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Abstract

This paper describes the evolution of StreamHash cryptographic hash function family proposed
by the author. The first member of the StreamHash family was StreamHash (now called
StreamHash1) function, accepted for the first round of SHA-3 competition organized by the US
government standards agency NISTT. The competition has been started in order to select a new
SHA-3 standard as the successor of SHA-2 family of cryptographic hash functions. Function
StreamHash2 mostly addresses security weaknesses identified during the SHA-3 competition,
while the sketch of function StreamHash3 attempts to improve resistance to side-channel
attacks and performance properties. The paper starts with an overview of basic properties
of cryptographic hash functions followed by the description of the StreamHash family design
principles and its basic structure. Subsequent sections illustrate the way each subsequent

function uses lessons learnt while designing and testing the previous one.

1. Overview of the StreamHash family

1.1. Cryptographic hash functions
The cryptographic hash function is a deterministic function that transforms
arbitrary blocks of data into fixed-size values. The hash value for any given
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message can be efficiently computed, i.e. h(m) value can be easily computed
for any given message m.
The following main security properties are required:

(1)

It is not practically feasible to find a message transformed into a given
hash (also known as preimage), i.e. for any given h(m) value it is
infeasible to find a corresponding message m. This property is called
preimage resistance.

It is not practically feasible to modify a message without changing its
hash, i.e. for any given m; message it is infeasible to find another
mg message (also known as the second preimage) such that h(m;) =
h(mz). This property is called second preimage resistance.

It is not practically feasible to find two different messages with the
same hash, i.e. it is infeasible to find two different messages m; and
my (also known as collision) such that h(mi) = h(msg). This property
is called collision resistance.

Some auxiliary properties are also often required:

(1)

The hash function output should be indistinguishable from random
numbers, so they can be used as a foundation for keystream generators.
For example SSL and TLS [1] protocols use a mix of MD5 and SHA-1
to produce a sufficient number of master secret bits from an initial
premaster secret and exchanged random values.

The function should be resilient to length-extension attacks: given
h(m1) and len(mi), but not my itself, it should not be practically
feasible to calculate h(mq||padding|/mz). This property can be used to
break naive authentication schemes based on the hash functions. The
HMACH [2] construction works around these problems.

Practical infeasibility should not be confused with theoretical computational

complexity measures such as time or memory consumption. Theoretical mea-

sures cover either best, worst or average complexity. For cryptographic appli-
cations it is acceptable to violate any of the above properties as long as the
probability of failure is negligible.
Cryptographic hash functions are often mistaken for checksums such as CRC32,
only designed to detect accidental and not intentional modification of data.
Applications of cryptographic hash functions include:

e Digital signatures.
e Message authentication codes (MACs).
e User or device authentication.

ikeyed-Hash Message Authentication Code
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1.2. Design rationale

Commonly used cryptographic hash functions are based on the Merkle-Damgard
construction. The input message is processed in blocks. The message needs to
be padded, so the length of the padded message is a multiple of the block size.
Further processing is performed with a compression function. The function
takes two inputs: a chaining variable and a message block. Compression func-
tion outputs the next value of the chaining variable. Each block of a padded
message is iteratively processed with a compression function, starting with a
predefined initial value of the chaining variable.

Compression function is performed in several rounds in order to provide re-
quired cryptographic properties. Each round only performs non-trivial (e.g.
non-linear) operations on a subset of the chaining variable, while the remaining
part is merely shifted. This is why multiple rounds are needed to achieve the
avalanche effect, so that every bit of output depends on every bit of input of
the compression function.

The approach of the StreamHash family is completely different. Instead of
achieving the avalanche effect with multiple rounds, it directly updates the state
vector on each octet of the input stream.

The structure of the StreamHash family is based on a well-known problem of
solving a set of non-linear equations or CSP$. Common algorithms for solving
CSPs [3] include backtracking, constraint propagation, and local search. The
StreamHash family is designed, so that these algorithms cannot be applied.
This property is ensured by the clear separation of the constraints. Solving a
subset of all constraints does not make solving remaining constraints any easier.

No security proof is provided for the StreamHash family. Specifically no
reduction from CSP or any other NP-complete problem has been demonstrated.

1.3. NLF transformation

The main building block of StreamHash family is a fast non-linear transfor-
mation NLEF' (Non-Linear Function).

Figure 1 illustrates inputs and outputs of the NLF' transformation.

i — state vector index
state; — previous state vector element
state;11 — next state vector element

¢ — input octet index (added in StreamHash2)

b. — input octet (StreamHashl, StreamHash2) or word (StreamHash
3)

re — PRNG value (added in Streamhash2)

8Constraint Satisfaction Problem



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 28/01/2026 11:28:20

28

Michat Trojnara

be

state;, —»| NLF |—» statej.q

Fig. 1. NLF function.

1.4. Structure
See Figure 2 for the diagram of the StreamHash family structure.

A separate transformation is also applied in the finalization phase. Finaliza-
tion is designed to prevent the length-extension attacks and to improve statis-
tical properties of the output.

