Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 07:58:58

i
VERSITA
Annales UMCS
oo cun, Informatica
@: - R:‘“ﬁc Annales UMCS Informatica AI XI, 3 (2011) 27-40 Lublin-Poloni
£ DOI: 10.2478 /v10065-011-0002-y uonn-roonia
5 L, Sectio Al

st http://www.annales.umcs.lublin.pl/

Effective reduction of cryptographic protocols
specification for model-checking with Spin

Urszula Krawczyk!*, Piotr Sapiechal?

L Krypton-Polska, Al. Jerozolimskie 131 Warsaw, Poland
2 Department of Electronics and Information Technology,
Warsaw University of Technology, Warsaw, Poland

Abstract

In this article a practical application of the Spin model checker for verifying cryptographic
protocols was shown. An efficient framework for specifying a minimized protocol model while
retaining its functionality was described. Requirements for such a model were discussed, such
as powerful adversary, multiple protocol runs and a way of specifying validated properties as

formulas in temporal logic.

1. Introduction

A flaw in a cryptographic protocol may become a real security thread [1,
2]. Even a seemingly small protocol may produce a great number of possible
behaviours. One of the methods to formallycon sider protocols correctness is
model checking by representing the protocol as Biichi automata M, specifying
every checked property as an LTL temporal formula « and checking satisfiability
of the formula in the model M = « [3, 4, 5, 6].

The automata of the protocol is typically generated from a more high-level
description. This article has its focus on representing protocol models in the

*E-mail address: U.Krawczyk@krypton-polska.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 07:58:58

28 Urszula Krawczyk, Piotr Sapiecha

Promela language, which is an input for model checker Spin [7]. Choice of
that tool was due to its effective, automatic minimizing techniques and its
widespread use in the area of verification (see annual workshops page [8]).

Some examples of verifying cryptographic protocols with Spin can be found
in the literature [9, 10, 11, 12, 13, 14, 15]. However, the presented models
are too simple, not taking into consideration multiple runs or limiting the pro-
tocol attacker abilities. Most importantly they create a large automaton, even
though not so complicated Needham—Schroeder protocol is considered. Such
an approach for modelling a more complex protocol like JEK would result in
a model not feasible to verify. Model publicized in [10] seems to be the most
sophisticated, as it is scalable and includes parallel runs but it contains many re-
dundant transition causing state—space explosion. Another approach presented
in [15] uses interesting recursive structures but at the expense of great memory
cost. This does not disable the possibility of finding the attacks but only full
coverage of reachable states can assure the model behaviour correctness.

Also none of the mentioned models supports creating a readable counterex-
ample indicating an attack. In this article a method for developing crypto-
graphic protocol models, avoiding those drawbacks is outlined. The description
of protocol framework is illustrated with the fragments of Promela code.

2. Problem Definition

Key establishment and authentification cryptographic protocols, such as
Needham—Schroeder or JFK, can be modelled as automata so that their prop-
erties, described as temporal formulas, can be checked. The main problem is
to keep such a model effectively verifiable. The satisfiability of the formulas in
the model should increase confidence in the security of the protocols. Thus it
is crucial to explicitly list requirements such a model must comply with. The
environment in which the protocol is studied is considered an important matter
[16, 17, 18]. The main points are the following;:

: Legal users - can participate in parallel protocols taking different roles
(initiator, responder). They can establish a session with other users
including the intruder, that has a certificate like other legitimate users.

: The intruder - can at any point eavesdrop a message, alter it and
resend it to another user in another protocol run. The adversary pro-
duces messages on the basis of his actual knowledge, creating new com-
plex elements (e.g. encryptions) or resending the remembered ones.

: Model scalability - concerns the number of protocol runs and the
attackers knowledge database.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 07/02/2026 07:58:58

Effective reduction of cryptographic protocols . .. 29

: Additional data - the information required for logical assertions that

are written to check protocol properties must be stored. Also addi-
tional informations about protocol state are printed out and used later
while producing a counterexample.

