Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 08:31:03

Annales UMCS

o Gl Informatica

= Z i Annales UMCS Informatica AI XI, 4 (2011) 49-60 Lublin-Polonia
L o,

DOI: 10.2478/v10065-011-0032-5 -
Sectio Al
g ™

http://www.annales.umcs.lublin.pl/

WERS
o Yr¢'
3
n 5
Viyg poct™

A conceptual Bayesian net model for integrated software
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Abstract — Software quality can be described by a set of features, such as functionality, reliability,
usability, efficiency, maintainability, portability and others. There are various models for software
quality prediction developed in the past. Unfortunately, they typically focus on a single quality
feature. The main goal of this study is to develop a predictive model that integrates several features
of software quality, including relationships between them. This model is an expert-driven Bayesian
net, which can be used in diverse analyses and simulations. The paper discusses model structure,
behaviour, calibration and enhancement options as well as possible use in fields other than software

engineering.

1 Introduction

Software quality has been one of the most widely studied areas of software engineer-
ing. One of the aspects of quality assurance is quality prediction. Several predictive
models have been proposed since 1970’s. A clear trade-off can be observed between
model’s analytical potential and the number of used quality features. Models that
contain a wide range of quality features [1, 2, 3] typically have low analytical potential
and are more frames for building calibrated predictive models. On the other hand,
models with higher analytical potential typically focus on a single or very few aspects
of quality, for example on reliability [4, 5].

This trade-off has been the main motivation for research focused on building pre-
dictive models that both incorporate various aspects of software quality and have high
analytical potential. The aim of this paper is to build such predictive model as a
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Bayesian net (BN). This model may be used to deliver information for decision-makers
about managing software projects to achieve specific targets for software quality.

Bayesian nets have been selected for this study for several reasons. The most im-
portant is related with the ability to incorporate both expert knowledge and empirical
data. Typically, predictive models for software engineering are built using data-driven
techniques like multiple regression, neural networks, nearest neighbours or decision
trees. For the current type of study, a dataset with past projects of high volume and
appropriate level of details is typically not available. Thus, the model has to be based
more on expert knowledge and only partially on empirical data. Other advantages of
BNs include the ability to incorporate causal relationships between variables, explicit
incorporation of uncertainty through probabilistic definition of variables, no fixed lists
of independent and dependent variables, running the model with incomplete data, for-
ward and backward inference, and graphical representation. More information on the
BN theory can be found in [6, 7] while recent applications in software engineering have
been discussed in [8, 9, 10, 11, 12, 13, 14, 15, 16].

The rest of this paper is organized as follows: Section 2 brings closer the point of
view on software quality that was the subject of the research. Section 3 discusses
background knowledge used when building the predictive model. Section 4 provides
the details on the structure of the proposed predictive model. Section 5 focuses on the
behaviour of this model. Section 6 discusses possibilities for calibrating and extending
the proposed model. Section 7 considers the use of such type of model in other areas.
Section 8 summarizes this study.

2 Software Quality

Software quality is typically expressed in science and industry as a range of features
rather than a single aggregated value. This study follows the ISO approach where
software quality is defined as a “degree to which the software product satisfies stated and
implied needs when used under specified conditions” [1]. This standard defines eleven
characteristics, shown in Fig. 1 with dark backgrounds. The last three characteristics
(on the left) refer to “quality in use” while others refer to internal and external metrics.
Each characteristic is decomposed into the sub-characteristics, shown in Fig. 1 with
white background. On the next level each sub-characteristic aggregates the values of
metrics that describe the software product. The metrics are not shown here because
they should be selected depending on the particular environment where such quality
assessment would be used. Other quality models have been proposed in literature [17,
3] , from which some concepts may be adapted when building a customized predictive
model.

In our approach we follow the general taxonomy of software quality proposed by
ISO. However, our approach is not limited to the ISO point of view and may be
adjusted according to specific needs. For this reason our approach uses slightly different
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Fig. 1. Quality features and sub-features.

terminology with “features” at the highest level, “sub-features” at the second level and
“measures” at the lowest level.

