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Abstract

Algebraic graphs D(n, q) and their analog graphs D(n,K), where K is a finite commutative

ring were used successfully in Coding Theory (as Tanner graphs for the construction of LDPC

codes and turbo-codes) and in Cryptography (stream-ciphers, public-keys and tools for the

key-exchange protocols. Many properties of cryptography algorithms largely depend on the

choice of finite field Fq or commutative ring K. For practical implementations the most

convenient fields are F 2

m and rings modulo Zm

2 modulo 2m. In this paper the reader can find

the first results about the comparison of D(n, 2m) based stream-ciphers for m = 8, 16, 32

implemented in C++. They show that performance (speed) of algorithms gets better when

m is increased.

1. Introduction

Algebraic graphs D(n, q) over finite fields Fq without cycles of length less

than n+ 5 have been introduced in [1]. They turn out to be a convenient tool
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in Coding Theory and Cryptography (see [2, 1] and further references). In [3]

a more general family of graphs D(n,K), where K is a commutative ring, was

used for generation of private–key algorithms. Notice that D(n, Fq) = D(n, q).

The stream–cipher based on the graphs D (n,Zm
2 ), m = 8, 16, 32 is consid-

ered and evaluated in [4]. It has been shown that the confusion properties of the

algorithm get better when the graph based encryption map takes into account

the combination of two special affine transformations of the cipher space.

In [5, 6] we presented some encryption tools based on walking on algebraic

graphs over finite fields. The implementation of public-key algorithm based on

the graphs D(n,K) for some special rings (or fields) is presented in [7]. Ac-

cording to [8], non identical encryption map based on D(n,K) is a polynomial

map of the cipher space of degree 3. In [9], such a map and with connection to

the group theoretical discrete logarithm, a key-exchange protocol is proposed.

In this paper, we investigate a fast and secure symmetric key encryption tool

based on the graphs D (n, Fm
2 ), for various value of m = 8, 16, 32. We may use

this encryption map in combination with affine transformation of the cipher

space. Our objective is to study the performance of the encryption tool for

different values of m = 8, 16, 32. The connected components of graphs D(n, q)

grow with the growth of n (as well as with the growth of q). It means that our

algorithms are not unit ciphers see [9]. It is, in fact, a stream cipher. We will

use the term unit for the character of our natural alphabet.

The idea of graph based encryption is to treat messages as vertices of a graph

and encryption steps as arcs of a graph (see [10, 11]). The encryption tool looks

like walking on a graph with a huge number of vertices. A plain text is seen as

a succession of n bytes or an n–tuple in a Galois F (28), F (216) and F (232) (see

[12, 13, 14]). The processes of encryption follow a unique path, which starts

from the plain text (vertex v1 of graph), and ends with the vertex vk , which

consists of the cipher text. We consider a one–step walk as an arc that connects

vi to the next vertex vi+1 and which uses one character of the password. It is

known that the proposed family of graphs has no cycle of length n + 5, for

n > 3 where n is the length (number of bytes) of the plain text. This property

ensures that if the length of the password l < (n + 5)/2, each password will

have a unique walk path. Thus starting with the same plain data file, different

passwords will produce different cipher data files.

The rest of this paper is organized as follows: Section 2 introduces some basic

definitions. Section 3 focuses on walk on the graphs algorithm and its complex-

ity. In Section 4, we present experimental measurements for our algorithm.

Section 5 concludes the paper.
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2. Basic Definitions

2.1. Cryptography basics

Let us assume that an unencrypted message, plaintext, which can be image

data, is a string of bytes. It is to be transformed into an encrypted string or

cipher text, by means of a cryptographic algorithm and a key: so that the recip-

ient can read the message, encryption must be invertible. Conventional wisdom

holds that in order to defy easy decryption, a cryptographic algorithm should

produce seeming chaos: that is a cipher text should look and test random.

In theory, an eavesdropper should not be able to determine any significant

information from an intercepted cipher text. Broadly speaking, attacks to a

cryptosystem fall into two categories: passive attacks, in which adversary mon-

itor the communication channel and active attacks, in which the adversary may

transmit messages to obtain information (e.g. cipher text of chosen plaintext).