1.5. Advantages of the StreamHash family
The main advantages of the StreamHash family are:

Clear and easy to analyze design.

Negligible performance impact of machine endianness.

High performance on 8-bit and 16-bit architectures.

FEasy to parallelize internal structure with theoretical performance up
to a single clock cycle per input octet.

Fast finalization resulting in low latency. This property is extremely
important in real-time (e.g. multimedia) applications.

Fast finalization resulting in high throughput for short messages.
Minimal size of code, important for embedded systems.

Minimal size of variables, important for embedded systems.

Low size of static data.

Scalability to use any multiple of 32 bits as the hash value length.

1.6. Limitations of the StreamHash family

The mathematical background is also not well studied in cryptographic appli-
cations. While this is not a direct weakness, extensive cryptanalysis is essential
to trust a cryptographic primitive.
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Fig. 2. StreamHash structure.

2. StreamHashl function

2.1. Motivation

The StreamHash[4] (now called StreamHashl) algorithm was accepted for
the first round of SHA-3 competition organized[5] NIST.

The main motivation for StreamHashl was to demonstrate security of per-
formance properties of the StreamHash family. The function was designed to
be as simple as possible in order to simplify its cryptoanalysis. Specifically, no
constants or transformations were included without a clear security rationale.

As an early and immature design, StreamHash suffered from severe security
weaknesses.
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2.2. State data
StreamHash1 state structure consists of:

e A vector of 32-bit values to hold the state for all processed octets,
hereafter referred to as the state vector;
e The value of remaining bits in the last input data octet if it is not full;
and
e The number {0, 1,...7} of remaining bits in the last input data octet.
The length of the state vector is equal to the message digest size divided by 32,
i.e. 7 for 224-bit digest, 8 for 256-bit digest, 12 for 384-bit digest, and 16 for
512-bit digest.
At initialization the state vector is set to zero.

2.3. State update algorithm
StramHash2 NLF transformation works by adding (modulo 232) an S-BOX
output to the state vector value. The S-BOX index is computed as:
LSB(state;) @b (1)
The resulting formula to update a state vector value for the index 1 is:

state; < state; ® S-BOX[LSB(state;) ® b ® i] (2)

Any remaining input data bits (for input size not being a multiple of 8 bits),
and the number of these bits are both saved within the state structure.

Figure 3 illustrates the internal structure of the StreamHash1l NLF' transfor-
mation.

be

»{LSB P>

\ 4

S-BOX

y
state; :C) » state,

Fig. 3. NLF Function of StreamHash1.
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2.4. Structure of S-BOX
StreamHash S-BOX is based on AESY S-BOX. The formula to compute the
32-bit S-BOX value for the index ¢ is:

s(1) V (s(s(2)) < 8) V (s(s(s(7))) < 16) V (s(s(s(s(2)))) < 24) (3)

The content of the StreamHash S-BOX computed using the above formula
is listed in Table 1.

2.5. Cryptanalysis

The third-party cryptanalysis is available for the StreamHash1 function, the
first function of the StreamHash family.

Dmitry Khovratovich and Ivica Nikoli¢ from University of Luxembourg re-
viewed cryptographic properties of StreamHash [6]. Joux attack [7] was ap-
plied with the theoretical complexity of %2”/ 4 for finding collisions and %2”/ 2
for finding preimages.

Tor E. Bjorstad, a PhD student of Computer Science, University of Bergen,
Norway implemented [8] a practical collision attack against the StreamHashl
function.

3. StreamHash2 function

3.1. Motivation
The StreamHash2 algorithm was designed to address identified weaknesses
of the original StreamHash1 function.

3.2. Algorithm updates
The following changes were implemented in the StreamHash2 function com-
pared to the original StreamHash1:

e NLF transformation was modified with a 32-bit output of PRNG Iin
order to prevent from the re-use of any identified collision of a single
state word.

e @ operation was replaced with B (addition modulo 2%2) in order to
propagate changes between the four octets of the 32-octet state word.

e Finalization phase was updated to improve resistance against length-
extension attacks and statistical properties.

The StreamHash?2 state structure was extended with:

e 64 bits of PRNG state;

YAdvanced Encryption Standard
IPseudo-Random Number Generator
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Table 1. StreamHash2 S-BOX
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The improved formula to update a state vector value for the index 1 is:

state; < state; B S-BOX[LSB(state;) ® b @ i) Br,

(4)

StreamHash2 shares all other parts of the StreamHash2 design described

above, e.g. the S-BOX table.

Figure 4 illustrates the internal structure of the StreamHash2 NLF' transfor-

mation.
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Fig. 4. NLF Function of StreamHash?2.

3.3. Pseudo-random number generator
The StreamHash2 function uses a 64-bit version of the pseudo-random num-
ber generator Xorshift[9] as its PRNG transformation. The generator provides
the period of 264 — 1. PRNG is not expected to be cryptographically secure,
and security of StreamHash2 is not based on the PRNG properties other than
its period.
The following algorithm is used to generate each 32-bit value of r:
(1) s+ s® (s < 13).
(2) ssB(s>7).
(3) s+ s® (s < 17).
(4) Return r. as the least significant 32 bits of s.
The 64-bit PRNG state s is initialized with the seed value of 88172645463325252.
This starting value is a constant recommended by the author of the Xorshift
algorithm.

