Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 28/01/2026 15:01:54

Annales UMCS
b Bl i Informatica
#r—s—% Annales UMCS Informatica Al XI, 2 (2011) 81-93 Lublin-Poloni
g DOL: 10.2478 /v10065-011-0012-9 ublin-tolonia
Y | F Sectio Al
2 <

Logypy.a0t™

http://www.annales.umcs.lublin.pl/

Performance of algebraic graphs based
stream-ciphers using large finite fields

Abderezak Touzene'*, Vasyl Ustimenko?',
Marwa AlRaissi!, Imene Boudelioual

L College of Science Sultan Qaboos University, Sultanate of Oman
2 Institute of Mathematics, University of Maria Curie Sklodowska,
pl. M. Curie-Sklodowskiej 1, 20-031 Lublin, Poland

Abstract
Algebraic graphs D(n,q) and their analog graphs D(n, K), where K is a finite commutative

ring were used successfully in Coding Theory (as Tanner graphs for the construction of LDPC
codes and turbo-codes) and in Cryptography (stream-ciphers, public-keys and tools for the
key-exchange protocols. Many properties of cryptography algorithms largely depend on the
choice of finite field F, or commutative ring K. For practical implementations the most
convenient fields are F% and rings modulo Z4" modulo 2™. In this paper the reader can find
the first results about the comparison of D(n,2m) based stream-ciphers for m = 8, 16, 32
implemented in C++. They show that performance (speed) of algorithms gets better when

m is increased.

1. Introduction

Algebraic graphs D(n,q) over finite fields F, without cycles of length less
than n + 5 have been introduced in [1]. They turn out to be a convenient tool

*E-mail address: touzene@squ.edu.om
tE-mail address: ustymenko_vasyl@yahoo.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 28/01/2026 15:01:54

82 Abderezak Touzene, Vasyl Ustimenko . ..

in Coding Theory and Cryptography (see [2, 1] and further references). In [3]
a more general family of graphs D(n, K), where K is a commutative ring, was
used for generation of private-key algorithms. Notice that D(n, Fy,) = D(n,q).

The stream-—cipher based on the graphs D (n, Z3"), m = 8, 16, 32 is consid-
ered and evaluated in [4]. Tt has been shown that the confusion properties of the
algorithm get better when the graph based encryption map takes into account
the combination of two special affine transformations of the cipher space.

In [5, 6] we presented some encryption tools based on walking on algebraic
graphs over finite fields. The implementation of public-key algorithm based on
the graphs D(n, K) for some special rings (or fields) is presented in [7]. Ac-
cording to [8], non identical encryption map based on D(n, K) is a polynomial
map of the cipher space of degree 3. In [9], such a map and with connection to
the group theoretical discrete logarithm, a key-exchange protocol is proposed.

In this paper, we investigate a fast and secure symmetric key encryption tool
based on the graphs D (n, F5"), for various value of m = 8, 16, 32. We may use
this encryption map in combination with affine transformation of the cipher
space. Our objective is to study the performance of the encryption tool for
different values of m = 8, 16, 32. The connected components of graphs D(n, q)
grow with the growth of n (as well as with the growth of ¢). It means that our
algorithms are not unit ciphers see [9]. It is, in fact, a stream cipher. We will
use the term unit for the character of our natural alphabet.

The idea of graph based encryption is to treat messages as vertices of a graph
and encryption steps as arcs of a graph (see [10, 11]). The encryption tool looks
like walking on a graph with a huge number of vertices. A plain text is seen as
a succession of n bytes or an n—tuple in a Galois F(28), F(216) and F(23?) (see
[12, 13, 14]). The processes of encryption follow a unique path, which starts
from the plain text (vertex v; of graph), and ends with the vertex vy , which
consists of the cipher text. We consider a one-step walk as an arc that connects
v; to the next vertex v;4+; and which uses one character of the password. It is
known that the proposed family of graphs has no cycle of length n + 5, for
n > 3 where n is the length (number of bytes) of the plain text. This property
ensures that if the length of the password [< (n + 5)/2, each password will
have a unique walk path. Thus starting with the same plain data file, different
passwords will produce different cipher data files.

