
Annales UMCS Informatica AI IX, 1 (2009) 77–97

DOI: 10.2478/v10065-009-0006-z

Query Optimization by Indexing in the ODRA

OODBMS

Tomasz M. Kowalski1, Micha�l Chromiak2, Kamil Kuliberda1,

Jacek Wíslicki1, Rados�law Adamus1, Kazimierz Subieta3

1 Technical University of Lodz, Stefanowskiego 18/22, 90-924 Lodz, Poland
2 Institute of Computer Science, Maria Curie Sklodowska University,

pl. M. Curie-Sk�lodowskiej 1, 20–031 Lublin, Poland
3 Polish-Japanese Institute of Information Technology, Koszykowa 86,

02-008 Warsaw, Poland

Abstract

We present features and samples of use of the index optimizer module which has been im-

plemented and tested in the ODRA prototype system. The ODRA index implementation

is based on linear hashing and works in a scope of a standalone database. The solution is

adaptable to distributed environments in order to optimally utilize data grid computational re-

sources. The implementation consists of transparent optimization, automatic index updating

and management facilities.

1. Introduction

Indices are auxiliary (redundant) data structures stored at a server. A data-

base administrator manages a pool of indices generating a new or removing an

existing one depending on the current needs w.r.t. improving overall perfor-

mance of applications. As indices at the end of a book are used for quick page

finding, a database index makes quick retrieving objects (or records) matching

given criteria possible. As indices have a relatively small size (comparing to the

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 19:15:55

UM
CS

whole database) the gain in performance is fully justified by some extra stor-

age space. Due to single aspect searching, which allows one for very efficient

physical organization, the gain in performance can be even several orders of

magnitude.

The general idea of indices in the object–oriented databases does not dif-

fer from indexing in relational databases [1]. Many indexing methods can be

adopted from relational database systems and even their applicability can be

significantly extended. There are also situations where indexing methods from

RDBMSs become outdated in object–oriented databases. In particular, join op-

erations do not require extensive optimizations because in object databases the

necessity for joins is much lower due to object identifiers and explicit pointer

links.

ODRA (Object Database for Rapid Applications development) is a prototype

object-oriented database management system based on the Stack Based Archi-

tecture (SBA) [2, 3]. The main goal of the ODRA project is to develop new

paradigms of database application development and to introduce a new, uni-

versal declarative programming language, together with a distributed database-

oriented and object-oriented execution environment. ODRA introduces its own

query language SBQL (Stack Based Query Language) that is integrated with

programming capabilities and abstractions, including database abstractions:

updatable views, stored procedures and transactions.

An important feature of ODRA concerns the optimization engine responsible

for increasing the performance of query execution. The essential component of

the engine is the module that optimize queries by using indices. The main fea-

tures of the indices implementation include: transparent choosing appropriate

indices for a given query (if available), automatic update of indices in response

to update of corresponding data and administrative management of indices.

The paper presents the above three aspects of indices implementation in

ODRA. Section 2 contains a brief overview of selected OODBMSs index capa-

bilities. Section 3 presents overall architecture of the ODRA query optimization

engine. Section 4 discusses the features of indices in ODRA. Section 5 describes

ODRA index management facilities. Section 6 exemplifies query optimization

based on indices. Section 7 presents performance gain of proposed solution

based on an example query. Section 8 concludes.

2. Query Optimizations with Indices in OODBMSs

In the case of the Versant ODBMS [4] a B–tree index can be used in an exact

or range predicate processing. No index inheritance is present in the Versant

database. An index can be created on an attribute of only one class. No class

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 19:15:55

UM
CS

inheriting from the one with the index can inherit the index. To index subclass

attributes, it is necessary to specifically set indices on each subclass. This results

in the need for providing index consistency by a database administrator.

In the Objectstore DBMS [5] there are two types of improving query perfor-

mance by indexing, i.e., with indices and with superindices. The first solution

involves building indices on a collection of objects. A superindex is an index

kind that is specially used for optimizing queries involving types that have many

subtypes. By default, adding an index on a type results in recursive adding of

indices to all its subtypes. Still for queries with a large and intricate hierarchy

of subtypes the regular indexing can seriously deteriorate processing. Adding

a superindex to a type with many subtypes differs from a default index in one

essential feature: the superindex is only one. It eliminates a recursion; conse-

quently, only one parent query operation occurs in contrast to multiple queries

when using the regular index.