3 Background knowledge

Our approach assumes that the industrial-scale model for integrated software quality
prediction has to be calibrated for specific needs and environment before it can be used
in decision support. Normally such calibration should be performed among domain ex-
perts from the target environment, for example using a questionnaire survey. However,
at this point such survey has not been completed yet so the current model has been
built fully based on the available literature and expert knowledge of the modellers. This
is the reason why the model is currently at the “conceptual” stage. The literature used
includes quality standards [1, 18, 2, 19, 20, 21], widely accepted results on software
quality [22, 23, 24, 17, 3, 25, 26, 27, 28, 29|, and experience from building models
for similar areas of software engineering [8, 9, 10, 11, 12, 30, 13, 14, 15, 16].

Available literature provides useful information on the relationships among quality
features. Fig. 2 illustrates the relationships encoded in the proposed predictive model.
There are two types of relationships: positive (“+”) and negative (“-”). The positive
relationship indicates a situation where the increased level of one feature causes a
probable increase of the level of another feature. The negative relationship indicates a
situation where the increased level of one feature causes a probably decrease of the level
of another feature unless some compensation is provided. This compensation typically
has a form of additional effort, increase of development process quality, or use of better
tools or technologies.

Table 1 summarizes the relationships between the effort and the quality features.
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Fig. 2. Impact of controllable factors on quality features
Table 1. LMS types and features (Source: self study).
Quality feature Requirements | Implementation | Testing
effort effort effort
functional suitability + +
reliability + +
performance efficiency + +
operability +
security
compatibility +
maintainability + +
portability
usability + + +
flexibility + +
safety +

Currently there are two groups of controllable factors in the model: effort and pro-
cess quality — defined separately for three development phases. It is assumed that
the increase of effort or process quality has a positive impact on the selected quality
features. This impact is not deterministic though, i.e. the increased effort does not
guarantee better quality but causes that this better quality is more probable.

It should be noted that the relationships in Fig. 2 and Table 1 may be defined
differently in specific target environments.
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4 Model Structure

The proposed predictive model is a Bayesian net where the variables are defined as
conditional probability distributions given their parents (i.e. immediate predecessors).
It is beyond the scope of the paper to discuss the structure of the whole model be-
cause the full model contains over 100 variables. However, for full transparency and
reproducibility of the results full model definition is available on-line [31].

Fig. 3 illustrates a part of the model structure by showing two quality features and
relevant relationships. The whole model is a set of linked hierarchical naive Bayesian
classifiers where each quality feature is modelled by one classifier. Quality feature is
the root of this classifier, sub-features are in the second level (children) and measures
are the leaves.
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Fig. 3. Part of model structure.

To enable relatively easy model calibration and enhancement this model was built
with the following assumptions:

e the links between various aspects of software quality may be defined only at
the level of features;

e controllable factors are aggregated as the “effectiveness’ variables, which, in
turn, influence selected quality features.

Currently, all variables in the model, except measures, are expressed on a five-point
ranked scale from ‘very low’ to ‘very high’. Two important concepts, implemented in
AgenaRisk tool [32], were used to simplify the definition of probability distributions.
First, the whole scale of ranked variable is internally treated as the numeric a range (0,
1) with five intervals — i.e. for ‘very low’ an interval (0, 0.2), for ‘low’ an interval (0.2,
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0.4) etc. This gives the possibility to express the variable not only as a probability
distribution but also using summary statistics, such as the mean (used in the next
section). It also opens the door for the second concept — using expressions to define
probability distributions for variables. Instead of time-consuming and prone to incon-
sistencies manual filling probability tables for each variable, it is sufficient to provide
only very few parameters for the expressions like Normal distribution (mean, variance),
TNormal distribution (mean, variance, lower bound, upper bound), or weighted mean
function — wmean(weight for parameter 1, parameter 1, weight for parameter 2, pa-
rameter 2 etc.). Table 2 provides the definitions for the selected variables in different
layers of the model.

Table 2. Definition of selected variables.

Tvpe Wanable Definition
' wrmean(
1,05,
feature usability 3.wmean(3. reg effect 2. Impl effecr. 1. test effct).
| fumet.auin).
0.05,0,1)

sub-feature | effectiveness | TNopmaljusabilify,0.01.0, 1)
gffectiveness = very high’” — Normal(93, 10)

percentage of | gffectivensss = "high’ — Nommal{(90, 403
Mmeasurs tasks gffectiveness="medum” — Nonmal(73, 60)
accomplished | effectivensss = Tow’ — Nomal(63, 80}

gffectiveness ="verv low’ — Nommal(30, 100)
controllable | testing effort | TMommalf0.5. 003, 0, 1)

TSNS | TNommal(wmean(3, test. effort. 4. test.procg).0.001,0, 1)

effectiveness

controllable

5 Model Behaviour

To demonstrate model behaviour four simulations were performed with the focus to
analyse the impact of one group of variables on another.