The rest of this paper is organized as follows: Section 2 introduces some basic
definitions. Section 3 focuses on walk on the graphs algorithm and its complex-
ity. In Section 4, we present experimental measurements for our algorithm.
Section 5 concludes the paper.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 28/01/2026 15:01:54

Performance of algebraic graphs based . . . 83

2. Basic Definitions

2.1. Cryptography basics

Let us assume that an unencrypted message, plaintext, which can be image
data, is a string of bytes. It is to be transformed into an encrypted string or
cipher text, by means of a cryptographic algorithm and a key: so that the recip-
ient can read the message, encryption must be invertible. Conventional wisdom
holds that in order to defy easy decryption, a cryptographic algorithm should
produce seeming chaos: that is a cipher text should look and test random.
In theory, an eavesdropper should not be able to determine any significant
information from an intercepted cipher text. Broadly speaking, attacks to a
cryptosystem fall into two categories: passive attacks, in which adversary mon-
itor the communication channel and active attacks, in which the adversary may
transmit messages to obtain information (e.g. cipher text of chosen plaintext).
Passive attacks are easier to mount, but yields less. Attackers hope to deter-
mine the plaintext from the cipher text they capture; an even more successful
attacks will determine the key and thus comprise the whole set of messages.

An assumption first codified by Kerckhoffs in the nineteen century is that the
algorithm is known and the security of algorithm rests entirely on the security
of the key. Cryptographers have been improving their algorithms to resist the
following two major types of attacks:

1. cipher text only: the adversary has access to the encrypted communications.
2. known plain text: the adversary has some plain text and corresponding
cipher text.

Nowadays, the security of the plain text rests on both the encryption algorithm
(good resistance to attacks of types (1) and (2)), and the algorithm for the key
exchange (public keys) with good resistance to active attacks of type (2), when
the adversary can generate each plain text p and get the corresponding cipher
text ¢ (see [12, 13]).

2.2. Finite field arithmetic

A field is an algebraic object with two operations: addition and multiplica-
tion, represented by + and x*, although they will not necessarily be ordinary
addition and multiplication. Using +, all the elements of the field must form a
commutative group, with identity denoted by 0 and the inverse of a denoted by
—a. Using *, all the elements of the field except 0 must form another commu-
tative group with identity denoted 1 and inverse of a denoted by a — 1. (The
element 0 has no inverse under %) Finally, the distributive identity must hold:
ax(b+c)=(axb)+ (axc), for all field elements a, b and c.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 28/01/2026 15:01:54

84 Abderezak Touzene, Vasyl Ustimenko . ..

Cryptography focuses on finite fields [12, 13]. It turns out that for any prime
integer p and any integer n greater than or equal to 1, there is a unique field
with p™ elements in it, denoted F'(p™). Here "unique” means that any two fields
with the same number of elements must be essentially the same. In the case
n is equal to 1, the field is just the integers mod p, in which addition and
multiplication are just the ordinary versions followed by taking the remainder
on division by p.

In our algorithms as for the new U.S. Advanced Encryption Standard (AES)
we use the finite field F(2%). In fact, our crypto-system works with bytes (8
bits), represented from the right as: b7bgbsbsbsbabibg. The 8-bit elements of
the field are seen as polynomials with coefficients in the field Zy: byz” 4 ba® +
bsa® + byx* + bgz® + bax? + biat + bg. The field elements will be denoted by
their sequence of bits, using two hexadecimal digits.

Addition in F(2%):

To add two field elements, just add the corresponding polynomial coefficients
using addition in Zs. Here addition is modulo 2, so that 1 + 1 = 0, and addition,
subtraction and exclusive-or are all the same. The identity element is just zero:
00000000 (in binary) or 0x00 (hex).

