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Cryptographic software: vulnerabilities in implementations

Michat Luczaj'*

! Institute of Telecommunications, Warsaw University of Technology
Poland

Abstract — Security and cryptographic applications or libraries, just as any other generic software
products may be affected by flaws introduced during the implementation process. No matter how
much scrutiny security protocols have undergone, it is — as always — the weakest link that holds
everything together to makes products secure. In this paper I take a closer look at problems usually
resulting from a simple human made mistakes, misunderstanding of algorithm details or a plain lack of
experience with tools and environment. In other words: everything that can and will happen during

software development but in the fragile context of cryptography.

1 Introduction

I begin with a brief introduction of typical mistakes and oversights that can be made
during program implementation in one of the most popular programming languages,
C [1]. T also explain the concept of exploitable memory corruption, how critical it is
and where it leads from the attacker’s point of view.

A set of real-world examples is given. Some well known previously disclosed vulner-
abilities are brought to illustrate how a flaw (sometimes even an innocent looking) can
fatally injune security of the whole protocol, algorithm. There is much to discuss as
failed attempts at implementing cryptographic primitives — or making use of cryptog-
raphy in general — range broadly. From the operating systems of video game consoles
to popular open- and closed- source software packages.
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2 State of computing

For a better understanding of the described issues, it is crucial to review the basic
blocks that comprise execution environment of a running application. In this paper, not
being an exploit writing tutorial, nor CPU manual, I will stick to the very minimum
of system internals and their design concepts. For the sake of simplicity I will also
ignore the — more or less subtle — architectural differences of modern computers and
assume that we all live happily in 32-bit x86-only land [2]. T believe the reader should
be aware of all the simplifications I make as they do, in fact, affect how things work in
real life.

Although I aim to stay at the high level of abstraction, description of some basic yet
important memory segments (more precisely: their functionality) requires us to take a
slightly deeper dive into the process address space.

Every instance of a program is provided by operating system kernel with a similar
environment where it begins its execution. The kernel, besides fulfilling a standardised
role of providing programming interfaces, guarding components (mis)behaviour, man-
aging access to restricted and/or shared resources, etc, is also responsible for initialising
and setting up application own workspace [3].

Thanks to hardware support of memory management unit, the kernel is able to force
each user’s space application into believing that the whole machine is just for it, i.e.
concurrently running executions of different programs (unlike threads) are separated
at the highest tier. This means that, for example, one process has no way of accidental
modifying another’s memory content. This obviously should not be held as a rule
of thumb, but any form of inter-process communication (such as shared memory) is
beyond the scope of this paper. What is important, though, is that we are not going
to be concerned about processes influencing each other’s execution state. Our whole
discussion about memory corruption and its consequences will be held within limits of
a single virtual address space [4].

2.1 Code

Clearly the most important part of process memory is where the actual code is stored.
Usually it is not a single memory region as most of the programs will, sometimes indi-
rectly, use external libraries also known as dynamic shared objects. Those additional
binaries are loaded into address space whenever there is such a need. This, however, is
quite moot in the context of our discussion as the kernel (yet again, thanks to hardware
support of MMU) makes sure that code segments are immutable by simply terminating
process in case of any illegal modification attempt.

This brings us to mostly correct conclusion that if one wants to arbitrarily change
the execution flow of application, brazenly trying to modify the code segment is usually
not the best way to go.
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2.2 Stack

The second important memory region is stack. From the application and program-
mer’s point of view it is generally used for function parameter passing (caller pushes
function arguments on the stack, callee pops them for its use), automatic temporary
variables storage (with a life span of a currently executing procedure) and, luckily for
attackers, execution flow book-keeping. Basically, every function, right before calling
another piece of code or entering some sub-procedure, stores address of the next in-
struction on the stack. This way CPU at the end of sub-procedure execution will be
told where to jump back and carry on with the instruction flow. Thus, not without
reason such, stack-stored address is called return address.

Stack not only serves for storage in the last-in-first-out manner, but also grows
downwards which means that newer allocations will be placed at lower addresses. In
particular, local variables of current function will be stored before the return address.
Those two characteristics combined with the information from the paragraph above
turn out to be critical: local function variables are ,jintertwined” with return addresses.
It means that if an attacker manages to force application to overflow some local tem-
poral buffer, he or she will probably overwrite the return address. And if that happens,
execution flow can be altered and bended to the attacker’s will.