: Model configuration - description of a particular model configura-

tion, should specify any constraints in the way that the messages are
sent from the user to the user and the roles the users can take.

These specifications are responsible for models proper behaviour. While the
above constraints hold, one important parameter must be minimized:

Models size - affects the amount of memory and time needed for verifi-
cation. Considering the exponential complexity of the model checking
problem (O(#(M)) = O(2#(P)), where P is the number of atomic
prepositions describing the states of model M [19]), this seems to be
a critical issue in practical applications.

3. Representing Protocol as an Automaton

To illustrate the idea of modelling protocols as Biichi automata, an exam-
ple is given in this section, showing a path from a protocol description up to

the automaton. A clear, simple protocol is used (Fig. 1). Also no reduction
techniques have been demonstrated yet. This keeps the model comprehensible
so that the reader can understand the general methodology. The verification
process consists of the following steps.

(1)

Modelling protocol - the verifier describes in the Promela language
the behaviours of the protocol users and all the possible actions the
adversary can take. A sample code representing the responder in the
example protocol is shown in Fig. 1.

Protocol as automaton - the Promela code describes an automaton.
A gard and an action are associated with every transition from state
to state. In the automaton in Table 1 and Fig. 2, the state when
the key is established can be reached only if the guard corresponding
to signature correctness holds. The actions can change the variables
values and message channels contents.

Kripke structure - incorporating variables values into automaton
produces a Kripke structure [4, 6]. Here every state represents a pos-
sible configuration of variables values. The example structure is shown
in Fig. 3.

Biichi automaton - nondeterminism of Btichi automaton is crucial
for model checking, as every possible path in the protocol must be
analyzed. Biichi automaton can be constructed from Kripke structure

Pobrane z czasopisma Annales
Data: 07/02/2026 07:58:58

30

Al- Informatica http://ai.annales.umcs.pl

Urszula Krawczyk, Piotr Sapiecha

by copying the state labels onto the outgoing arcs [6], which can be
seen in Fig. 4.

(5) The verified property - all the desirable properties of the protocol

are written down as LTL logic formulas. The formulas contain refer-
ences to variables from the protocol model. Each formula is negated
to denote the unsafe states and automatically transformed into spe-
cial never process in the Promela code with Spin or another tool [20],
as shown in Fig. 5. This code can be also transformed into the Biichi
automaton. Locations represented as double framed circles are accept-
ing locations. The automaton accepts an infinite input if it makes the
automaton visits accepting states infinitely often [5, 6].

(6) Verification algorithm - at the end an asynchronous product of all

automata representing protocol users is constructed. This automaton
is used to construct a synchronous product with the formula automa-
ton [6]. The algorithm is to search the resulting automaton for a path
that would traverse infinitely often through the formula automaton
accepting locations [4, 6].

(7) Counterexample - such a path indicates an error in the protocol

and presents a way an unsafe state can be reached. On the whole, the
protocol is flawed if its model can produce a path, that is accepted by
the automaton representing an undesirable situation.

The human verifier takes part only in the stages involving modelling the

protoco
tivities

l in the Promela language and writing LTL logic formulas. Other ac-
are done automatically by the model checker tool. Actually effective

implementations merge the described stages to reduce computing costs.

Table 1. Table with automaton describing responders states while par-
ticipating in the protocol from Fig. 1.

