
Annales UMCS Informatica AI X, 2 (2010) 111-122
DOI: 10.2478/v10065-010-0057-1

Associative memory in artificial immune systems

Barbara Borowik1∗, Bohdan Borowik2†, Jan Kucwaj1‡,
Sophie Laird3§

1Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland.
2University of Bielsko-Biala, Willowa 2, 43-309 Bielsko Biala, Poland.

3Towson University, 8000 York Road, Towson, Maryland, USA.

Abstract – The paper concentrates on analyzing associative properties of Artificial Immune
Systems, especially on immunological memory, which is a member of a class of sparse and
distributed associative memories [18]. This class of memories derives its associative and
robust nature by sparsely sampling the input space and distributing the data among many
independent agents [16]. Immunological memory is one of the defining characteristics of
the adaptive immune system [4]. This memory is able to store and recall patterns when it is
required, and can easily categorize new input data [11]. Immunological memory is distributed
among the cells in the AIS memory population, and is robust, because when a portion of the
memory population is lost, the remaining memory cells persist to produce a response. The
major principle behind vaccination procedures in medicine and immunotherapy takes its source
from associative properties of immunological memory [13]. Associative recall is a general
phenomenon of immunological memory [18].

1 Introduction

During the last few decades, computer scientists and engineers have increased their interests
in seeking inspiration from nature to solve many difficult, complex or intractable problems.
More recently a significant attention has been given to Artificial Immune Systems (AIS), called
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112 An Associative Memory in Artificial Immune Systems

also Immunological Computations (IC) - as to the computational intelligence paradigms that
are based on metaphors and functions of the biological immune system [8]. Together with
swarm intelligence, AIS constitute one of the youngest fields of investigation in nature-inspired
computing [8].

2 Simplification of the biological immune system to the artificial one

The immune system (IS) of vertebrates is composed of a large variety of cells, molecules,
and organs spread all over the body, which cooperate with each other in the effort of keeping
the organism in a good health by fighting diseases. There is no central organ controlling the
functioning of the immune system, and there are several elements in transit and in different
compartments performing complementary roles [9]. The main task of the immune system is
to survey the organism in the search for malfunctioning cells from their own body (e.g. cancer
and tumour cells) and foreign disease causing elements (e.g. viruses and bacteria) [9]. There
is a wide diverse range of artificial models of the immune system currently described in the
literature, beginning from those that attempt to closely model biological phenomena, to those
that simply use the metaphor as loose inspiration for a computational system.

The immune cells considered in Artificial Immune Systems (AIS) are lymphocytes,
white blood B- and T- cells whose major function is to fight antigens (Ags), i.e. molecules
belonging to foreign agents such as bacteria or viruses, which have introduced themselves in
the organism. The principal function of lymphocytes is to recognise the antigens. They do
this task using T-cell receptors (called TCRs) or B-cell receptors (called antibodies (Abs) or
BCRs). Receptors are located on the surface of immune cells and are capable of recognising
an almost limitless range of antigenic patterns. B- and T- cells are rather similar, but differ
with relation to how they recognise antigens and by their functional roles. B-cells are capable
of recognising antigens free in solution (e.g. in the blood stream), while T-cells require
antigens to be presented by other accessory cells (see Fig. 1) [9].

In order for the receptor on an immune cell to (totally or partially) recognize an antigen,
some portion of the antigen – the epitope - has to have a shape ”nearly” complementary to that
of the receptor molecule of the immune cell (Fig. 1). The degree of recognition (or interaction)
is called affinity (the better the recognition, the higher the affinity). (To eliminate an infectious
agent there must be binding between the cell receptor and the antigen. The complex formed
by the antigen covered with antibodies signals phagocytes – i.e. big cell eaters – to destroy the
antigen [8].)

3 Selecting proper representation for the AIS input patterns

In the shape-space concept – cells and molecules are described by a data structure. The
most common type of data structure are an attribute string, which can be a real-valued vector,
an integer string, a binary string or a symbolic string [8]. Antibodies and antigens are usually
assumed to be of the same length L. The interaction of an antibody and an antigen can be
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Fig. 1. B-cells with their receptors recognizing the epitopes on an antigen (the picture
is based on the information provided in [8]).

evaluated via a distance or similarity measure (called affinity measure, degree of match, degree
of interaction or complementarity).