From the C programmer’s standpoint that would probably look like the example
given below. No matter how artificial and unrealistic this code snippet appears to be,
it represents the problem in full glory. Let us assume that func() was called from a
higher level block of code with the user-provided input data, name. First we see that
strcpy () copies data into the constant length stack based space. It does not verify if
destination buffer is big enough. tmp is being overflow, a return address overwritten and
right after printf () printed out not so important message, CPU returns at memory
address designed by a malicious user.

void func(char sname)

{

char tmp|[32];

strepy (tmp, name);
printf("%s logged\n", tmp);

The described method is a classic example of changing program behaviour by mod-
ification of the return address through stack bases buffer overflow [5]. Surprisingly it
iseffective and in many cases still possible to conduct in spite of many years of fighting
for security awareness among programmers and development of various exploitation
mitigation techniques.

The return address, being as important as fragile, is obviously not the only attack
vector for different forms of stack based memory corruptions. Here we could possibly
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start another section about frame pointers, overflowing adjacent local variables, char-
acteristics of C null-terminated strings and such, but that would bring nothing more
to the moral: security and integrity of data on the stack is important.

2.3 Heap

Another memory segment that is constantly in use by application is heap. It does
not have much in common with the previously described stack use case (small, fast
allocations of short life span) and thus it is used and managed in a distinct way.

First of all, as heap is supposed to handle also big memory request, it can be dy-
namically extended. But every time a programmer asks for additional memory chunk
via malloc() call, it is being handled by heap manager. Which, in turn, is usually a
part of standard C library, just like code/functions for handling IO operations, data
conversion, etc. Then, if heap manager decides, it is running out of memory to manage,
the kernel is asked for additional space. It means that a programmer does not usually
handle the management by himself — besides requesting and freeing chunks for his ad
hoc needs.

Heap manager turns out to be a pretty complicated piece of code by itself [6]. Not
only does it have to handle requests of varying sizes, take care of memory fragmentation,
detect deliberate or accidental anomalies, but also to do it all in an efficient way, not
taking much of processor time for its own needs. The same story is with meta-data.
To handle those tasks in an optimal way, several layers of custom data structures are
used internally. The question is: where are heap manager’s (or rather heap chunks’)
meta-data kept? In most of popular implementations, yet again and fortunately for
attackers, the same memory region where the user’s data is allocated is explated. One
can notice fatal similarity with a stack and return address placement. By overflowing
heap based buffer malicious content can replace adjacent chunk’s meta-data wrecking
havoc. What is a possible next step is not as clear as in the stack corruption case. It
depends on a particular heap manager implementation, while those differ greatly.

It should be also clear that sometimes modifying application specific data (i.e. the
content of chunk, not its descriptor) is definitely a lower hanging fruit. Analysing and
cheating modern allocator mechanisms may be quite a daunting task. During the years
after the first heap metadata-based exploit was demonstrated|7], more and more sanity
and integrity checks were introduced in heap managers.

The generic concept behind memory corruption attacks should be visible by now. It
does not matter if the problem is based on stack, heap or any other usable memory
region I did not discuss. The aim is to push program into the state that was unexpected
by its creator; steal and abuse the logic. Whenever there exists a possibility of changing
content of memory even in a semi-controllable fashion, there are high chances that flow
of execution can be altered. And altering can be equal to running attacker’s provided
code.

My short description of basic issues may be misleading. To fully realise the fact how
many possible pitfalls software developer can encounter, especially in the environment
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of low level languages such a C, I highly recommend the great book on software security
audit by Down, McDonald and Schuh [8].

3 Vulnerabilities

In the previous section I have laid out some basic foundations of different forms of
memory corruptions. Now I propose a short walk through some real-life examples of
implementation flaws discovered by various people.

3.1 Debian OpenSSL

This source code mishandling was nominated for Pwnie Awards 2008 [9] in a very
distinguished category: Pwnie for Mass Ownage.

MD_Update(&m, buf,j);

/* purify complains x/
MD_ Update(&m, buf, j);

Debian’s package maintainer of OpenSSL was having warnings from Valgrind [10]
concerning use of uninitialised variables in the PRNG code. OpenSSL is, undoubtedly,
very popular library used by many open- and closed- source projects so he commented
out two lines from above' in an attempt to help other developers. Valgrind did not
complain anymore and everything worked just fine. It should be noted here that
although ,fix” was not submitted upstream it was discussed on the openssl-dev mailing
list.

What he did not realise was that PRNG was deliberately using uninitialised memory
as a form of low entropy source. Obviously there used to be other sources as well,
but they were lethally wounded by this simple code modification. As a net result
the only variable input used in PRNG seeding was the current process ID. Taking into
consideration that the default maximum process ID under Linux is 32,767, all OpenSSL
PRNG operations were seeded with a small spectrum of initial values.