Simulation 1 was focused on the sensitivity analysis of quality features in response
to the level of controllable factors. An observation about the state for a single control-
lable factor was entered to the model and then the predictions for all quality features
were analyzed. This procedure was repeated for each state of each controllable factor.

Fig. 4 illustrates the results for one of such runs by demonstrating the changes of
predicted levels of maintainability and performance efficiency caused by different levels
of implementation effort. These results have been compared with the background
knowledge in Table 1 to validate if the relationships have been correctly defined, i.e.
if the change of the level of the controllable factor causes the assumed direction of
changed level of quality feature. In this case the obtained results confirm that the
background knowledge was correctly incorporated into the model.
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With these graphs, it is possible to analyze the strength of impact of controllable
factors on quality features. The impact of implementation effort is larger on maintain-
ability than on performance efficiency — predicted probability distributions are more
‘responsive’ to different states of implementation effort for maintainability than for
performance efficiency. Such information may be used in decision support.

maintainability s performance efficiency

Fig. 4. Impact of implementation effort on the selected quality features.

Simulation 2 is similar to simulation 1 because it also analyses the impact of
controllable factors on quality features. However, this simulation involves the analysis
of summary statistics (mean values) rather than full probability distributions. Here,
an observation ‘very high’ was entered to each controllable factor (one at the time) and
then the mean value of predicted probability distribution for each quality feature was
analyzed. Table 3 summarizes the results for effort at various phases. All of these mean
values are above the default value of 0.5. These higher values suggest the increase in
the predicted level specific quality features. These values correspond to “+” signs in
Table 1 which further confirms the correct incorporation of the relationships between
the controllable factors and the quality features.

Table 3. Predictions in simulation 2.

; Fequrements Implementation Testin

ity et qeffnn 5 affort rE!ff'-::uIT.g
functional sutabality 0.33 Q.56
reliability Q.56 0.53
perfonmance efficiency 0.54 (.33
operability 0.60
secunty
compatibility 0.53
maintaimakihity 0.56 .57
portability
uzabilitv 0.536 .55 0.52
flexibility 037 0.36
za faty 053

Simulation 3 was focused on the analysis of the relationships among various quality
features. Similarly to simulation 2, it also covered the analysis of the mean values of
predicted probability distributions. The results are presented in Table 4.
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Table 4. Predictions in simulation 3.

. . & 2
Predicted A | 2| 2|8l 2 o =
Eromt| o e it = d o = = E o ]
S E| B H | = | = | BB g |58 |5 = ‘B
- = e = = I ket = o ] = =
el =l 8| m| BE|EE| 2| €| B u
o | o N E e |85 | E e | F =
Chserved = P E
functional = = = = = %
citability 053 0:33 0.58 058 033 |0
reliability 0.53 0.55(032 0:55 0.35) 0354 | 054
securty 046 046 0.33)| 032 | 047
compatibility 0351046 033) 048 055 055
operability 055|032 0.55 046 |0535[056[0.36 0.536
penimanc: 046|048 046 047|044 |048|<0.50| 047
efficiency
maintainahility | 0.37)| 0.33 055 047 0536037 0.58
portability 035|057]| 044 |1 056 0.56
uzability 058|035[033 056) 048 (0358 034 | 057
zafetv 053|034(052)|053 <050 0.54 048
fexibility 057|054 (047 057) 04% |05%|056|0.57[ 048

The predicted mean values are either lower or higher than the default value 0.5. The
values lower than 0.5 correspond to “-’
0.5 correspond to “4” signs in Fig. 2. Such results confirm that the model correctly

signs in Fig. 2 while the values higher than

incorporates the assumed relationships among quality features.

Simulation 4 has been focused on demonstrating more advanced model capabilities
for delivering important information for decision support using what-if and trade-off
analysis. Although such analysis may involve more variables, for simplicity, four vari-
ables were investigated: implementation effort, testing effort, maintainability, and per-
formance efficiency. Some input data on the hypothetical project under consideration
were entered into the model. The model provides predictions for these four variables
as shown in Fig. 5 (scenario: baseline).