Assuming various types of attribute strings to represent the generalized shapes of molecules
in the immune system, each of these types requires a particular class of affinity measure. Real-
valued shape-spaces require affinity measures that deal with real valued vectors; Integer shape-
spaces require affinity measures that deal with integer strings [9]; etc.

For real-valued shape-spaces the most common affinity measures are the Euclidean or
Manhattan distance. In such case the generalized shape of a molecule (m), either an antibody
(Ab) or an antigen (Ag), can be represented by a sequence of real-valued coordinates
m =< m1,m2, . . . ,mL >, which can be regarded as a point in an L-dimensional real-valued
space (m ∈ SL ⊆ �L, where S represents the Euclidean or Manhattan shape-space and L
its dimension) [9]. The following equations depict the Euclidean and Manhattan distances
respectively:

D =

√√√√ L∑
i=1

(Abi −Agi)2, D =

L∑
i=1

|Abi −Agi|.

For the Hamming shape-spaces the Hamming distance can be used to evaluate the affinity
between two cells. In this case the molecules are represented as sequences of symbols over a
finite alphabet of length k. The Hamming distance used to evaluate the affinity between two
attribute strings of length L in a Hamming shape-space – is depicted by the following equation:

D =
L∑

i=1

δi, where δi =

{
1, if Abi �= Agi
0, otherwise

.
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114 An Associative Memory in Artificial Immune Systems

If binary strings (called bit-strings) are used to represent molecules (k ∈ 0, 1), then we have
the binary Hamming shape-space (for k=3, we have ternary shape-space, and so on) [9]. In
the Hamming shape-space (i.e. in bit-string universe), molecular binding takes place when
antibody and antigen bit-strings match each other in a complementary fashion. The affinity
between an antibody bit-string and an antigen bit-string is the number of complementary bits,
as depicted in Fig. 3. As shown in this picture, the affinity can be computed by applying
the exclusive-or operator (XOR) [9]. The expected affinity between two randomly chosen bit-
strings is equal to half of their length (if they are the same length). Shape-spaces that measure
contiguous complementary symbols are more biologically appealing. There are many other
rules available for complementarity [8].

Ab [ 1 0 0 0 1 1 1 0 1 0 ]
Ag [ 1 0 1 0 1 0 1 0 1 0 ]

Match (Ab, Ag) ⇔ XOR: 0 0 1 0 0 1 0 0 0 0 - Match between an antigen Ag and an
antibody Ab. Complementarity D (Ab, Ag) = SUM of ALL ‘1’ values of Match (Affinity = 2).
Similarity: L - D (Ab, Ag): (Affinity = 8) (L=10 is the length of an antibody and an antigen
strings).

Fig. 2. Recognition via the regions of complementarity. In AIS cells and molecules
capable of recognizing a certain pattern, can recognize not only this specific pattern,
but also any structurally related pattern [8].

In the symbolic shape-spaces, the attribute strings that represent the components of the
artificial immune system are composed of at least one symbolic attribute. Fig. 4 illustrates a
Symbolic shape-space in which two shown antibodies contain fragments of a certain database.

Fig. 3. Example of a Symbolic shape-space representation in which some attributes
are symbolic and others are numeric [8].

Description Year Country Price ($)
Antibody Ab1 London 1998 UK 780.80
Antibody Ab2 Warsaw 2008 Poland 900.00
Antigen Ag Cambridge 1998 UK 900.00
Match Ag - Ab1 0 1 1 0
Match Ag - Ab2 0 0 0 1

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 15/11/2024 08:51:33

UM
CS



Barbara Borowik, Bohdan Borowik, Jan Kucwaj, Sophie Laird 115

4 Pattern recognition and generalizing capabilities of Artificial Immune
Systems

In AIS, an attribute string represents the genetic information of the immune cells
and molecules. This string is compared with the patterns of antigens received from the
environment. (If there is an explicit antigenic population to be recognized, all or some
antigens are usually presented to the whole or parts of the AIS. At the end of the learning or
recognition phase, each component of the AIS should recognize some of the input patterns
[9].)

Under the shape-space formalism, each component of the AIS interacts with other cells or
molecules whose complements lie within a small surrounding region, characterized by affinity
threshold (ε - in Fig. 5). Recognition occurs if the shapes of a B- or T-cell receptors and that
of an antigen are approximately complementary. In this case the lymphocyte recognizing the
antigen binds to it, at the same time activating the immune response [7]. In Fig. 5 it can be
seen that the immune B-cells do recognize not only perfectly matching antigens but are also
capable of recognizing foreign agents within the region of complementarity (called the ball of
recognition [7]).