Transition || Current state Gard Transition effect Next state
t43 0 - - 1
t44 1 - m17certi,expi 2
t45 2 - printf("MSC: MSG2 Bob...”) 3
t46 3 - m2!B, ExpB, BPr, expi, ExpB 4
t47 4 - m37?sigkey,sigexpi,sigexpr 7
48 7 (((certi==A...) |- 6
t49 7 (((certi!l=A...) | - 13
t1 6 - skip; 11
t50 11 - d_step{...} 12
t51 12 - - 13

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 07:58:58

Effective reduction of cryptographic protocols . .. 31

Modelling protocol

MSG1 A = B: A, k,
MSG2 B — A: B, ky, SIG{BPr}(ka, k)
MSG3 A — B: SIG{APr}(ka, k)

ke = g* mod p
ky = ¢° mod p
Key:kzgmodp:kgmodp

#* respondar */
proctype Bob(chan ml, ms, m3)
{
byte expi: /% D-H exponent of initiator =/
byte certi:/* certificate of initiator =/
byte sigkey, sigexpi, sigexpr: /% for values from sign */
MaGl: mlrcertl, expi:
MaG2: printf ("MAC: MaGZ Bob 5d, 4, 3ig 3d(xd, xd)va”,
B, ExpB, EPFr, expi, ExpE):
n2!E, ExpEB, BEPr, expi, ExpE:;

Maz3: nirsigkev, sigexpl, sigexpr:; /* siga*/
if #* check sign */
il (certi == & g& sigkey == AFr)
|l {certi == E && sigkey == EPr))
&& Slgexpl == expl && Slgexpr == ExpE)
== skip:
fi:
FINI3H: d4_step! #* remember the data for verification in global variables =4
explh = expi:
certInit = certi:;

Fig. 1. Description of examplary key establishment cryptographic pro-
tocol based on the Diffie-Hellman schema and signature and the
Promela code representing the responder.

4. Our approach

The most intuitive way to model protocol is to represent users as indepen-
dent processes, sending messages through channels controlled by the intruder.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 07:58:58

32 Urszula Krawczyk, Piotr Sapiecha

Protocol as automaton

(certil=...)/-

Fig. 2. Graphical representation of automaton from Table 1, describing responders’
behaviour.

Kripke structure

explb—ExpA
certlnit—IDE

m2: B, ExpB, sigkey=EPr
certi = IDE BPr,ExpA, m3: EPr, ExpA, sigexpi—HxpA
ml: IDE, ExpA expi = ExpA ExpB ExpB sigexpr=Exp

(;1 IDE, ExpA =2,3 IDE, Epr)—yGl IDE, Exp9—>(;7 IDE, ExpﬁD—»Ga.m IDE, ExpA

Q m2: B, ExpB, sigkey=EPr
certi = DA BPr, ExpA, m3: EPr, ExpA, sigexpi=ExpA
ml: IDA, ExpA expi = ExpA ExpB ExpB sigexpr=Ex

A
\ (;1 1DA, EprHaZ,E IDA, Epr)—p(a‘l IDA, Epr)_p(ﬂ IDA, EprHalS IDA, ExpA
A

\
S

Fig. 3. Kripke structure constructed from automaton from Fig. 2.

Biicht automaton
explb=ExpA
certlnit=IDE
sigkey=EPr
m2: B, ExpB, sigexpi=ExpA

certi = IDE BPr,ExpA, m3: EPr, Exp SRECI o
ml: IDE, ExEA expi ExpA ExpB ExpB
»(Q2) (Qs3) »>(Q4 } >(Q5

sigkey=EPr
sigexpi—=ExpA

m2: B, ExpB,

certi = IDA BPr,ExpA, m3: EPr, ExpA, sl gaspi—Ra B
ml: IDA, ExpA expi — ExpA___ ExpB ExpB
>(Q7 } >(Qs) »(Qo) »(Q10

Fig. 4. Biichi automaton constructed from the Kripke structure from Fig. 3.

Unfortunately, such a model, though properly describing the protocol, might be
too large to analyze. Due to exponential complexity of the problem [19], every
redundancy in the model is expensive by means of memory and computation
time.

So the ability to model a protocol is not sufficient for practical verification.
Thus the constructions below were used in the presented model to reduce its
complexity, while giving the intruder strong abilities.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 07:58:58

Effective reduction of cryptographic protocols . .. 33

The verified property

#define successiB (exp2a == ExpB && explb == Expl)
#define id misbind (certInit == E && successidB)
never {
TO_inict:

if

t: ((id_misbind)) -> goto accept all

: (1) -> goto TO_inic

fi:
accept_all:

skip

certInit == E
k& successAB

}

Fig. 5. Biichi automaton constructed from the LTL logic formula ¢ id_misb (identity
misbinding attack is possible). Specification in the Promela code (left) and graph
representation (right).