Let us assume that a manager is not satisfied with the low level of maintainability.
Apart from previously entered input data, an additional constraint is entered to the
model to analyze how to achieve high level of maintainability (maintainability—=‘high’—
mean(maintainability)=0.7). As shown in Fig. 5, scenario: revision 1, the model
predicts that such target is achievable with the increased level of implementation effort
and testing effort (although the increase of required testing effort is very narrow). The
model also predicts that the level of performance efficiency is expected to be lower.
This is due to the negative relationship between the maintainability and performance
efficiency (Fig. 2).

Let us further assume that, due to limited resources, not only the increase of effort
is impossible, but even it has to be reduced to the level ‘low’ for implementation and
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implementation effort testing effort

maintainability performance efficiency

Fig. 5. Predictions in simulation 4.

testing. In such case the level of performance efficiency is expected to be further
decreased (scenario: revision 2).

It is possible to perform various other types of simulations similar to simulation 4 to
use the model with what-if, trade-off and goal-seeking analyses for decision support.
Such simulation may involve more steps and more variables. Such simulations will be
performed in future to enhance the validation of model correctness and usefulness.

6 Calibration and Enhancement Options

The proposed model has a structure that enables relatively easy calibration. As
the variables are defined using expressions, the calibration requires setting appropriate
parameters in these expressions:

e the values of weights in wmean functions — higher value for weight indicates
stronger impact of particular variable on the aggregated value;

e the value of variance in TNormal expressions (second parameter) — value
closer to zero indicates stronger relationship, higher values indicate lower
relationships. Note, that since ranked variables are internally defined over the
range (0, 1), typically a variance of 0.001 indicates very strong relationship
and 0.01 — medium relationship.

Apart from calibration focused on the defining parameters for the existing structure,
the model may be enhanced to meet specific needs:

e by adding new sub-features to features or new measures to sub-features —
such change requires only the definition of newly added variable, no change
in definitions of existing variables is necessary;
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e by adding new controllable factors — such change requires the change in def-
inition of “effectiveness” variable for specific phase, typically by setting new
weights in wmean function;

e by adding new quality feature — such change requires the most work because
it involves setting sub-features and measures, relationships among features,
and relationships between the controllable factors and this new feature.

Currently the model does not contain many causal relationships. This may reduce the
analytical potential. Defining the model using more causal relationships may increase
analytical potential but may also make the model more difficult in calibration. Thus,
this issue needs to be investigated carefully when building a tailored model.

The model enables static analysis, i.e. for the assumed point of time. Because both
the project and the development environment evolve over time, it may be useful to
reflect such dynamics in the model. However, such enhancement requires significantly
more time spent on modelling and makes the calibration more difficult because more
parameters need to be set.

7 Possible Use in Other Fields

The proposed predictive model is focused on the software quality area. Such approach
may also be used in other fields/domains because the general constraints on model
structure may also apply there. Possible use outside software quality area depends on
the following conditions:

e the problem under investigation is complex but can be divided to a set of
sub-problems,

e there is no or not enough empirical data to generate a reliable model from
them,

e domain expert (or group of experts) is able to define, calibrate and enhance
the model,

e the relationships are of stochastic and non-linear nature,

e there is a need for a high analytical potential.

However, even meeting these conditions, the use in other fields may be difficult. This
happens in the case of a high number of additional deterministic relationships, which
have to be reflected in the model with high precision. Possible use in other fields will
be investigated in detail in future.

8 Conclusions

This paper introduced a new model for integrated software quality prediction. For-
mally, a model is a Bayesian net. This model contains a wide range of quality aspects
(features, sub-features, measures) together with relationships among them. To make
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the model useful in decision support it also contains a set of controllable factors (cur-
rently effort and process quality in different development phases).

This model encodes knowledge on software quality area published in literature as well
as personal expert judgment. To prepare the model for using in the target environment
it is necessary to calibrate the model, for example using questionnaires. The model
may also be enhanced to meet specific needs. The model was partially validated for
correctness and usefulness in providing information for decision support.

In future, such model may become a heart of an intelligent system for analysis
and managing software quality. To achieve this higher level of automation would be
required, for example in calibration and enhancement by automated extraction of rele-
vant data/knowledge. In addition, the model would have to reflect more details on the
development process, project or software architecture.

The stages of building customized models will be formalized in a framework sup-
porting the proposed approach. This framework may also be used in building models
with a similar general structure but in the fields other than software quality.
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