Fig. 4. An antibody Ab (here illustrated by a big black dot) can recognize any antigen
(here illustrated by a triangle), whose complement is positioned within its affinity
threshold distance (ε) (the picture has been based on the information provided in
[10]).

The degree of recognition between a given antibody and a given antigen (i.e. presented input
pattern) can be determined by checking the binding value [10]. There are several activation
functions adopted, which define the binding value between two molecules, like a sigmoid
matching activation function or a simple threshold function. For the threshold function a bond
is established only when the value of the match score is greater than L - ε (see Fig. 6 (a)).
The sigmoid function can be used in a continuous case, and the value of ε would be connected
with the position of the inflexion point of the curve (see Fig. 6 (b)) [10]. Fig. 6 (b) implies
that a match score greater than 8 will produce a high binding value, while a match score of 5
corresponds to a binding value of approximately zero.

In the Hamming shape-space the set of all possible antigens is considered as a space of
points, where antigenic molecules with similar shapes occupy neighbouring points in the space.
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116 An Associative Memory in Artificial Immune Systems

Fig. 5. Relation between the binding value and the match score (in the case of the
Hamming distance) for a bit-string of length L = 10 and affinity threshold ε = 2. (a)
Threshold binding function. (b) Sigmoid binding function (the picture is based on
the information provided in [10]).

The total number of unique antigens and antibodies is given by kL, where k is the size of the
alphabet and L the bit-string length. A given antibody molecule recognizes a set of antigens
and therefore covers some portion of the shape-space (see Fig. 5). The affinity threshold (ε)
determines the coverage provided by a single antibody [10]. If ε = 0, i.e., a perfect match is
required: an antibody can only recognize the antigen that is its exact complement. The number
of antigens covered by one antibody within this antibody region of stimulation is given by:

C =
∑ε

i=0

(
L

i

)
=

∑ε
i=0

L!
i!(L−i)! , where C is the coverage of the antibody, L the length

of the bit-string and ε the affinity threshold [10]. Based on the above equation, a given bit-
string of length L and an affinity threshold ε, the minimum number of antibody molecules (N )
necessary for the complete shape-space coverage can be defined as: N = ceil(k

L

C ), where ceil
is the operator that rounds the value in the parenthesis towards its nearest upper integer [10].

5 Associative properties of secondary and cross-reactive immune
responses

A primary response is provoked when the immune system encounters an antigen for the
first time [19]. In response to the infection, the immune system produces antibodies, to help
eliminate the antigen from the body.

The immune response in fighting a disease begins by reproducing the cells able to recognize
and bind with the antigens – i.e. activated B-cell with the highest affinity – which are selected
to replicate and mutate (clonal expansion). The clones then undergo high mutation rates
(hypermutation). The cells obtained through this process, having greater affinity for the
antigen, live longer so as to be still in the organism in the case a future attack occurs (memory
cells). While the cloning proliferation rate is directly proportional to the affinity for the
antigen, the hypermutation rate is inversely proportional to such an affinity [19]. The nearer

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 15/11/2024 08:51:33

UM
CS



Barbara Borowik, Bohdan Borowik, Jan Kucwaj, Sophie Laird 117

the cell is to antigen complementarity, the lower is the hypermutation rate. On the other hand,
if a cell’s antigen affinity is very low, high hypermutation rates are applied in hope to raise
the affinity values quickly. This process is called affinity maturation while the composition
of antigen recognition, clonal expansion and memory cell creation, is called clonal selection
[19].

At the end of an immune response, when the antigen is cleared, the B cell population
decreases (leaving a persistent sub-population of memory cells), until the time when the
antigen is encountered again1. The persistent population of memory cells is the mechanism
by which the immune system remembers [19]. A second exposure to the same antigen (or a
related antigen), restimulates the memory population inducing an associative recall, in which
the memory population of the immune system quickly produces a massive number of B-cells
(or CTLs) (through a process called clonal selection) and often the antigen is cleared before it
causes disease. This secondary immune response is said to be specific to the antigen that first
initiated the immune response. The reason that it is faster than the primary one is attributed
to the memory cells remaining in the immune system, so that when the antigen, or a similar
antigen, is encountered, new immunity does not need to be built up, it is already there [18].
This means that the body is ready to combat any re-infection (see Fig. 7).