Multiplication in F(28):

Multiplication in this field is much more difficult, but it can be implemented
very efficiently in hardware or software [14]. The first step in multiplying
two field elements is to multiply their corresponding polynomials just as in
basic algebra (except that the coefficients are only 0 or 1, and 1 + 1 = 0
makes the calculation easier, since many terms just drop out). The result
would be up to a degree 14 polynomial, which is too big to fit into one byte.
A finite field now makes use of a fixed degree eight irreducible polynomial
(a polynomial that cannot be factored into the composition of two simpler
polynomials). As for the AES, we use the following irreducible polynomial:
m(z) = 28+ 2 + 23 +2+1 = 0211b (hex).The intermediate composition of the
two polynomials must be divided by m(z). The remainder from this division is
the desired product.

In our crypto—system implementation, we use variable unit size of 8, 16, and
32 bits units leading to the operations in F(2%), F(216) and F(232) respectively.

3. Walk on Graph Algorithm

3.1. Theoretical background

The graph is a pair G = (V, E) of sets such that E C [V]2. The elements of V'
are the vertices (or points) of the graph G, the elements of E are its edges. In
our algorithm, we treat messages as vertices of the graph and encryption steps

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 28/01/2026 15:01:54

Performance of algebraic graphs based . . . 85

as the edges. A vertex is seen as a sequence of n units or n-tuple in F'(2™).
Consider an n-tuple vertex X = (zg,21,...,25—1), where z; an element in
F(2™), whereas, an edge is defined using a linear system of equations that will
be defined later. Our graph is a bipartite graph. The graph generated using
the algorithm has a high girth (very large cycles).

The basic idea of Walks on Graphs Algorithm is to consider vertices of a
given bipartite graph as the message being encrypted or decrypted, and arcs
between vertices as encryption/decryption tools (i.e. key and algorithm system
of equations). The left side of the graph is called the point side, and the right
side is called the line side. Initially, we start at the point side with the plaintext
and movements between the point side and the line side will be carried on by
several steps using units of the encryption key and applying specific equations
on the finite field F'(2™). Our algorithm is designed to allow variable unit size in
the encryption/decryption process. Moreover, once the unit size is specified (i.e.
1-byte, 2-bytes or 4-bytes) the Galois Filed is chosen accordingly. For example,
when unit size is chosen to be of size 8-bits, the operations of the algorithm
will be performed over F(2%) and so forth. In the encryption process, a unit
of the message will be encrypted by a unit of the encryption key to produce a
unit of the cipher text and so on. In the first step, the first unit of the cipher
text will be generated by using solely the first unit of the encryption key. Next,
the rest of the units will be encrypted in the following pattern. Consider, a
plaintext X = (zg, 1,...,2,—1) of length n and its corresponding cipher text
Y = (y0,Y1,---,Yn—1), and an encryption key K = (ko, k1,...,k;—1) of length
[. The set of vertices X and Y are n—dimensional vector spaces over the finite
field F'(2™). The components of X, Y and K are the elements of F'(2), so all
operations will be done in this field. The following linear system of equations is
used for encryption and decryption. That is, these equations are used to define
the point and line adjacency relation between X and Y:

Y1 —T1 =Yo - Xo
Y2 — w2 =yl - xo
Yi — Ty = Y1 Ti—2
Yit1 — Tit1 = Y1 - Ti—2
Yit2 — Tit2 = X1 - Yi-2
Yi+3 — Ti+3 = X1 - Yi—2-
Note: the last four equations are defined for ¢ > 2 and xy and gy are always

the first element of the encryption/decryption key. Given an n—dimensional
vector space over the finite field F'(2"), there is a vertex X in point side to a

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 28/01/2026 15:01:54

86 Abderezak Touzene, Vasyl Ustimenko . ..

vertex Y in the line side. Each step of the algorithm consists of either moving
from the point side to the line side, or vice versa by using the system of equations

(1).
Point Side Line Side

ko

w k}

[(X0, X1y --eeey Xn1) — k>

[(xﬂJ Il, STLLY] x?’]-!) (}’ﬂ; ‘-LEIJ ----- » J’n-l) J

(,vﬂr }"L ---- : J’Iﬁ‘-l)]

AL\

[(X0, X1, --rvey Y1) }‘4 ki3 —= (6 yh Il]
ki

{ (IUJ 3 S x?’l—!) klf I —p (yﬂ’ }[JJ """ ! J/n-l)]

Fig. 1. Walks on the Graphs Algorithm Diagram.