4.1. Remembering Simple Message Elements

Simple elements known by the intruder are remembered as bytes in the EveDB
array. Every element has unique value and can be accessed with a combination
of defined indices. The values for the JFKi protocol are shown in the left
column of Fig. 6. The example of access to elements can be found in the
right column of Fig. 6. For instance the index of responders nonce nonr, is
a sum of index indicating user identifier, nonce type and current protocol run
(otherUser + NONCE + comm). On the other hand, exponentials are reused
between protocol runs so to access them the comm variable indicating the run
is not used. If the EveDB array cell is not empty, the value is known by the
attacker.

4.2. Remembering Complex Message Elements

Complex elements such as signatures and encryptions are stored by the in-
truder in additional channels which work like FIFO queues. While generating
a faked message, needed elements are randomly chosen from channels. The ex-
amplary usage was shown in Fig. 6 (right). Channel EveSig2 holds signs from
the second protocol message, that were intercepted earlier.

4.3. Eavesdrop On Send, Corrupt on Receive Tactic

In a simple model the message is produced by the legal user, the intruder
learns it and then the message is sent. Yet before the receiver gets it, the data
is intercepted and generated once more by the attacker on the basis of their
knowledge. An observation can be made, that it makes no sense to transport
via the channels the data that is already stored in the intruder database. It
can be seen that the original message is not used after the intruder learns it.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 07/02/2026 07:58:58

34 Urszula Krawczyk, Piotr Sapiecha
#define NONE O % indicating element is not known =4 if #* infruder cheoses rasponders nence =4
M lice slemants +4 tinonr = intruder + NONCE; #* intruders own nonce */
b AeES o " R ## nonce of the other user that is known */

e :.Lne e - i1 (EveDB[(otherUser + NONCE + comm)] !'= NONE)
#define Prh 2 4% plice private key =4 -> nonr = (otherUser + NONCE + coum):
#define Expa 3 /% dlice exponenctial */ fi;

#define NAl 4 /% nence used in the first protocal run */ if #* infruder chooses responders exponantial =/
#define NAZ S riexpr = intruder + EXPON;
; : i [EveDE[otherlD + EXPON] !'= NONE
#define HMACL & /% secret key for computing mac Cookie */ { vs e)[c;r fr(:ilrlex:User +]EXPDNJ .]
#define Fadl 7 4% security association in first run %/ fi: .
#define 5aldz 3§ if A SIONL e 7
#* Bob elements ... *# :1/* compute my own signl */
#define GrInfl 17 4% B-H group info far first run *4 cert = intruder:
#define GrInfz 18 AR TR e R prkey = intruder + PFREEY; #* private key of the user *
/% take the chosen expr for consistency 7
= Sigexpr = expr;
#define IDE 19 #* intruder certificats */ #% [-H group information was chosen same way as expr */
efine Pr intruder private ke siggrinf = grinf:
#def PrE 20 /% intruder private key =4
#define ExpE 21 /% intruder exponenctial */ tiflen(Ewedigl) > 0) -> /*resend some intercepted signl =/
gdefine NE 22 /% intruder nonce used in bath runs =/ 2

; :: (EveDB[otherT != NONE
#define HMACE 23 /% intruder key for computing Cookie */ ! _’: CtE_Zt. froilel:iUser . !
g#define GrInfE 24 /% b-H group faked by the intruder */ i &

#define 3aiE 25 /* faked initiotor security association *# pom = 0:

#define HarE Z6 /% foked responder security association */ do

#* Indexes to access slements of chosen usar®/ zi(pomsgctenEveslgly) =

#define NONL 4 2% index of Alices nonce */ dostent . . i .