If the secondary antigen is slightly different from the primary one (for example the antigen
Ag1’ in Fig. 7), the region that this antigen activates may overlap part of the memory
population raised by the primary antigen. Memory cells in the overlap bind the antigen and
produce B-cells and/or CTLs. It is a cross-reactive response, but people who work with
associative memories would call it associative recall [18]. The strength of the secondary
immune response is approximately proportional to the number of memory cells in the region
that this antigen activates. If a subset of the memory population is stimulated by a related
antigen (e.g. Ag1’), then the response is weaker [8].

Cross-reactivity is usually modelled using the affinity threshold. Any pattern lying in a
‘neighborhood’ of a known pattern can be recognized by the same component of the AIS that
recognizes the known pattern. Thus, a component of the AIS can generally recognize any other
element whose affinity for is greater than the value of L - ε (as it can be seen in Fig. 7) [10]. In
addition to cross-reactivity, some immunologists speculate that antibodies can also be multi-
specific, in the sense that they can recognize antigens of relatively different structures, as far
as enough interactions are established between them. Therefore, multispecificity contributes
to the generalization capability of AIS [10, 14].

1The mechanism(s) by which memory cells persist is not fully understood. One theory is that memory cells live
for a long time [6]. Another is that memory cells are restimulated at some low level. A number of mechanisms for
restimulation have been proposed. Jerne [15] proposed the idiotypic network theory in which cells co-stimulate each
other in a way that mimics the presence of the antigen. Another theory is that small amounts of the antigen are retained
in the lymph nodes [18]. Still another is that the related environmental antigens provide cross-stimulation [17]. The
idiotypic network theory has been proposed as a central aspect of the associative properties of immunological memory
[18].

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 15/11/2024 08:51:33

UM
CS



118 An Associative Memory in Artificial Immune Systems

Fig. 6. Primary, secondary and cross-reactive immune responses. Ag1 infects the
system and a lag phase occurs – before a primary immune response is initiated. The
host is then re-infected with Ag1. A fast secondary response is elicited against Ag1.
At some time in the future the host is infected with Ag1’, which is a slight variation
in Ag1. Due to the generalist capability of the immune system, a secondary response
is elicited against the antigen (the picture has been based on the information provided
in [8]).

6 Associative memory in the Artificial Immune Systems

Memory in a physical system refers to the ability of the system to preserve information
about the state of the universe (including the system itself) at some previous time [12]. Its
important biological example is the biological immune system (BIS). Memory in BIS consists
of clonally expanded populations of diverse cells. The attribute strings representing the
repertoire(s) of immune cells and molecules, and their respective numbers, constitute most of
the knowledge contained in an artificial immune system [9]. Furthermore, the parameters like
the affinity threshold can be also considered part of the memory of AIS. In artificial immune
network models, the connection strengths among units also carry endogenous and exogenous
information, i.e., they quantify the interactions of the elements of the AIS between themselves
and also with the environment [9]. In most cases, this memory is content-addressable and
distributed.

After an immune response to a given antigen (i.e. after the immune system fights off an
infection), some sets of cells and molecules (a fraction of the antibody-producing B-cells) are
endowed with the increased life spans in order to provide faster and more powerful immune
responses to future invasions by the same or similar antigens [19]. This process, known as
the maturation of the immune response, allows the maintenance of those cells and molecules
successful at recognizing antigens. So the major principle behind vaccination procedures in
medicine and immunotherapy takes its source from associative properties of immunological
memory [13]. A weakened or dead sample of an antigen (e.g., a virus) is inoculated into
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an individual so as to promote an immune response (with no disease symptoms) in order to
generate memory cells and molecules to that antigen (see Fig. 7).

The duration of memory is limited by numbers of cell divisions. In man memory can persist
over many years or even decades, but the average lifespan of memory clones in humans is not
known [4]. Senescence of individual clones is controlled by numerous factors. Immunological
memory is one of the defining characteristics of the adaptive immune system, although it
is not entirely straightforward to define either memory or memory cells [4]. A functional
definition of memory is the ability to respond more effectively to a second or subsequent
exposure to an antigen than to the initial encounter (Fig. 7) [4]. In the case of B-lymphocytes,
continued production of antibodies maintains a state of enhanced protection while for T-cells
the increased numbers of cells capable of rapid effector responses are retained [4]. For both
cell types, memory is generated by the expansion of clones of antigen reactive cells during
priming to generate a higher frequency of cells capable of responding to subsequent exposure
to the antigen. Therefore memory consists of cells that belong to the clones that have been
expanded following encounter with antigen.