There is also a possibility to create a query that uses a multistep index,

which is an index on a complex navigational path that accesses multiple public

data members. It optimizes queries that use the same path. For example, if

a query concerns all employees who works in the Sales department, an index

on WorksIn.Name to Emp collection can be used. However, updating an index

entry after data modification must be explicitly determined by the programmer.

It is a serious drawback of an ObjectStore multistep index.

The ObjectStore ODBMS automatically optimizes a query applied to a col-

lection. If an index is added to a collection, then the database first evaluates

indexed fields and establishes a preliminary result set. Then, ObjectStore ap-

plies non-indexed fields and methods to the elements in the preliminary result

set. In ObjectStore the optimization can be done manually by preparing a query

or automatically otherwise. This means that a query is optimized to use ex-

actly indices which are available on the collection being queried. The automatic

optimization is convenient and effective. Moreover, it supports data indepen-

dence, i.e., the database administrator is not constrained in establishing new or

removing indices because application programs do not refer to them explicitly.

Let us consider the index usage in Objectivity/DB [6]. The main goal of

an index is to optimize predicate scans and this is how it is implemented in

Objectivity. The predicate used in the scan can be one of the following:

• A single optimized condition (=, ==, >, <, >=, <=, =∼ – string match)

that tests the first key field of the index

• A conjunction (&&) of conditions in which the first conjunct is an optimized

condition that tests the first key fields of the index (no disjunction – OR)

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 19:15:55

UM
CS

In the case of Objectivity/DB creation of an index for a class means indexing

also objects references of all classes derived from the indexed one. The index

structure maintains references to persistent objects of a particular class (so

called indexed class) and its derived classes. An indexed class is specified during

creation of an index. Objectivity/DB additionally supports concatenated index

on several attributes (key fields). The order of key values of an index is very

relevant regarding the proper activity of predicate.

While considering indexing in OODBMSs the way the GemStone database

server handles the issue should also be noticed [7, 8]. GemStone indices address

path–expressions. A variable name appearing in the beginning of a path is

called path prefix. Then, a path contains a sequence of links and a path suffix;

e.g. Employee.worksIn.manager. For each link (for an instance variable of an

object) in the path suffix one index is available thus forming a sequence of

index components. In GemStone identity indices directly support exact match

lookups; whereas, equality indices and identity indices on Boolean, characters

and integers directly support =, >, >=, <, <= and range lookups.

3. Query Optimization Engine Architecture

Fig. 1 shows the ODRA query optimization process in the context of a query

evaluation process. The input for the optimization process is an abstract syntax

tree (AST) of a query. The optimization modules are divided into optimization

by rewriting and optimization by indices. The theoretical idea for these methods

is presented in several documents, see e.g. [9, 10, 2, 3].

The rewriting optimization process modifies a query during compile–time

with the use of information stored in the metabase augmented with static

query evaluation results. Currently ODRA supports several rewriting methods:

changing the order of execution of algebraic operators; view rewrite (replacing

a view invocation by a view body); removing dead sub–queries; factoring out

independent sub–queries; shifting conditions as close as possible to the proper

operator; methods based on the distributivity property of some query operators.

Optimization by indices searches for parts of an input query that can be

transparently replaced with an index call. If such an index exists (added previ-

ously by the administrator) the query is rewritten to the form where the target

part is replaced with an index invocation.

4. The idea of ODRA indexing

In general, an index can be considered a two–column table, where the first

column consists of unique key values and the other one holds non-key values,

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 19:15:55

UM
CS

CLIENT
PARSERquery

QUERY SYNTAX TREE

OPTIMISATION
BY REWRITING

INDEX
OPTIMISER

SEMI-STRONG
STATIC

EVALUATOR

STATIC
ENVS

STATIC
QRES

LOCAL
METABASE

1

2

3

INTERPRETER OF QUERIES
AND APPLICATIONS

ENVIRONMENT
STACK

QUERY
RESULT STACK

VOLATILE (NON-SHARED)
OBJECTS

SERVER
METABASE OF
PERSISTENT

OBJECTS

DATABASE C.R.U.D.
(Create, Read, Update, Delete)

REGISTER
OF VIEWS

INDEX
MANAGER

PROCESSING PERSISTENT
ABSTRACTIONS

(VIEWS, TRANSACTIONS,
PROCEDURES, METHODS)

PERSISTENT (SHARED) OBJECTS

COMMUNICATION

Fig. 1. ODRA optimization architecture

which in most cases are object references. Fig. 2 shows the example indices for

a given object–oriented database store.