The use of bipartite graph D(n,q) of high girth guarantee that for a given
length of a password the graph has no cycles and therefore there exists only
one path leading from the plaintext to the cipher text as it is shown in the
proposition.

Proposition 1. [15] The graph D(n,q) has:
e No cycle of length 4, forn =2,

e No cycle of length 6, for n = 3,

e No cycle of length n + 5, for n > 3.

The above proposition is very important, it states that if we use these graphs
as an encryption tool for a data file of size n with a password of length [<
(n+5)/2, each password will have a unique walk path. Starting with the same
plain data file, different passwords will produce different cipher data files. In
practice, the password length condition can be easily verified because in general
the size of the data files n is much larger than 1, the length of the password (from
10 to 30 bytes). Since there is only a unique path password (ko, k1, ..., ki—1)

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 28/01/2026 15:01:54

Performance of algebraic graphs based . . . 87

from the vertex vy plain data to the vertex v;_; which represents the encrypted
data. For the decryption process, the same unique path traversed backward
from v;_1 to vp is used. In fact, the decryption process uses the same algorithm
as the encryption but using a reversed password (k;_1, kj_o, ..., ko).

3.2. Example of encryption using a 2-byte unit

In the example demonstrated below, we have considered the case where the
unit is of the size two bytes i.e. w = 16 and both the plaintext and the
password consist of two characters at a time. The example takes a plain text of
the length n = 7 (Marwa Al-Raisi) and a password of the length I = 3 (Imene).
The vertices are vy, v1, v9 and vs, where v is the plaintext and vs is the cipher
text. Note that X is a point vertex and Y is a line vertex. The system of
equations for n = 7 is as follows:

Yo = ko

Y1 ="Yo To+ T1
Y2 =0 Y1+ T2
Y3 ="Yo T1+ T3
Y4 =Yo T2 = T4
Ys = To Y3+ Ts
Y6 = To - Y4 + Te.

Encryption Process
The encryption process starts with the first vertex i.e. the plaintext:

vo = (x0, X1, T2, T3, x4, x5, Tg) = (19809, 29303, 24864, 16748, 11602, 24937, 29545).

Plaintext: Marwa Al-Raisi

char M| a r ‘ w a |spnce A ‘ I - ‘ R a i s ‘ i
Ascr [77 [97 [114[119[97 | 32 [65 108 | 45 [82 [97 | 105 [115 [105
GF(2™)
in 19809 29303 24864 16748 11602 24937 20545
decimal
symbol Xp Xy X X3 Xy X5 X5
Password: Imene
char I | m e | n e |1\'L‘LL
Ascm [73 [109 [101 [110 [101 | ©
GF(2%)
in 18797 25966 25856
decimal
symbol ag a a

To move from vy to vy, we use the first element of the encryption key i.e.
k1 = 18797:

vy = (x0, X1, T2, T3, x4, x5, Tg) = (18797,8017,7556,8947, 34475, 57403, 485).

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 28/01/2026 15:01:54

88 Abderezak Touzene, Vasyl Ustimenko . ..

Encryption Key

As mentioned before. the encryption key is constructed in a way such that if the password = (ay,
ai, ez, ..., aip), then the encryption key K = (kg, k1. k2,ke1). where ki = apg + xpand xg is the
first element of the plaintext.

GF(2"%) k2= ox+xp

in 18797 25966 10337 = 25856 + 195809
decimal = 10337
symbol ks Iz k2 —

Similarly, to move from vy to vs, we use the second element of the encryption
key i.e.

ko = 25966 :

ve = (25966, 52660, 21353, 9330, 55046, 54731, 48196).
The last walk is from vs to v4 using k3 = 25966

vs = (10337, 54301, 25429, 49398, 57549, 44071, 11772), is the cipher text.