Passive attacks are easier to mount, but yields less. Attackers hope to deter-

mine the plaintext from the cipher text they capture; an even more successful

attacks will determine the key and thus comprise the whole set of messages.

An assumption first codified by Kerckhoffs in the nineteen century is that the

algorithm is known and the security of algorithm rests entirely on the security

of the key. Cryptographers have been improving their algorithms to resist the

following two major types of attacks:

1. cipher text only: the adversary has access to the encrypted communications.

2. known plain text: the adversary has some plain text and corresponding

cipher text.

Nowadays, the security of the plain text rests on both the encryption algorithm

(good resistance to attacks of types (1) and (2)), and the algorithm for the key

exchange (public keys) with good resistance to active attacks of type (2), when

the adversary can generate each plain text p and get the corresponding cipher

text c (see [12, 13]).

2.2. Finite field arithmetic

A field is an algebraic object with two operations: addition and multiplica-

tion, represented by + and ∗, although they will not necessarily be ordinary

addition and multiplication. Using +, all the elements of the field must form a

commutative group, with identity denoted by 0 and the inverse of a denoted by

−a. Using ∗, all the elements of the field except 0 must form another commu-

tative group with identity denoted 1 and inverse of a denoted by a − 1. (The

element 0 has no inverse under ∗) Finally, the distributive identity must hold:

a ∗ (b+ c) = (a ∗ b) + (a ∗ c), for all field elements a, b and c.
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Cryptography focuses on finite fields [12, 13]. It turns out that for any prime

integer p and any integer n greater than or equal to 1, there is a unique field

with pn elements in it, denoted F (pn). Here ”unique” means that any two fields

with the same number of elements must be essentially the same. In the case

n is equal to 1, the field is just the integers mod p, in which addition and

multiplication are just the ordinary versions followed by taking the remainder

on division by p.

In our algorithms as for the new U.S. Advanced Encryption Standard (AES)

we use the finite field F (28). In fact, our crypto–system works with bytes (8

bits), represented from the right as: b7b6b5b4b3b2b1b0. The 8–bit elements of

the field are seen as polynomials with coefficients in the field Z2: b7x
7 + b6x

6 +

b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x
1 + b0. The field elements will be denoted by

their sequence of bits, using two hexadecimal digits.

Addition in F (28):

To add two field elements, just add the corresponding polynomial coefficients

using addition in Z2. Here addition is modulo 2, so that 1 + 1 = 0, and addition,

subtraction and exclusive-or are all the same. The identity element is just zero:

00000000 (in binary) or 0x00 (hex).

Multiplication in F (28):

Multiplication in this field is much more difficult, but it can be implemented

very efficiently in hardware or software [14]. The first step in multiplying

two field elements is to multiply their corresponding polynomials just as in

basic algebra (except that the coefficients are only 0 or 1, and 1 + 1 = 0

makes the calculation easier, since many terms just drop out). The result

would be up to a degree 14 polynomial, which is too big to fit into one byte.

A finite field now makes use of a fixed degree eight irreducible polynomial

(a polynomial that cannot be factored into the composition of two simpler

polynomials). As for the AES, we use the following irreducible polynomial:

m(x) = x8+x4+x3+x+1 = 0x11b (hex).The intermediate composition of the

two polynomials must be divided by m(x). The remainder from this division is

the desired product.

In our crypto–system implementation, we use variable unit size of 8, 16, and

32 bits units leading to the operations in F (28), F (216) and F (232) respectively.

3. Walk on Graph Algorithm

3.1. Theoretical background

The graph is a pair G = (V,E) of sets such that E ⊆ [V ]2. The elements of V

are the vertices (or points) of the graph G, the elements of E are its edges. In

our algorithm, we treat messages as vertices of the graph and encryption steps

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 28/01/2026 15:01:54

UM
CS



Performance of algebraic graphs based . . . 85

as the edges. A vertex is seen as a sequence of n units or n–tuple in F (2m).