: i % Eveligl? prkey, sigexpr, siggrinf;
#define NONE 12 /* index of Bobs nonce EveSigll prhey., ataewpts, 51sgrint s
#define 544 T #* indexof security asseciation of Alice *7/ pow = pom + 1;

#define S4B 15 /* index of security nssociation of Bob */ 1 d_step*/
ti(pom > 0) - 4% getat least one */
#define PREEEY #* offset of private key after certificate */ i break:;
od;
#define EXPON #* offast of exponential after certificate */ .

1

2
#define NONCE 3 /% offset of nonce after certificate +/
#define HMACEEY 5 /* offset of key for MAC after certificate */
#define SECA 6/ offset of security association after cort */
#define GRP_INF 17 /* offset of DH group ##
/* defines describing communication number */
#define COMML 0
#define COMMZ 1

#* choasing a cookie from those intercepted sarlier ... */
printf("MIC: MSGEZ.%d Ewe($d) -> %d o
"ed, %d, %d, %d, 3d, 5d, Sig %d(%d, sd),"
"™ cookie HMACE 3d (%d, %d, 3d, %d)\n",
comm, usrl, usri, eXpi, expr, noni, nonr,
grinf, cert, /*responder cert */
prkey, sigexpr, siggrinf,
hwac, hexpi, hexpr, hnoni, hnonr):

Fig. 6. Representation of simple message elements (left) and intruder preparing faked
MSG2 in JFKi (right) in Promela language code.

Therefore in our approach channels transport only information that a message

is sent as shown in Fig. 7. In consequence, all channels memory usage size is

constant and small. Thus the tactic is crucial for minimizing the model size.

It is also important that in our model the intruder can produce faked mes-
sage after arbitrary time, possibly after receiving other messages from parallel
protocol runs and learning new data. This models the ability of the intruder
to delay messages. In Fig. 7, a circle is a point where a message is consumed

by the attacker, while a square marks creation of a message by him. As can
be seen message M1’ is produced after learning message M2 from the second
protocol run. Sending of message is also the point where the intruder decides

where the message will be sent.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 07:58:58

Effective reduction of cryptographic protocols . .. 35
E inline recvM3GlsendM3GE |
self, otherlegalUsr, ...){
A B /* intruder creates possibly faked MEGL' .., */

! 1 M'I ! #+ self deal with #SG1' ... */
|—’®) #* self creates MSS2... *4
¢ : /% infruder learns MEG2. +4
I #* intruder redirects MSG2: =74
2. M 1 : #* choose protocol run *#
®4—|- CHOOSEZ {comMum, COMM1, COMMZ)

: #* choose receiver */
) 1 CHOOSEZ {usrl, self, otherLegallUsr)
1. M1 : printf("redirecting M3GZ to %d
<>—’I “run xdyn”, usrl, comflum);
| /% WASG 2 sent - very small channel *#
: we'!comm, usrl;
¥
% How recyidiSG LsendtSiE 20 is used: 7
siml?[comBum, IDA] - A* dlice tries to receive */
<> - message created by the intruder wl?? combum, ID&; ¢/ self
recyMSGlsendM3G2(IDA, IDE, ...)

® - message consumed by the intruder

Fig. 7. Eavesdrop on send, corrupt on receive schema and specification in the
Promela language.

The effect is achieved by combining attackers’ activities with the users’ steps,
rather than putting them into a separate process. As the method name suggests
the intruder takes his first action (eavesdropping) just after the legal user sends
a message. The instructions are put into the sender process. The attackers’
second action (corrupting the message) is put into receivers’ process, just before
the legal user gets a message.

The tactic also eliminates introduction of additional mechanism to prevent
the intruder from intercepting his own, faked messages. This could have been an
additional field in a message, indicating if the message was sent by the attacker
that can be found in the literature [10]. With the tactic this is not needed, as
the data is generated only once before the legal user receives it.