Key values are used as an input for index search procedures. As a result, such

a procedure returns suitable non-key values from the same table row. Keys are

usually values of database objects specific attributes (dense indices) or represent

ranges of these values (range indices).

Key values can be also calculated with the use of expressions that can contain

build–in query language functions or user defined functions (function-based in-

dices [11]). This approach enables the administrator to create an index match-

ing exactly predicates within frequently occurring queries, so their evaluation

is faster and uses the minimal amount of I/O operations.

In query optimization indices are used in the context of a where operator,

when the left operand is indexed by key values of the right operand selection

predicates. Let us make an example using the database store structure pre-

sented in Fig. 2. If the administrator will set an index named

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 19:15:55

UM
CS

Fig. 2. Example of dense indices for a given object-oriented database store

For big databases, replacing the where clause evaluation with an index func-

tion call may cause performance gain even orders of magnitude. However, to

achieve this the database server should ensure index transparency and auto-

matic index updating.

4.1. Index Transparency.

In the common approach a programmer should not involve explicit operations

on indices into an application program. To make indexing transparent from the

point of view of a database application programmer, the database management

system should ensure two important functionalities index–based optimisation

and automatic index updating.

The first functionality means that indices are used automatically during query

evaluation. Therefore, the administrator of a database can freely establish new

indices and remove them without changing the codes of applications. The

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 19:15:55

UM
CS

responsibility in ensuring such transparency lies in query optimisation and par-

ticularly in the index optimiser.

The second functionality, i.e. an automatic index updating, is required due to

possible changes in a database. Indices, like all redundant structures, can lose

cohesion if a database is updated. An automatic mechanism should improve,

eliminate or generate a new index in the case of database updates.

This paper focuses on the first functionality, i.e. index optimisation, which

is the main topic of Section 6.

4.2. Index Classification.

The most common classification of indices distinguishes primary and sec-

ondary ones or dense and range ones. From the query optimizer point of view

the distinction between primary and secondary indices is less crucial because

it does not lead to significant differences in optimizer algorithms, whereas the

division into dense and range indices is essential:

• a dense index is applied when for each value in the object attributes a sepa-

rate position in an index is created, e.g. for a person objects index, where any

name occurring in the database can be a key–value,

• a range index means that index items concern values within a given range,

e.g. a range index for a salary attribute is a table where each index item de-

scribes a range of salaries: < 0 − 500), < 500 − 1000), < 1000 − 1500), . . . etc

(Table 1). Similarly, range index items for names can take the following form:

”names starting with a letter A”, ”names starting with a letter B”,. . ., ”names

starting with a letter Z”.

Table 1. Example range index for Employees objects according to Salary attribute

Indices can also be categorized according to physical data structures used

for index organization. The most important data structures for implementing

indices are the following:

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 19:15:55

UM
CS

• indices with hash coding,

• indices based on B–tree (a balanced tree),

• bitmap indices.

4.3. Features of ODRA indices.

Currently the implementation supports indices based on Linear Hashing [12]

which can be easily extended to its distributed version SDDS [13] in order

to optimally utilize data grid computational resources. Nevertheless, there

is a wide range of different index structures that could be used in indexing

in object–oriented databases similarly to those in the solutions occurring in

relational ones [11, 1, 14, 15]: B–Trees, bitmap indices, etc.

An extended idea of an ODRA index works with multiple key indices. Addi-

tionally to the key types mentioned earlier (dense and range) enum type was

introduced to improve multiple key indexing (among other things). Moreover,

thanks to properties of the SBQL language, i.e. orthogonality and composition-

ality, the implemented solution provides generic support for variety of index

definitions including usage of complex expressions with polymorphic methods

and aggregate operators.

ODRA supports local indexing which ensures index transparency by provid-

ing a mechanism (optimization framework) to automatically utilize an index

before query runtime evaluation and therefore to take the advantage of indices.