Consider an n–tuple vertex X = (x0, x1, . . . , xn−1), where xi an element in

F (2m), whereas, an edge is defined using a linear system of equations that will

be defined later. Our graph is a bipartite graph. The graph generated using

the algorithm has a high girth (very large cycles).

The basic idea of Walks on Graphs Algorithm is to consider vertices of a

given bipartite graph as the message being encrypted or decrypted, and arcs

between vertices as encryption/decryption tools (i.e. key and algorithm system

of equations). The left side of the graph is called the point side, and the right

side is called the line side. Initially, we start at the point side with the plaintext

and movements between the point side and the line side will be carried on by

several steps using units of the encryption key and applying specific equations

on the finite field F (2m). Our algorithm is designed to allow variable unit size in

the encryption/decryption process. Moreover, once the unit size is specified (i.e.

1-byte, 2-bytes or 4-bytes) the Galois Filed is chosen accordingly. For example,

when unit size is chosen to be of size 8-bits, the operations of the algorithm

will be performed over F (28) and so forth. In the encryption process, a unit

of the message will be encrypted by a unit of the encryption key to produce a

unit of the cipher text and so on. In the first step, the first unit of the cipher

text will be generated by using solely the first unit of the encryption key. Next,

the rest of the units will be encrypted in the following pattern. Consider, a

plaintext X = (x0, x1, . . . , xn−1) of length n and its corresponding cipher text

Y = (y0, y1, . . . , yn−1), and an encryption key K = (k0, k1, . . . , kl−1) of length

l. The set of vertices X and Y are n–dimensional vector spaces over the finite

field F (2m). The components of X, Y and K are the elements of F (2m), so all

operations will be done in this field. The following linear system of equations is

used for encryption and decryption. That is, these equations are used to define

the point and line adjacency relation between X and Y :

y1 − x1 = y0 · x0

y2 − x2 = y1 · x0

yi − xi = y1 · xi−2

yi+1 − xi+1 = y1 · xi−2

yi+2 − xi+2 = x1 · yi−2

yi+3 − xi+3 = x1 · yi−2.

(1)

Note: the last four equations are defined for i > 2 and x0 and y0 are always

the first element of the encryption/decryption key. Given an n–dimensional

vector space over the finite field F (2m), there is a vertex X in point side to a
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vertex Y in the line side. Each step of the algorithm consists of either moving

from the point side to the line side, or vice versa by using the system of equations

(1).

Fig. 1. Walks on the Graphs Algorithm Diagram.

The use of bipartite graph D(n, q) of high girth guarantee that for a given

length of a password the graph has no cycles and therefore there exists only

one path leading from the plaintext to the cipher text as it is shown in the

proposition.

Proposition 1. [15] The graph D(n, q) has:

• No cycle of length 4, for n = 2,

• No cycle of length 6, for n = 3,

• No cycle of length n+ 5, for n > 3.

The above proposition is very important, it states that if we use these graphs

as an encryption tool for a data file of size n with a password of length l <

(n+5)/2, each password will have a unique walk path. Starting with the same

plain data file, different passwords will produce different cipher data files. In

practice, the password length condition can be easily verified because in general

the size of the data files n is much larger than l, the length of the password (from

10 to 30 bytes). Since there is only a unique path password (k0, k1, . . . , kl−1)
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from the vertex v0 plain data to the vertex vl−1 which represents the encrypted

data. For the decryption process, the same unique path traversed backward

from vl−1 to v0 is used. In fact, the decryption process uses the same algorithm

as the encryption but using a reversed password (kl−1, kl−2, . . . , k0).

3.2. Example of encryption using a 2-byte unit

In the example demonstrated below, we have considered the case where the

unit is of the size two bytes i.e. w = 16 and both the plaintext and the

password consist of two characters at a time. The example takes a plain text of

the length n = 7 (Marwa Al-Raisi) and a password of the length l = 3 (Imene).

The vertices are v0, v1, v2 and v3, where v0 is the plaintext and v3 is the cipher

text. Note that X is a point vertex and Y is a line vertex. The system of

equations for n = 7 is as follows:

y0 = k0

y1 = y0 · x0 + x1

y2 = x0 · y1 + x2

y3 = y0 · x1 + x3

y4 = y0 · x2 = x4

y5 = x0 · y3 + x5

y6 = x0 · y4 + x6.