4.4. Only One Channel For a Message

Using for every message two channels (first for transporting data from the
legal user to the intruder, second for transporting data to the legal receiver) is
simple and intuitive but memory expensive. Thus only one channel is used in
our model. This can be done as no message data is really transported as was
mentioned. Only information that a message is sent is placed in channels.

4.5. All Users in One Process

The eavesdrop on send, corrupt on receive technique also makes it possible to
place the code of all users in one process. As it was mentioned, the intruders’
actions are combined with those of legal users. In a simple model senders and
receivers could be put in independent processes. Every step of a user consists

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 07:58:58

36 Urszula Krawczyk, Piotr Sapiecha

of receiving and/or sending a message. Such step would be put into an atomic
clause to minimize interleavings we are not interested in. This would result
in a sequence of users’ atomic steps from different protocol runs, which is the
models proper behaviour.

Yet the presence of many processes would cause the model checker to create
an asynchronous product of the automata. This would introduce redundant
interleaving and make the verified model grow too much [3]. That is why only
one process is used with a do loop, in which from the set of executable steps one
is nondeterministically chosen. Every step is represented by a function to keep
both the advantage of one process and of having structured the Promela code,
as shown in Fig. 7. Rather than storing the user identity in his process state,
it becomes the function parameter. For example, a receiver of the message is
indicated by the self parameter of function recvMSG1sendMSG2().

In such a model a sequence of nondeterministically chosen steps is produced
just as in the multi-process case but without the undesirable overhead. So this
approach does not affect the models functionality but its efficiency.

4.6. Consistent Message Generation by the Intruder

The consistent generation of messages means that once chosen, an element
(e.g. nonce, exponential) is used by the intruder in the whole message. This
helps avoid messages that are known to be rejected by legal users. The example
of this was shown in Fig. 6 (right). Here the same value is used as exponential
of a responder expr in the plain text and in the faked signature.

5. Protocol Properties Verification
The last step is specifying protocol properties as LTL (linear temporal logic)
formulas. Notation o means that « is satisfiable in the model, iff it is true
for every execution path of the automata. It can be used to specify that it is
desirable that unsafe states are never reachable. For the Needham—Schroeder
protocol, an example safety formula detecting identity misbiding would be:

o= (run2accepted &&
(otherUsrA|[COMM1] == IDB && otherUsrBlCOMM]1] == IDE

| otherUsr A[COMM1] == IDE && otherUsr BlCOMM]1] == IDA))

The wrong state is when one of the legitimate users accepts a session with
another legal user (IDA or IDB), while this user did not, because he was
engaged in a run with the intruder (/DFE). So it should hold that M = O-a.
Fig. 8 presents a readable counterexample for the attack. It was automatically
produced by a simple driver written by the authors, that runs the model checker,
parses Spins output and interprets it. Only the emphasis was added by hand

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 07:58:58

Effective reduction of cryptographic protocols . .. 37

for more readability. The required information, from the raw output of the
model checker, originates from the printing commands shown in Figs 1 and 6.
Form the listing it can be seen that Bob accepted a session with Alice who
never took part in a run with Bob.

2 mllol MSG1.1 IDA -> IDE Enc{IDE}(NA2, IDA)
MSC: MSG1.1 1-\9 Enc{9}(4, 1) MSG1 Eve(IDA) -> IDB Enc{IDB}(NA2, IDA)
2 mi?l5 MSG2.1 IDB -> IDA Enc{IDA}(NA2, NB2)

Eve resending Enc{IDA}(NA2, NB2)
MSC: MSG1 ~ Eve(1) ->5 Enc{5}(4, 1)MSG2 Eve(IDE) -> IDA Enc{IDA}(NA2, NB2)

MSC: MSG2.1 5 ->1 Enc{l}(zl7 8) INITIATOR IDA accepted runl with IDE
MSG3.1 IDA -> IDE Enc{IDE}(NB2)
EveEnc2!1,4,8