7 Sparse Distributed Associative Memories and their Relationship to
AIS Memory

Smith et al. have shown that immunological memory is a member of a class of sparse
and distributed associative memories [18]. Another type of memory typical of this class is
Kanerva’s Sparse Distributed Memory (SDM) [18]. The SDM class of associative memories
appears to fall into the danger-model camp of immune system models, as it is capable of
recognizing and storing all data present in a given environment, and not just data that falls into
either the ’self’ or the ’non-self’ categories [8].

The Kanerva’s model of Sparse Distributed Memory is a form of memory which can be
written to by providing an address and data, and then read from by providing an address
and getting an output. The SDM is specifically designed to function with enormous address
spaces, in which it would be impossible to physically instantiate all of the possible address
locations. For example, SDM can cope with addresses of 1000 bits, and therefore 21000
potential address-data locations. An SDM instantiates a small and random subset of these
locations, which are referred to as hard locations, and are said to sparsely cover the input space
[18]. (For comparison – with respect to the human immune system - an individual has the
genetic material and a randomizing mechanism able to express 1010 distinct B-cell receptors,
and the number of possible distinct antigens is thought to be in the range 1012 to 1016 at
any time [18]). The analogy between the immune system and the SDM class of associative
memories is detailed in Table 1, taken from [18].

Immunological memory appears to be distributed among the cells in the memory population,
and because of this is robust, as even when a portion of the memory population is lost, the
remaining memory cells persist to produce a response. The entire AIS is highly robust due
mainly to the presence of populations or networks of components. These elements, cells and
molecules can act collectively, co-operatively, and competitively to accomplish their particular
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Table 1. Analogy between the immune system memory and SDM [18].

Immunological Memory SDM
Antigen Address/Data
B/T Cell Hard Location
Ball of Stimulation Access Circle
Affinity Hamming Distance
Primary Response Write and Read
Secondary Response Read
Cross-Reactive Response Associative Recall

tasks. As knowledge is distributed over many components of the system, damage or failure
to individual elements might not significantly deteriorate the overall performance [19]. The
Artificial Immune System is also highly flexible, noise tolerant and self-tolerant. There is
inherent distribution within the immune system. There is no one point of overall control;
each immune cell is specifically stimulated and responds to new antigens that can invade the
organism in any location. The immune system population is controlled by local interactions
and not by a central point of control. As the immune system is distributed throughout the
organism, only those cells located closer to the site of infection are recruited for combat. More
cells from the neighbourhood can be recruited, but not all immune cells are involved in an
adaptive immune response. After a disease has been successfully combated by the immune
system, it returns to its normal steady state, until it is needed in response to another antigen (it is
a type of self-regulatory mechanism) [19]. The immune system is constantly creating new cells
and molecules, and eliminating those that are too old or are not being of great use. There is a
process of continuous production, recruitment and death of immune cells and molecules. So at
each iteration, time step or interval, the state of an AIS simulating the immune system actions,
corresponds to the concentration of the immune cells and molecules, and/or their affinities. In
the case of immune network models, the connection strengths among units are also part of the
current state of the system [19].

8 Conclusions

Immunological memory is an associative and robust memory that belongs to the class
of sparse distributed memories [18]. It is also a vital component of the immune system,
allowing it to remember infections and successfully respond to future invasions by pathogenic
microorganisms, and to ensure the survival of its host. It constitutes an emergent property
of the antibody population and its dynamics. A second exposure to the same antigen or a
related antigen, restimulates the memory population inducing an associative recall [18].
Immunologists refer to associative recall as a cross-reactive response. Many important
properties of the immunological memory, and especially its associative, distributed and
dynamic character, its robustness, adaptability, ability to generalize data, ability to build
associations between novel items presented and those existing in own memory pool, and
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overall unbelievable efficiency - makes the immunological memory a never ending source of
many inspirations, research, and new models of engineering artificial immune systems, as a
memory which can store and recall data - is the key in any system implementation [21].
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