3.4. Identified limitations of StreamHash2
Identified disadvantages of StreamHash2 are mostly the result of S-BOX
lookup:

e Side-channel attacks[10] on multiasking software implementations based
on the CPU cache timings.

e Not possible to compute with the SIMD** instructions on x86 archi-
tecture.

e Expensive hardware implementation (high number of gates).

**Single Instruction, Multiple Data
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e 1KB of static data, although it can be reduced to 256 octets with a
reasonable performance trade-off.

4. Plans for StreamHash3 function

4.1. Motivation

Daniel J. Bernstein demonstrated[10] a practical side-channel attack on the
AES algorithm. The attack leverages a weakness of the AES non-linear trans-
formation based on S-BOX. Multiple processes running on the same physical
machine several resources of the CPU including memory caches. It is possible
to force another process to perform cache hit or cache miss depending on the
S-BOX lookup offset. With accurate time measurements it is possible to infer
secret data and subsequently to compute encryption key. The same weaknesses
could be used to find preimages of the StreamHash2 algorithm.

Initially, S-BOX appeared to be a perfect source of non-linearity for the
StreamHash family. It seemed to be extremely fast, as S-BOX lookup is imple-
mented with a single CPU instruction. Code profiling tests performed by the
author of this paper revealed that a significant amount of CPU time is spent on
the lookup instruction, as its lookups cannot be solely computed on registers.

It is also not practical to use the S-BOX indices longer than 8 bits for im-
plementations with limited hardware resources. 8-bit S-BOX indices, in turn,
only allow StreamHash2 to process one octet of input data at a time.

The use of S-BOXes is not practical on low-end implementations. For low-end
8-bit CPUs 1KB of static data may represent a substantial amount of memory.
The S-BOX included in the previous StreamHash family members can, however,
be computed on the fly, reducing memory usage with a reasonable performance
trade-off.

This issue gets much worse for low-end hardware implementations. For low-
power hardware (e.g. RFID'T tokens) the number of gates required to imple-
ment the S-BOX of StreamHash2 could be unacceptable.

4.2. Proposed solution

The solution for the planned StreamHash3 is to replace S-BOXes with the
constructions based on shifts (< and >>) and modular addition (8) should
allow to process input stream word-by-word instead of octet-by-octet, and to
implement non-linearity with the SIMD instructions.

As a result, it may be possible to achieve StreamHash3 performance as good
as the performance of StreamHash2, or even better.

tRadio-frequency identification
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4.3. Support of the x86 CPU architecture
The following instructions, operating on the sets of 32-bit words, could be

used on x86 architecture:
PSLLD -~ Packed Shift Left Logical (<)

PSRLD -~ Packed Shift Right Logical (>>)
PADDD - Packed Add (H)

The number of simultaneously processed words depends on the SIMD word
size available on the specific architecture [11]. The following SIMD register is
available on the x86-compatible CPUs:

MMX — 8 64-bit registers mmg — mms.

SSE2 — 8 128-bit registers xmmg—axmmy in 32-bit mode, and 16 128-bit
registers xmmgy — xmmys in 64-bit mode.

AVX — 256-bit registers ymmgy—ymmqs available. The first CPUs sup-
porting AVX architecture are Intel Sandy Bridge (first released
on 9 January 2011) and AMD Bulldozer (scheduled for release
on Q2 2011).

The SIMD instructions would allow to simultaneously process 2 (for MMX),
4 (for SSE2) or 8 (for AVX) 32-bit StreamHash3 state words.

5. Conclusions

Practical attacks against MD5 [12] and SHA-1 [13] suggest that collision
resistance is the most serious threat to cryptographic hash functions. The
StreamHash family was designed specifically to deal with this threat.

The whole StreamHash family can be effortlessly scaled to use any multiple
of 32 bits as the state vector size. Applications of this property include not
just upscaling for improved security, but also downscaling for the applications
with reduced security requirements, e.g. lightweight cryptography. These ap-
plications can benefit from fast finalization of the StreamHash family, as well
as the reduced number of gates achieved by removing S-BOX while designing
the StreamHash3 function.

Growing popularity of lightweight cryptography is driven by the increasing
number of RFID tags as well as battery-powered wireless sensor agents. Cur-
rently many of these devices use plaintext communication protocols in order
to reduce circuit chip size/cost and power consumption. StreamHash3 could
be used as an efficient cryptographic hash function to implement HMAC-based
security layer for these protocols.
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Symbols
B — arithmetic unsigned addition modulo 232
@ - bitwise exclusive disjunction, also called XOR (EXclusive Or)
V - bitwise OR operator
& — bitwise SHIFT LEFT operator
> — bitwise SHIFT RIGHT operator
< — substitution
| — concatenation of octet strings
S-BOX|[x] — tablelookup returns the value at the position x of table S-BOX
LSB(x) — least significant octet of
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