Encryption Process

The encryption process starts with the first vertex i.e. the plaintext:

v0 = (x0, x1, x2, x3, x4, x5, x6) = (19809, 29303, 24864, 16748, 11602, 24937, 29545).

To move from v1 to v2, we use the first element of the encryption key i.e.

k1 = 18797:

v1 = (x0, x1, x2, x3, x4, x5, x6) = (18797, 8017, 7556, 8947, 34475, 57403, 485).
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Similarly, to move from v2 to v3, we use the second element of the encryption

key i.e.

k2 = 25966 :

v2 = (25966, 52660, 21353, 9330, 55046, 54731, 48196).

The last walk is from v3 to v4 using k3 = 25966

v3 = (10337, 54301, 25429, 49398, 57549, 44071, 11772), is the cipher text.

3.3. Algorithm implementation and complexity

According to our algorithm, the arithmetic operations in the system of equa-

tions (1) are in the finite field F (2m). For the implementation purpose, a

multiplication table of F (2m) is pre–computed and stored offline in memory; to

avoid the expensive cost of online multiplication operations. That is, the cost

of multiplication over F (2m) is simply the cost of accessing a memory location.

Now we consider the cost of a one step walk, say from a point vertex to a line

vertex with a data file of n units (i.e. 1-byte, 2-bytes, or 4-bytes), and the

cost of this walk step includes the cost of computing n line components using

a formula for the system of equations (1) of the form:

yi − xi = y1 · xi−2 (one addition and one multiplication).

Since the number of walks is equal to l, the length of the password, the cost

of the algorithm is linear: l ∗ n (addition and one multiplication). That is,

the complexity of the algorithm is O(l ∗ n). The experimental results in the

next section confirm the linear complexity of the algorithm. The impact of the

unit size on the speed of the algorithm is as follows: increasing the unit size

from m=8 to m=16 will result in reduction of the computation cost by half.

Increasing the unit size from m = 8 to m = 32 will result in a speed-up by 4

times.

A very important consequence of Proposition 1 is the simple way to compute

the probability to guess the plain data from the cipher data. In fact, Proposition

1 tells us that there is a unique walk (path) starting with the cipher data vertex

back to the plain data vertex. The unique way to guess the plain data is to
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guess the reverse password. Let us compute the probability to guess the plain

data from the cipher data, which is the same probability to guess the cipher

data from the plain data. Starting from the plain data vertex, the probability

to guess the next line vertex depends on the first password character. There are

q = 2m different possible line vertices. The probability to guess the first step

walk is 1/q. Now the probability to guess the next walk step using the second

character is 1/(q − 1), we remove the possibility to go back to the previous

vertex. We do the same reasoning for the other successive step walks. If the

password to encrypt the data is of the length k, the probability to guess the

message is pkey = 1
/

(

q (q − 1)m−1
)

. As an example, for the passwords of the

length l = 10, pkey ≈ 10−25. For l = 20, pkey ≈ 10−49. This shows how strong

is our algorithm even with short passwords.

The important feature of such encryption is the resistance to attacks when

the adversary intercepts the pair plain text and cipher text because the best

algorithm of finding the path between given vertices (by Dijkstra, see [16]) has

complexity |V | log(|V |) where |V | is the order of the graph, i.e. size of the plain

text space (huge).

4. Experimental Measurements

The algorithm is implemented using the C++ language. A readymade library

[17] of procedures for finite field arithmetic in F (2m) for m = 8, 16 and 32

will be used to perform the necessary operations of multiplication and XOR

(addition/subtraction) on a finite field. The library is written in C but it is

compatible with C++ as well. It is especially tailored for m equal to 8, 16 and

32, but it is also applicable for any other value of m.

Prior to going into further details, it is important to talk a little about the

implementation approach that reveals how data in the input files is converted

to the F (2m) elements. The system accepts various types of data files such as

video, image, text and audio. The system reads these files as streams of binary

bits into units and directly converts each unit to its decimal representation.