ODRA C.R.U.D. (Create, Read, Update and Delete) is also equipped with trig-

gers to ensure automatic index updating so existing indices are consistent with

the database state.

5. Index Management

All indices existing in a database are registered and managed by the ODRA

index manager. The list of all indices and auxiliary information needed by

the index optimizer are stored inside a special admin module. Each index is

associated with a module where it was created and its name has to be unique.

Therefore, the index manager checks whether a given index exists in the list

of references to meta-base objects describing indices using the combination of

a module name and an index name: ”modulename.indexname”.

5.1. Example Schema.

The schema in Fig. 3 is introduced to exemplify the usage of indices.

The example schema illustrates personnel records of a company. It introduces

several classes PersonClass, StudentClass, EmpClass, EmpStudentClass and

two structure types DeptType and AddressType. Persistent instances of the

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 19:15:55

UM
CS

Fig. 3. Example object–oriented schema

classes mentioned above can be accessed using their instance names Person,

Student, Emp and finally EmpStudent. The objects called Dept have DeptType

structure with a primary attribute name and represent departments of the

company. Each Person object stands for a person somehow connected with

the company. Its attributes provide some basic information. Additionally, each

Dept and Person object includes an address subobject which specifies data

according to the AddressType structure. Instances of the EmpClass represent

current employees of the company and extend Person object attributes with

the salary attribute. Emp and Dept objects are associated with pointer objects

named worksIn and employs. Another class, which extends the PersonClass, is

the StudentClass. This class introduces the scholarship attribute. The last class

presented in the schema is called EmpStudentClass and inherits from EmpClass

and StudentClass. It is introduced to represent students who are simultaneously

employees of the company. Using Person in an SBQL query results in returning

all instances of the PersonClass class and its subclasses. Similarly, via Emp the

programmer refers both to EmpClass and EmpStudentClass instances.

Beside attributes, classes comprise methods. Taking advantage of the poly-

morphism some methods are overridden in derived subclasses. E.g. getTotal-

Incomes() method of EmpClass returns the value of a salary attribute, but

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 19:15:55

UM
CS

for instances of the EmpStudentClass it returns sum of salary and scholarship

attributes.

5.2. Index Types.

The syntax for creating index allows the administrator to specify general

index key properties, i.e. concerning key values or the goal of optimization.

These are achieved by introducing optional type indicators: dense, range and

enum.

The dense indicator implies that the optimization of queries which use the

given key as a condition will be applied only for selection predicates based on ’=’

or in operators. Therefore the distribution of indexed objects in index (e.g. in

hash table) can be more random. The order of key values has no significance for

indexing. The dense indicator is always used for reference values (regardless of

an indicator set by the administrator). Moreover, it is the default type indicator

for integer, string, double or reference key values.

The range indicator implies that optimized selection predicates will be based

not only on ’=’ or in operators but also on range operators: ’>’, ’≥’, ’<’ and

’≤’. Within an index a hash function groups objects according to key value

ranges. In the current implementation, ranges are dynamically split because

each range is associated with an individual bucket of a linear hash map.

The idxDeptSalary index returns references to departments according to

a value (or a value range) of a sum of department employees salaries. Its ad-

vantage is avoiding calculation of a complex selection predicate multiple times

because it is already calculated during index creation. On the other hand, the

maintenance of the idxDeptSalary index is very expensive and can cause serious

deterioration during database updating.

The enum indicator is introduced in order to take the advantage of keys with

a countable limited set of distinct values, i.e. keys with low values cardinality.

The performance of an index can be strongly deteriorated if key values have

low cardinality e.g. person eye colour, marriage status (Boolean value) or the

year of birth. Using the enum key type index internally stores all possible key

values (or range for integer values) and uses this information to optimize the

index structure.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 19:15:55

UM
CS

The enum key type can deal with optimizing selection predicates exactly as in

the case of the range indicator, i.e. for: ’=’, in, ’>’, ’≥’, ’<’ and ’≤’ operators.

Another important property of enum keys occurring when index is set on

multiple keys is that the optimizer can omit them if necessary during opti-

mization of queries. If enum is set on all index keys and the number of indexed

objects is large then index call evaluation should prove great efficiency (each key

value combination points to a separate object references array called bucket)

Other examples of creating indices commands are as follows:

The enum index which returns Person objects queried by a zip attribute of

its subobject address. It is important to note that a zip attribute is optional

and therefore this index stores only Person objects containing this attribute.

