaluation and approximate evaluation of the multivariate Bernstein-Bézier form on

a regularly partitioned simplex, ACM Transactions on Mathematical Software 20(4) (1994): 460.

Phien H. N., Dejdumrong N., Efficient algorithms for Bé zier curves, Computer Aided Geometric

Design 17 (2000): 247.

[7] Aho A., Hopcroft J., Ullman J., The design and analysis of computer algorithms, Addison-Wesley,
London 1974.

[8] Smarzewski R., Kapusta J., Fast Lagrange-Newton transformations, Journal of Complexity 23

(2007): 336.

Bini D., Pan V. Y., Polynomial and matrix computations: fundamental algorithms, Birkhauser

Verlag, 1994.

[10] Aho A., Steiglitz K., Ullman J., Evaluating polynomials at fixed sets of points, SIAM Journal

Comput. 4 (1975): 533.
[11] Borwein J. M., Borwein P. B., Pi and the AGM: A study in analytic number theory and compu-

[4

5

[6

[9

tational complexity, Canadian Mathematical Society Series of Monographs and Advanced Texts,
John Wiley and Sons, New York, Chichester, Brisbane, Toronto, Singapore, 1987.

[12] Kapusta J., An efficient algorithm for multivariate Maclaurin-Newton transformation, Annales
UMCS Informatica AI VIII (2) (2008): 5.

[13] Andrews G. E., The theory of partitions (Encyclopedia of mathematics and its applications),
Addison-Wesley Publishing Company, 1976.

http://www.tcpdf.org