It took one year until Luciano Bello [11] discovered the flaw and the hell broke
loose. All the keys generated on the Debian-based systems within last year needed to
be regenerated: OpenSSH authentication, TLS/SSL certificates, TOR, VPN and many
others were equally affected. It did not take long until people started creating weak
keys sets for transmission eavesdropping, signature forgery, break ins via SSH, etc.

3.2 Nintendo Wii

After about two years from the introduction of Nintendo Wii console, two very
curious bugs in the cryptographic subsystem were published [12]. It is clear that

thttp://svn.debian.org/viewsvn/pkg-openssl/openssl/trunk /rand/md _rand.c?r1=140&r2=141&
pathrev=141
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Nintendo put a lot of effort into securing their game console. Among various ways
of keeping users out of device internals or extending hardware functionality, RSA was
used for verification of software packages. Wii was meant to simply reject programs
that were not signed with the right key. The implementation flaw by itself is a beautiful
example of how seemingly correct code breaks everything rendering whole protection
useless. And this is not even any form of memory corruption. My guess would be:
a lack of experience from the side of developer, a lack of basic understanding how
particular API works.

The issue was in the last phase of signature validation. Blob of memory consist-
ing binary SHA-1 hash of user’s data was compared against hash from the signature.
Unfortunately, strncmp () was used for that instead of memcmp (). The important dif-
ference between those two functions is: strncmp() operates on null-terminated strings,
while memcmp () on ,raw” memory. Such C string convention means for strncmp() to
end comparison whenever byte 0x00 is found — a termination marker. That resulted
in a quite peculiar variant of RSA signature verification where we check SHA-1 by
comparing two byte arrays only until any of them happens to contain byte 0x00. Due
to that bug it was enough to match hashes to the point where 0x00 was encountered.

As a picture is worth a thousand words, below there are two 160-bit long SHA-1
hashes that would be considered equal by the Wii system software:

006caaeb1286f05943a8f3d5¢2b444d0d0317d6e
0054955¢cd26b8ab25ad3bdbbe7063efecce85{68

Second vulnerability was less of implementation specific flaw. This time crypto-
graphic logic was flawed: padding check was missing from the process of signature
verification.

3.3 MDG6 reference implementation

One of SHA-3 candidates [13] was MD6. It did not advance to the second round of
competition although it was considered a strong, yet somewhat slow candidate. The
US National Institute of Standards and Technology required all entrants to provide
reference implementation of hash algorithms. As it turned out researchers from Fortify
Software managed to find two buffer overflows in the submitted code [14].

Both vulnerabilities were a result of single temporary buffer size miscalculation. MD6
implementation used structure md6_state with one of the elements defined as:

unsigned char hashval [(md6 c¢/2)*(md6 w/8)];
Assuming:

#define md6 w 64
#define md6 c 16

...we get size of md6_state.hashval equal to 64 bytes. Later on, in function
md6_process we could see:
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it (z==1)
{ memcpy(st—>hashval, C, md6 cx(w/8));
return MD6 SUCCESS;
}

...which makes memcpy () copy 16*(64/8) = 128 bytes into st->hashval overwriting
the adjacent md6_state elements. To be fair, modified part was the first half of buffer
holding zero-terminated string representing hexadecimal value of hashval making ex-
ploitation potential quite small.

It is worth noting that another problem with out-of-buffer write was also found in
another round I candidate’s implementation: Blender. This time an array of 3 elements
was referenced with the index value of 3. Note that in all C-like syntax languages the
first element’s index number is 0 and the last one is equal to the length minus one.

3.4 SSH

OpenSSH was always considered one of the most important parts of the world wide
Internet infrastructure. Its base purpose is simple: allow secure remote machine ad-
ministration. But just like any other piece of software it has had its own share of
implementation flaws discovered.

An integer overflow that became so famous, getting cast in a movie [15] was intro-
duced, as it happens from time to time, ironically while trying to fix another issue
(protection against some cryptographic attacks on the SSH protocol). It was found
by Michal Zalewski [16] that at one place in the code 32-bit integer variable which is
set to 0x10000 for large input, is assigned to a 16-bit variable, effectively reducing its
value to 0. Then, 0 is given as an argument to malloc() call, which according to C
standard, is a perfectly sane operation. The smallest possible heap chunk is allocated
and execution follows. The conclusions from related Bugtraq post:

By carefully preparing encrypted data, an attacker can point used,
accessible memory [...], and then, he will able to alter dword at cho-
sen address [...]. The attacker can alter stack variables, alter malloc
structures, etc, and attack later due to improper execution of daemon
code. This condition is relatively difficult to exploit, but there are no
technical reasons that would make this impossible.