The index returns Person objects according to the value of expression 2009

– age. It is assumed that this index is capable of processing range queries.

The dense index uses the Emp class method getTotalIncomes() as a key for

selecting Emp objects. This method is overridden for instances of the EmpStu-

dent class.

The only action required from the administrator in order to take advantage

of indexing is creation of proper indices since the rest of optimization is trans-

parent for programmers. The next section describes the rules used by the Index

Optimizer.

6. Query Optimization

In ODRA the use of indices is entirely transparent for an application code.

The programmer may be aware or not of existence of indices, but the code does

not depend on it. The index optimizer automatically applies all possible indices

during query compilation process.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 19:15:55

UM
CS

Besides this possibility, a user can also use indices explicitly. This feature

is introduced for testing purposes in order to check semantic equivalence of

introduced index optimizations and research into new possibilities in indexing.

In the following we briefly describe ODRA indices optimization engine module

used for query optimization based on indices.

6.1. Index Usage Syntax.

From the SBQL syntax point of view an index invocation is simply a proce-

dure invocation:

The number of parameters is equal to the number of index keys. Each key

parameter defines a desirable value of a key. An index function call returns

references to objects matching specified criteria.

A key parameter expression can define a single value as a criterion. In that

case its evaluation should return integer, double, string, reference or Boolean

value or reference to such a value. Below we present an example calls for the

sample index idxDeptName:

A single value key parameter can be passed through a value of a binder named

”$equal”. Binders are used to increase readability and to make introducing new

types of parameters for index calls easier.

To specify a range as a key value criterion parameter, an expression should

return a structure consisting of four parameters:

(< lower−limit >,< upper−limit >,< lower−closed >,< upper−closed >)

where:

• < lower−limit > and < upper−limit > are key values specifying range,

• < lower−closed > is a Boolean value indicating whether < lower−limit >

belongs to a criterion range,

• < upper−closed > is a Boolean value indicating whether < upper−limit >

belongs to a criterion range.

Examples of index calls:

The last example returns references to persons whose year of birth is below

the average of all the persons from the database. Like in the case of single

value key parameters, parameters specifying a range are passed using the value

of a binder named ”$range”.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 19:15:55

UM
CS

A key parameter can specify also collection of single key values as a criterion.

This is done when a key parameter returns a bag of key values.

The binder named ”$in” is used to pass a collection of key values.

If a criterion parameter returns an empty bag then the index call returns an

empty bag too.

6.2. Transparent Index–based Optimization.

The mechanism responsible for index transparency during query evaluation

is called the index optimizer. Its function is to replace a part of a query with

an index call in order to minimize amount of data processed.

This section describes general rules used in solving the problem of seman-

tic equivalence of queries rewritten by the index optimizer and original input

queries. Most of the following rules concern optimizing range queries. The in-

dex optimizer analyzing the right operand of a where non–algebraic operator

takes into consideration all selection predicates joined with conjunction (and)

or disjunction (or) operators.

6.2.1. Optimization procedure.

The basic index optimizer procedure works on selective queries where left side

of the where operator is < objectexpression > indexed by one or more indices.

The algorithm analyses all selection predicates joined with and operators and

tries to find an index that keys matches the predicates. If more than one index

is found, the optimizer selects one with the best selectivity.

6.2.2. Semantic Equivalence Issue in Optimization Involving Optional Keys.

Firstly, let us to consider how [0..1] key cardinality affects optimization. Us-

ing criteria with the discussed cardinalities may cause runtime errors because

selection predicates based on ’=’, ’>’, ’≥’, ’<’ and ’≤’ operators force using

single values as left and right operands. An unexpected number of operand

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 19:15:55

UM
CS

values causes a runtime error. Using an index call in optimization with those

predicates would eliminate threat of error and therefore optimized query would

not be semantically equivalent to the original. In these cases the optimization is

allowed only if in operator is used as a predicate because it does not constrain

the cardinality of a right operand.

The example of an unsafe predicate evaluation that may cause a run–time

error (left side of selection predicate has cardinality [0..1] due to zip attribute)

is presented below:

To avoid the possibility of a run–time error the ”safe” in operator should be

used:

In the discussed case the index optimizer supports optimization when predi-

cates are defined using ’=’, ’>’, ’≥’, ’<’ and ’≤’ operators and only if a proper

exists predicate is used.