3.3. Algorithm implementation and complexity

According to our algorithm, the arithmetic operations in the system of equa-
tions (1) are in the finite field F/(2™). For the implementation purpose, a
multiplication table of F'(2™) is pre-computed and stored offline in memory; to
avoid the expensive cost of online multiplication operations. That is, the cost
of multiplication over F'(2"") is simply the cost of accessing a memory location.
Now we consider the cost of a one step walk, say from a point vertex to a line
vertex with a data file of n units (i.e. 1-byte, 2-bytes, or 4-bytes), and the
cost of this walk step includes the cost of computing n line components using
a formula for the system of equations (1) of the form:
yi —x; = Y1 - Ti—2 (one addition and one multiplication).

Since the number of walks is equal to [, the length of the password, the cost
of the algorithm is linear: [% n (addition and one multiplication). That is,
the complexity of the algorithm is O(l x n). The experimental results in the
next section confirm the linear complexity of the algorithm. The impact of the
unit size on the speed of the algorithm is as follows: increasing the unit size
from m=8 to m=16 will result in reduction of the computation cost by half.
Increasing the unit size from m = 8 to m = 32 will result in a speed-up by 4
times.

A very important consequence of Proposition 1 is the simple way to compute
the probability to guess the plain data from the cipher data. In fact, Proposition
1 tells us that there is a unique walk (path) starting with the cipher data vertex
back to the plain data vertex. The unique way to guess the plain data is to

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 28/01/2026 15:01:54

Performance of algebraic graphs based . . . 89

guess the reverse password. Let us compute the probability to guess the plain
data from the cipher data, which is the same probability to guess the cipher
data from the plain data. Starting from the plain data vertex, the probability
to guess the next line vertex depends on the first password character. There are
q = 2™ different possible line vertices. The probability to guess the first step
walk is 1/q. Now the probability to guess the next walk step using the second
character is 1/(¢ — 1), we remove the possibility to go back to the previous
vertex. We do the same reasoning for the other successive step walks. If the
password to encrypt the data is of the length k, the probability to guess the

message is pkey = 1/ (q (¢ — 1)m_1>. As an example, for the passwords of the

length [= 10, pkey ~ 10725, For | = 20, pkey ~ 10~49. This shows how strong
is our algorithm even with short passwords.

The important feature of such encryption is the resistance to attacks when
the adversary intercepts the pair plain text and cipher text because the best
algorithm of finding the path between given vertices (by Dijkstra, see [16]) has
complexity |V]log(|V]) where |V] is the order of the graph, i.e. size of the plain
text space (huge).

4. Experimental Measurements

The algorithm is implemented using the C++ language. A readymade library
[17] of procedures for finite field arithmetic in F'(2™) for m = 8, 16 and 32
will be used to perform the necessary operations of multiplication and XOR
(addition/subtraction) on a finite field. The library is written in C but it is
compatible with C++ as well. It is especially tailored for m equal to 8, 16 and
32, but it is also applicable for any other value of m.

Prior to going into further details, it is important to talk a little about the
implementation approach that reveals how data in the input files is converted
to the F'(2") elements. The system accepts various types of data files such as
video, image, text and audio. The system reads these files as streams of binary
bits into units and directly converts each unit to its decimal representation.
However, when dealing with text files and characters, a byte consists of 8-
bits and the ASCII code of a character represents it in decimal. To find the
polynomial that stands for a particular character, we convert the decimal value
of the character to its binary representation. The binary bits correspond to
the coefficients of the polynomial in F(28). If F(2!6) is intended to be utilized
in the algorithm, we consider a unit of two characters at a time. Similarly for
m = 32, we divide the data to be encrypted into units of four characters and
convert the units to their corresponding polynomial versions in F(232).