MSG3 Eve(IDA) -> IDB Enc{IDB}(NB2)
m2!1,1 RESPONER IDB accepted runl with IDA

m270,1

m3!0,1

m271,1

EveEnc271,4,8

EveEnc2!1,4,8

MSC: Eve resending Enc{1}(4, 8)

MSC: MSG2 Eve(9) ->1 Enc{1}(4, 8)

MSC: INITIATOR 1 accepted run \1 with 9
MSC: MSG3.1 1 ->9 Enc{9}(8)

5 m371,5

MSC: MSG3 Eve(1) ->5 Enc{5}(8)

MSC: RESPONER 5 accepted run\1 with 1

R WOt W W

Fig. 8. A description of an identity misbinding attack in the Needham—Schroeder
protocol detected with Spin. Model checker raw output (left) and a readable output
generated by our driver (right).

Another issue about writing formulas is the labels mechanism. It should be
used if possible because it avoids additional, global variables to mark a state.
Labels in Promela are inserted into code just as in C language. Expression of
the form (ProcessName@QLabelName) used in a formula, will discover a point
where the process is in the labelled state.

As for the JFKi protocol the following two examplary formulas are presented.

v =(JFKiProtocol QINTRUDER_ DECRY PTED_MSG3_LABEL
&& cert! = IDE)

Y = (JFKiProtocolQACCEPTED_INIT_SA_.LABEL && cert! = IDE
&& secAssos == Sail))

The first formula is used to detect privacy violation attack, when Fve decrypts
the third message that was not supposed for her (global variable cert stores
certificate of the peer chosen by the initiator and it is not IDE).

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 07:58:58

38 Urszula Krawczyk, Piotr Sapiecha

The second formula is true if the responder accepts a wrong initiators security
association. That is when the association was inserted by the intruder (SaiFE),
although it should originate from a legal initiator (whose identity is kept in
cert). There should never happen a situation when these formulas are true, so
the Biichi automata are built for the formulas U—~ and [J=v. With analogical
formulas, the ability of the adversary to change the exponentials, nonce and
Diffie-Hellman group information can be checked. During the verification of
JFKi protocol with Spin, none of the attacks was detected.

6. Application of the Method and Computational Results

The following model instance configuration was used for the verification re-
sults below: two parallel runs, two legal protocol users, intruder knowledge
database containing two elements (Needham—Schroeder) or one element (JFKi)
of every type of the complex element. In the second case, to give the adversary
more abilities, any received complex element is stored in the databases nonde-
terministically. So the first element may not fill the queue completely. This
configuration makes it feasible to verify a protocol on an average computer
(AMD Athlon 2.01GHz, 2GB RAM) and lets expect the standard attacks to be
detected.

Costs of example protocols verification are shown in Table 2. Our models
are indicated bold. Sources of model from [10] are available, so scaled down
to two parallel runs, they were included as a comparison. Also publicized
fragments of [15] model give a hint of its size. At the first sight it is visible
that the unminimized models present much bigger state vectors. In the case
of JFKi, it can be very distinctly seen how beneficial for verification were the
reductions of the model. The original automaton was much too complex and
was only partially analyzed. The minimized model could be verified in less than
a quarter of hour. Protocol security properties did hold in the JFKi model.

Table 2. Costs of example protocols verification.

Protocol Time | Reached states | State vector | Used memory | Verification type
Needham~Schroeder [10] | 2770s 3.10e+4-007 224b 1128.758MB | partial
Needham—Schroeder [15] - - 528b — | code fragments
Needham—Schroeder 12.7s 3.06e+006 92b 98.094MB | full

JFKi non reduced 172s 4.00e+006 1916b 1851.350MB | partial

JFKi reduced 650s 3.62e+007 204b 1051.023MB | full

7. Conclusions and Future Plans

The proposed modelling framework has proved to be computationally effi-
cient, enabling verification of more complex protocols. Although the approach

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 07/02/2026 07:58:58

Effective reduction of cryptographic protocols . .. 39

is more work consuming than using tools specialized only in verification of cryp-
tographic protocols such as Casper [21, 2], yet it gives more control over the
model configuration. Another fact is that the discussed method is far more
readable than for example CSP [2] or clauses for the ProVerif program [22].
Hence it is more accessible for the inspection and less error prone. In addition,
automatic generation of counterexamples is a true asset of the method.