However, when dealing with text files and characters, a byte consists of 8-

bits and the ASCII code of a character represents it in decimal. To find the

polynomial that stands for a particular character, we convert the decimal value

of the character to its binary representation. The binary bits correspond to

the coefficients of the polynomial in F (28). If F (216) is intended to be utilized

in the algorithm, we consider a unit of two characters at a time. Similarly for

m = 32, we divide the data to be encrypted into units of four characters and

convert the units to their corresponding polynomial versions in F (232).
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For a unit of the size 1-byte (i.e. m = 8), the fastest way to perform multipli-

cation is to employ a multiplication table and store this table internally. This

table consumes 2(m + 2) bytes, so it is only applicable when w is reasonably

small. For example, when m = 8, this is 256 KB. However, when we select a

unit of the size 2-bytes, this multiplication table consumes 2(2m+2) bytes and

in the case of m = 16, this table is 234 bytes which is very large and cannot

fit into memory. The proposed solution states that when multiplication tables

cannot be employed, the most efficient way to carry out multiplication is to use

log and inverse log tables, as described in. The log table consumes 2(m + 2)

bytes and the inverse log table consumes 3 ∗ 2(m+ 2) bytes, so when m = 16,

this is approximately 1 MB of tables which can easily fit into memory. Then

we can calculate the product of a and b as:

a ∗ b = i log [log[a] + log[b]] .

While in the case of a 4-byte unit size (i.e. m = 32), it is obvious that the

log tables cannot fit into memory (2× 1010 bytes). A recommended resolution

[17] is to create seven tables that are 256 KB each and these tables are used

to employ the 32-bit numbers multiplication by breaking them into four eight-

bit numbers each, and then performing sixteen multiplications and XORs to

calculate the product.

Experiments:

The experimental evaluation of any algorithm is essential to acquire a realistic

vision of the resources required by the algorithm. In this section, we will test the

execution time of the algorithm upon various sizes of date files and passwords

using different unit sizes (i.e. 1-byte, 2-bytes, and 4-bytes) and determine its

time complexity in order to measure the efficiency of our algorithm.

Analyzing the algorithm structure shown in the previous section, we expect

that as we increase the unit size, performance of the algorithm will improve

since the plaintext and the password will be consumed faster. Consequently,

the expected execution time to produce the cipher text will relatively decrease.

The experiment included running the system on different text files of sizes 1

MB, 5 MB, and 9 MB along with a variety of passwords (l) ranging from 4-

bytes to 20-bytes of size. Then, the time (in milliseconds) to encrypt/decrypt

is recorded. The experiment was conducted using the machine that has a 2.99

GHz Intel(R) Core(TM)2 Duo CPU and a 1.96 GB of RAM. The results of

these runs are shown below.

Note that the above three tables confirm the linear complexity of our algo-

rithms for different values of m.
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Comparison Results Using Different Values for m

In this experiment we use different test files and a password of the length 20

bytes. The following line graph displays the results obtained by different unit

sizes.

Fig. 2. Comparison of run-time results m = 8, 16 and 32.
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Fig. 2 shows the unit size impact on the speed of the algorithm, as for a

unit of the size 16 bits; there is a gain in speed by approximately 50 percent

compared to the results of 8-bit unit size. Likewise, in the case of 32-bit unit

size, this increase in speed is observable (4 times faster than the 8-bit unit size).

Generally, as the unit size increases, the efficiency of the algorithm increases.

5. Conclusions

We implemented a new variable unit size symmetric stream key dependent

cipher based on the algebraic graph using the finite field. We have tested

our algorithm and confirmed that it is of linear complexity. Our experimental

results have shown that increasing the unit size reduces the run-time cost of the

algorithm by 4. However, this requires extra memory to store the multiplication

tables for the corresponding finite field operations. Our future work is to extend

the capability of the algorithm with a larger unit of the size 64-bit, 128-bit, etc.

Consequently, we expect that the algorithm will become more efficient when a

larger unit size is employed.
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