The example of safe predicate evaluation when ’=’ operator is used can be

as follows:

Only in the case of two previous examples of queries the Index Optimizer can

apply the following query transformation:

The minimal cardinality of a key equal to zero indicates that the index may

not contain references to all objects defined by an index < object−expression >.

In the case of multiple key index, if such a key is omitted in selection predicates,

it is possible that evaluation of the where operator may return references to

the objects that are not stored inside the index. Therefore, the index optimizer

would not apply optimization using such an index. To sum up, keys with the

minimal cardinality equal to zero are obligatory even if they are declared with

enum type indicator.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 19:15:55

UM
CS

6.2.3. Keys with Plural Cardinality.

Currently the maximum cardinality of keys greater than one is not supported

by the ODRA indices. However theoretically it would imply that an index

call may return the same object reference more than onece. To prevent such

problems in the future, the index optimizer uses the uniqueref operator to

remove redundant object references.

6.2.4. Aspects of Range Predicates Optimization.

If optimized query selection predicates specify only one limit of a range (lower

or upper) then the second limit is generated automatically i.e. a possible small-

est or biggest value for a given key. For example, the following query concerns

the departments located in the Warsaw city whose employees together earn less

than the best paid employee of the whole company.

Original query:

Optimized query:

If there are more than one predicate or two opposite predicates describing

the range on a given key then min, max, union and comparison expressions

are used to obtain a correct key range parameter.

Original query:

Optimized query:

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 19:15:55

UM
CS

6.2.5. Avoiding Unnecessary Index Calls.

In some cases, the index optimizer can use if then expression to predict

whether a given query returns no result (and calling the index is unnecessary)

i.e. if selection predicates are in contradiction. This is to be checked e.g. when

for a given key there exists more than one selection predicate and at least one is

based on ’=’ or in operator. If any of these selection predicates contradicts with

a predicate based on ’=’ or in operator then such a query returns an empty

bag:

Original query:

Optimized query:

This procedure is used also when the key cardinality is different from [1..1],

i.e. in the case of two or more selection predicates based on in operator.

6.2.6. Omitting Individual Index Keys.

For multiple keys indices, enum keys may be usually omitted in an index

call. The index optimizer, in order to omit a key when no selection predicates

were specified, sets both lower and upper bounds to the smallest and largest

key values: Original query:

Optimized query:

To omit the Boolean key in an index call, set key parameter criteria are used

(false union true). Original query:

Optimized query:

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 19:15:55

UM
CS

6.2.7. Predicates Disjunction and Considering Inheritance.

The index optimizer is also prepared to deal with queries where selection

predicates are joined with or operators. As disjunction weakens a selection,

it also makes optimization more complex. Therefore if the application of an

index is possible without considering predicates joined with or operator then

the optimizer may skip deeper analysis. In another case, in order to check all

possibilities for indexing, the optimizer removes or operator and splits non–

algebraic where operator expression on two partial selection expressions. The

objects returned by both these expressions can be duplicated so it is necessary

to leave only distinct object references which is achieved using a uniqueref

expression. Indexing reduces the amount of data processed in a query only if

it can be applied to both partial expressions. This procedure is recursive if

there is more than one or operator. Let us consider the following example of

optimization:

The query can be split by the index optimizer into the following form:

and depending on a current cost model and existing indices, the optimizer

can apply the transformation:

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 19:15:55

UM
CS

Selection predicates based on age, married and address.city expressions con-

cern EmpClass’s superclass, i.e. PersonClass, and for that reason the admin-

istrator can equip the whole Person collection with the idxPerAge&Mar&City

index. It can return instances that do not belong to EmpClass thus the op-

timizer has to introduce a facility removing non–EmpClass instances from the

index invocation result. This can be done using an SBQL coerce operator. The

syntax of the coerce operator was taken from the typical syntactic convention

that is known from the languages such as C, C++, Java, etc. as cast. Conse-

quently, the result of the idxPerAge&Mar&City index call is automatically cast

to Emp collection because the original query concerns only employees.

In the presented approach to reusing an index in inheritance, indices consid-

ering the class which introduces the given key are more versatile as they can be

used for optimising selection queries addressing subclasses collections.