The presented framework is a proposal of a method complementary to the ex-
isting ones, being aimed at solving the difficult problem of assuring correctness
of safety protocols.

As for the future improvements, designing a methodology to divide the model
would make it possible to verify more parallel runs of a protocol. For example,
in each part the initiator would choose a different responder. Analysis of each
such model would require less memory and could be possibly done concurrently
on separate computers, saving the time.

A more complex task would be to create a parser that would transform a pro-
tocol specification, in a protocol description language such as CAPSL [23], into
a model. The Promela code could be still edited by the human verifier if needed
but the main work would be done automatically. This offers another oppor-
tunity, that from the same input many outputs can be generated, including
several verification models or a protocol implementation [23, 17].

References

[1] Uk chip and pin credit / debit cards are insecure (2009)
http://www.youtube.com/watch?v=JPAX321gkrw

[2] Schneider S., Ryan P., Modelling and analisis of security protocols, Addison—Wesley
(2001).

[3] Holzmann G. J., Hu C., Logic Model Checking - lectures, (2008)
http://spinroot.com/spin/Doc/course/

[4] Merz S., Model Checking: A Tutorial Overview, Technical report Miinchen University
(2000)

[5] Mukund M., Linear-time temporal logic and Biichi automata, SPIC Mathematical Insti-
tute, Madras, India (1997)

[6] Tauriainen H., Automated testing of Biichi automata translators for linear temporal logic,
Helsinki University of Technology (2000)

[7] Spin model checker: http://www.spinroot.com

[8] Spin Workshop: http://spinroot.com/spin/Workshops/index.html

[9] BEEM: BEnchmarks for Explicit Model checkers: Needham-Schroeder protocol model
http://anna.fi.muni.cz/models/cgi/model_info.cgi?’name=needham

[10] Khan A. S., Mukund M., Suresh S. P., Generic verification of security protocols, Springer
Berlin / Heidelberg (2005)
[11] Sapiecha P., Krawczyk U., Validation of cryptographic protocols using model checker

spin, CECC (2010).

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 07/02/2026 07:58:58

40

Urszula Krawczyk, Piotr Sapiecha

[12]
[13]
[14]

[15]
[16]

[17]
18]
[19]

[20]
21]

22]

[23]

Lafuente A. L., Promela database: X.509 protocol model
http://www.albertolluch.com/research/promelamodels

Maggi P., Sisto R., Using SPIN to to verify security properties of cryptographic protocols,
In LNCS Springer-Verlag (2002): 187.

Merz S., Needham—schroeder protocol model

http://www.loria.fr/ merz/papers/NeedhamSchroeder.spin

Yongjian L., Rui X.,Design of a CIL Connector to Spin (2008)

Compagna L., Armando A., Carbone R., LTL model checking for security protocols 23
(2009).

Gordon A. D., Progress on provable implementations of security protocols, Technical
Report, Microsoft Research (2009).

Stamer H., Verification of cryptographic protocols, Technical Report, University of Kassel
(2005).

Schnoebelen Ph., The complexity of temporal logic model checking, Advances in Modal
Logic (2003).

Rozier K. Y., Vardi M. Y., LTL satisfiability checking (2008).

Casper: A compiler for the analysis of security protocols
http://web.comlab.ox.ac.uk/people/Gavin.Lowe/Security /Casper/

ProVerif: Cryptographic protocol verifier in the formal model
http://www.proverif.ens.fr/

Denker G., Millen J., CAPSL and CIL Language design, Technical Report, Computer
Sciene Laboratory (1999).

http://www.tcpdf.org