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 28/01/2026 15:01:54

90 Abderezak Touzene, Vasyl Ustimenko . ..

For a unit of the size 1-byte (i.e. m = 8), the fastest way to perform multipli-
cation is to employ a multiplication table and store this table internally. This
table consumes 2(m + 2) bytes, so it is only applicable when w is reasonably
small. For example, when m = 8, this is 256 KB. However, when we select a
unit of the size 2-bytes, this multiplication table consumes 2(2m + 2) bytes and
in the case of m = 16, this table is 234 bytes which is very large and cannot
fit into memory. The proposed solution states that when multiplication tables
cannot be employed, the most efficient way to carry out multiplication is to use
log and inverse log tables, as described in. The log table consumes 2(m + 2)
bytes and the inverse log table consumes 3 % 2(m + 2) bytes, so when m = 16,
this is approximately 1 MB of tables which can easily fit into memory. Then
we can calculate the product of a and b as:

a *x b = ilog [log[a] + log[b]] .

While in the case of a 4-byte unit size (i.e. m = 32), it is obvious that the
log tables cannot fit into memory (2 x 1010 bytes). A recommended resolution
[17] is to create seven tables that are 256 KB each and these tables are used
to employ the 32-bit numbers multiplication by breaking them into four eight-
bit numbers each, and then performing sixteen multiplications and XORs to
calculate the product.

Experiments:

The experimental evaluation of any algorithm is essential to acquire a realistic
vision of the resources required by the algorithm. In this section, we will test the
execution time of the algorithm upon various sizes of date files and passwords
using different unit sizes (i.e. 1-byte, 2-bytes, and 4-bytes) and determine its
time complexity in order to measure the efficiency of our algorithm.

Analyzing the algorithm structure shown in the previous section, we expect
that as we increase the unit size, performance of the algorithm will improve
since the plaintext and the password will be consumed faster. Consequently,
the expected execution time to produce the cipher text will relatively decrease.
The experiment included running the system on different text files of sizes 1
MB, 5 MB, and 9 MB along with a variety of passwords (/) ranging from 4-
bytes to 20-bytes of size. Then, the time (in milliseconds) to encrypt/decrypt
is recorded. The experiment was conducted using the machine that has a 2.99
GHz Intel(R) Core(TM)2 Duo CPU and a 1.96 GB of RAM. The results of
these runs are shown below.

Note that the above three tables confirm the linear complexity of our algo-
rithms for different values of m.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 28/01/2026 15:01:54

Performance of algebraic graphs based . . . 91
Unit size = 8-bits
I (bytes)\size of 1 MB 5 MB 9 MB
data
4 3297 16453 29609
8 6578 32750 58906
16 13156 67047 120844

Unit size = 16-bits

1 (bytes)\size of 1 MB 5 MB 9 MB
data

4 1578 7859 14141

8 3156 15781 28297

16 6204 31078 57078

Unit size = 32-bits

1 (bytes)\size of 1 MB 5 MB 9 MB
data

4 750 3672 6625

8 1469 7328 13172

16 2937 14672 26360

Comparison Results Using Different Values for m
In this experiment we use different test files and a password of the length 20
bytes. The following line graph displays the results obtained by different unit

sizes.

Run-time Results
__ 160000
£ 140000 //
n
$ 120000
[*] /
¢ 100000 /
£ 80000 7 —8hits
E 60000 / // ——16-bits
T 40000
£ 20000 /S 32-bits
< —
3 0 T T 1
o

1 5 9
Size of File in Megabytes (MB)

Fig. 2. Comparison of run-time results m = 8, 16 and 32.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 28/01/2026 15:01:54

92 Abderezak Touzene, Vasyl Ustimenko . ..

Fig. 2 shows the unit size impact on the speed of the algorithm, as for a
unit of the size 16 bits; there is a gain in speed by approximately 50 percent
compared to the results of 8-bit unit size. Likewise, in the case of 32-bit unit
size, this increase in speed is observable (4 times faster than the 8-bit unit size).
Generally, as the unit size increases, the efficiency of the algorithm increases.