7. Optimization Gain

Let us discuss the following test example. If an index call is located on the

right side of a non–algebraic operator, e.g. a dot, then it is likely to be evaluated

more then once during the query execution. This is shown using the following

example with an idxEmpTotalIncomes index:

Query 1a. For 61 year old, married employees living in �Lódź, working in �Lódź or

Wroc�law retrieves a name concatenated with a surname and a number of employees

with an equal amount of total incomes

In Figs 4 and 5 the logarithmic scale is used also on the y–axis. The de-

pendency between the optimization gain and the number of persons is close to

linear and grows to 457 for 300000 objects.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 19:15:55

UM
CS

Fig. 4. Evaluation times and optimization gain for Query 1a

Additionally, introducing another index – idxEmpAge&WorkCity – in order

to optimise evaluation of the first part of the query can significantly influence

the performance:

Query 1b.

For a database consisting of 300000 person objects two indices give the gain

approximately 40 times greater. Despite such difference, the most important is

an index repeatedly invoked, i.e. idxEmpTotalIncomes. Without this index the

performance is not noticeably improved.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 19:15:55

UM
CS

Fig. 5. Indices optimization gain for Query 1

8. Conclusion and Future Work

In the paper the rules concerning creating and taking advantage of indices in

the ODRA prototype have been briefly described. In the presented approach

the optimization is achieved through the described query transformation. The

proposed implementation of indexing in ODRA enables creation and transpar-

ent automatic maintenance of indices facilitating processing of selection pred-

icates based on arbitrary deterministic expressions consisting of path expres-

sions, aggregate functions, class method invocations (taking into consideration

inheritance and polymorphism). All functionalities necessary to provide the

desired behaviour of indices are already implemented and functional. Still, the

ODRA indexing is under development and requires further research. Future

works include employing different index structures (e.g. B-Trees) and imple-

menting new optimization methods taking advantage of indices (e.g. optimisa-

tion of rank queries). Additionally we consider extending indexing capabilities

onto distributed environment using the SDDS method and currently developed

volatile indexing technique.

References

[1] Elmasri R. and Navathe S. B., Fundamentals of Database Systems 4th ed., Pearson Edu-

cation, Inc. 2004, ISBN: 83–7361–716–7.

[2] SBA & SBQL Web pages: http://www.sbql.pl/

[3] Subieta K., Theory and Construction of Object-Oriented Query Languages (in Polish),

PJIIT - Publishing House, 2004, 522.

[4] VERSANT Database Fundamentals Manual, (Release 7.0.1.0) July 2005.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 19:15:55

UM
CS

[5] Java API User Guide ObjectStore, Release 7.1 for all platforms, August 2008.

[6] Objectivity for Java Programmer’s Guide, Release 9.3, October 13, 2006.

[7] GemStone Systems, Inc. www.gemstone.com

[8] Meier D., Stein J., Indexing in an object-oriented DBMS, Proceedings of the OODBS,

IEEE Computer Society Press (1986) 171.

[9] P�lodzień J., Optimization Methods In Object Query Languages, PhD Thesis. IPIPAN,

Warszawa 2000.

[10] P�lodzień J., Kraken A., Object Query Optimization in the Stack-Based Approach, Proc.

of 3rd ADBIS Conf., Maribor, Slovenia, 1999, 303, Springer LNCS 1691.

[11] Burleson D., Turbocharge SQL with advanced Oracle9i indexing, March 26, 2002,

http://www.dba–oracle.com/art−9i−indexing.htm

[12] Litwin W., Linear Hashing: a new tool for file and tables addressing, Reprinted from

VLDB-80 in READINGS IN DATABASES. 2-nd ed, Morgan Kaufmann Publishers, Inc.,

1994 Stonebraker , M.(Ed.).

[13] Litwin W., Nejmat M. A., Schneider D. A., LH∗: Scalable, Distributed Database System,

ACM Trans. Database Syst. 21(4) (1996) 480.

[14] O’Neil P.E., Quasi D., Improved Query Performance with Variant Indexes, Proceedings

of SIGMOD (1997) 38.

[15] Oracle9i Data Warehousing Guide Release 2 (9.2). Part Number A96520-01.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 06/02/2026 19:15:55

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