OpenSSH was also affected by a classic integer overflow resulting from multiplication

as discovered by IBM Internet Security Systems. Currently this bug serves as an anti-
pattern example in the Common Weakness Enumeration dictionary [17]:

nresp = packet get int ();
if (nresp > 0) {
response = xmalloc(nrespxsizeof (charx));
for (i = 0; i > nresp; i++)
response [i] = packet get string(NULL); }
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One can see above that if value returned by packet_get_int() is 0x40000000
(1073741824) and assuming sizeof (char*) equals to 4 on 32-bit machine, then the
result of multiplication overflows. Thus argument to xmalloc() becomes 0 causing
response to the point at a very small memory chunk. But that does not stop execu-
tion causing the subsequent loop iterations to overflow the heap buffer.

As a side note: integer overflows resulting in heap based buffer size miscalculation
for such huge numbers are believed to be quite tough and hard to exploit. That is
mainly because the attacker, by having to provide high value, at the same time forces
loop into many iterations. This, in turn, can lead to a situation when body of a
loop hits unreachable memory address (or in this case, non-writable region) before
packet_get_string(NULL) can be tricked into making some use of already overflown
data.

In general though, more complicated and sophisticated program gets, more chances
we have to successfully exploit even otherwise unexploitable cases.

Another bug class that could be found in old versions of OpenSSH is off-by-one
errors. As the name suggests those vulnerabilities are small and innocent looking but
if they lead to a form of memory corruption (and usually that is the case), they do have
severe consequences. The one found by Joost Pol[18] was beautiful in its simplicity:
in the channels management code there was the following sanity check:

if (id < 0 || id > channels alloc) {
log ("channel lookup: %d: bad id", id);
return NULL;

}

Otherwise, if the validity criterion was met, id was used as an index value. Later on
that index was used in the process of calculating pointer to id-th Channel structure
OpenSSH was currently managing. And then appropriate data stored there would be
used in further processing. Knowing that channels_alloc represents a number of
allocated channels, one can spot a mistake in the code above. The corrected version is:

if (id < 0 || id >= channels_alloc) {
log ("channel lookup: %d: bad id", id);
return NULL;

}

3.5 NSS

Morzilla Network Security Services is a rich set of libraries designed to support cross-
platform development of security-enabled client and server applications?.

In one of its modules responsible for SSLv2 packets parsing, version 3.10 was vulner-
able to stack based buffer overflow because of yet another kind of arithmetic problem:
integer underflow [19]. As it can be seen in the patch provided by Mozilla, they did

2http:/ /www.mozilla.org/projects /security /pki/nss/
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actually check for buffer overflow condition and then called memcpy () wrapper in the
following fashion:

/% Is the message just way too big? x/
if (keySize > SSL_MAX MASTER_KEY BYTES) {

/* bummer x/

}
MEMCPY (mkbuftckLen , kk, keySize—ckLen);

One thing is lacking here: no care was taken to make sure that keySize >= ckLen.
The input data that failed to meet that condition caused integer wraparound from the
bottom, i.e. instead of the typical (assuming 16-bit integer types):

O0xFFFF + 0x0001 = 0x0000
...what we have to deal with is:
0x0001 — 0x0002 = OxFFFF

Now, calling memcpy () with length argument being so big (or negative depending
on type declaration) is definitely not a good idea, resulting here in stack based buffer
overflow.

4 Conclusions

As one can see there are numerous ways to make subtle mistakes that will cost
dearly. Over the short course of introduction to memory corruption and set of real-
world examples we have uncovered only some of them, a proverbial tip of an iceberg.
There are many other issues remaining: more U2 arithmetic traps, format string bugs,
race conditions, use after free, double free, SEH exploitation strategies, etc.

One more class of bugs I would like to write about are those resulting from code
re-factoring. Not changing the logic, not moving data from stack to heap and vice
versa, not anything serious like that. But simple reformatting. Imaging the following
example, where a programmer defined a small buffer and incorporated some sanity
check:

char my buffer[128];

if (ulen < sizeof(my buffer))

goto bail out;

Later on he had some free time on his hands and decided that it is better to rewrite
it in the following way, increasing readability:

4define SMALL BUFF SIZE 128
char my_ buffer [SMALL BUFF SIZE];
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if (ulen < sizeof (SMALL BUFF SIZE))

goto bail out;

The obvious issue here is with the if condition. Instead of:
ulen < sizeof (SMALL BUFF SIZE)

...there should be:
ulen < SMALL BUFF SIZE

This is because sizeof (INTEGER_CONSTANT) will always return 4 making our sanity
check moot. It sounds pretty unrealistic to make this kind of mistake, right? Right.
And so finding this kind of bug in one of the mentioned software packages is left as an
exercise for the reader.
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