5. Conclusions

We implemented a new variable unit size symmetric stream key dependent
cipher based on the algebraic graph using the finite field. We have tested
our algorithm and confirmed that it is of linear complexity. Our experimental
results have shown that increasing the unit size reduces the run-time cost of the
algorithm by 4. However, this requires extra memory to store the multiplication
tables for the corresponding finite field operations. Our future work is to extend
the capability of the algorithm with a larger unit of the size 64-bit, 128-bit, etc.
Consequently, we expect that the algorithm will become more efficient when a
larger unit size is employed.

References

[1] Lazebnik F., Ustimenko V., Some Algebraic Constructions of Dense Graphs of Large
Girth and of Large Size, DIMACS series in Discrete Mathematics and Theoretical Com-
puter Science 10 (1993): 75.

[2] Kim J. L., Peled U. N., Perepelitsa 1., Pless V., Friedland S., Explicit construction of
families of LDPC codes with no 4-cycles, Information Theory, IEEE Transactions 50(10)
(2004): 2378.

[3] Ustimenko V. A., Coordinatisation of regular tree and its quotients, in ”Voronoi’s impact
on modern science”, eds P. Engel and H. Syta, book 2, National Acad. of Sci, Institute
of Matematics (1998): 228.

[4] Kotorowicz J., Ustimenko V. A.; On the implementation of cryptoalgorithms based on
algebraic graphs over some commutative rings, Condenced Matters Physics, Special Issue:
Proceedings of the international conferences ”Infinite particle systems, Complex systems
theory and its application”, Kazimerz Dolny, Poland, 2006, 11, 2(54) (2008): 347.

[5] Ustimenko V., Touzene A., CRYPTALL-a System to Encrypt All types of Data, Notices
of Kiev Mohyla Academy (2004): 57.

[6] Touzene A., Ustimenko V., Graph Based Private Key Crypto System, International Jour-
nal on Computer Research, Nova Science Publisher 13(4) (2006): 12.

[7] Klisowski M., Ustimenko V., On the public keys based on the extremal graphs and
digraphs, International Multi—conference on Computer Science and Informational Tech-
nology, October 2010, Wisla, Poland, CANA Proceedings.

[8] Wréblewska A., On some properties of graph based public keys, Albanian Journal of
Mathematics 2(3) (2008): 229.

[9] Ustimenko V., Algebraic graphs and security of digital communications, Institute of Com-
puter Science, University of Maria Curie Sklodowska in Lublin (2011): 151 (supported
by European Social Foundation), available at the UMCS web.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 28/01/2026 15:01:54

Performance of algebraic graphs based . . . 93

[10]
[11]
[12]

[13]
[14]

[15]

[16]
[17]

Ustimenko V., CRYPTIM: Graphs as Tools for Symmetric Encryption, In Lecture Notes
in Computer Science, Springer 2227 (2002): 278.

Ustimenko V., Graphs with special arcs and Cryptography, Acta Applicandae Mathe-
maticae (1974): 117.

Koblitz N.; A Course in Number Theory and Cryptography, Second Edition, Springer
(1994).

Koblitz N., Algebraic Aspects of Cryptograph, Springer (1998).

Hasan M. A.) Look-Up Table-Based Large Finite Field Multiplication in Memory Con-
strained Cryptosystems, IEEE Trans. Comp. 49 (7) (2000): 749.

Ustimenko V., Woldar A., Extremal properties of regular and affine generalized polygons
as tactical configurations, Europ. J. Com. 24 (2003): 99.

Dijkstra E., Note on two problems in connection with graphs, Num. Math. 1 (1959): 269.
Plank J. (n.d.), Fast Galois Field Arithmetic Library in C/C++. Retrieved Oc-
tober 28 (2009), from The University of Tennessee, College of Art and Science:
http://www.cs.utk.edu/ plank/plank/papers/CS-07-593.

http://www.tcpdf.org

