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Abstract

The article is devoted to analysing the approximate absolute and approximate relative
controllability of a given type second order infinite dimensional system. The considered dynamical
system is governed by the evolution equation with three damping terms and three terms without
derivatives. Following this aim, spectral theory for linear unbounded operators is involved. At first
the representation of considered infinite dimensional dynamical system by the infinite series of
finite dimensional systems is given. Next, two theorems on necessary and sufficient conditions of
approximate absolute and approximate relative controllability of the considered system are
formulated and proved. Finally, proven theorems are applied to the analysis of the elastic beam.

1. Problem statement

Let us consider the dynamical system described by the following abstract
differential equation:
1

2 1
d xz(t) +2| oy + A+ a,A? (D)
dt dt

+ ﬂ0+ﬂ1A+ﬂ2AE x(t)

(1)
M
=Y Bu(t-h,), t>0
k=0
with the initial conditions:
x(0)=x, €e D(4), x(0)=x, € X, )
where x(f) € X (Xis a Hilbert space) and &, 20, >0, i=0,1,2 are the real

constant coefficients, B, are n x p dimensional constant matrices. The constant
delays 4 fulfils:
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O=hy<h<..<h <..<h,. (3)
The controls u € L} ([t,,),R") . Furthermore, it is assumed that
A:X D D(A) > X is a linear, generally unbounded, selfadjoint and positive-

definite operator with domain D(4) dense in X and compact resolvent R(A,4) for
all A in the resolvent set p(4) (assumption 1).

The physical interpretation of equation (1) encompasses a broad class of real
systems in this form and depends on a particular form of the 4 operator and of
the coefficients ¢; and g, i = 0,1,2.

It is well known that the operator 4 has the following spectral properties
[1-4]:

— Operator 4 has only a purely discrete point spectrum consisting entirely of

distinct real positive eigenvalues A; each with finite multiplicity m;
(m; <o)
O<A <A <..<A <A

i+1

<o limA =oo @)

i—©
— The eigenfunctions of operator 4 {¢ij,i =1,23,...,j :1,2,...,mi} form
complete orthogonal system in Hilbert space X and after ortogonalization

form complete orthonormal system in Hilbert space X. Hence, for every
x € X the following unique expansion holds true:

x:ii<x,¢if >y @ s ®))
i=l j=1
— Operator A has the following s]pectral resolution:
XEDv(A)szgiﬂi<x,¢ij >y & (6)
D(A):{xeX:iizf\q,% >X‘2<oo}. (7)
i=l j=1
— The fractional power of operatorjA is defined as follows:
o A= zzﬂ <% >0 4 ®)
D(Aﬂ)={xeX:ii/1i2ﬂ‘<x,¢ij > [ <oo}. ©)
i=1 j=1

— Operator A%, 0 < A< 1 is also selfadjoint and positive-definite with domain
D(4”) dense in X.
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2. The transformation of the state equation

Using the spectral resolution of the state operator 4 and its properties (4)-(9)
we can transform the infinite dimensional dynamical system, given by the
abstract differential equation (1), into equivalent form of the infinite series of the
finite dimensional second order linear dynamical systems with constant
coefficients of the following form [5]:

2
4%, (0) +diag[aj...aj]MJrdiag[ﬂi*...ﬂj]x,.(t)
dt dt
v (10)
=Y Buu(t-h), i=123,..
=0
where B; is the following matrix [5]:
[ <bu.dy >y ... <by.By >y o <b.dy >y 1
By =| <bu.y >x o <by.By>x . <by.d, >x | i=123,. (1)
_< bkl’¢im[ >X <bklz ’¢im[ >X <bkp’¢im[ >X_
and x,(¢) is a vector given by the equality (12):
T
5O =[x - %O - x5, 0], (12)

where x;(f) denotes the (i/)™ coefficient of the Fourier series of spectral
representation for the element x in the state space X. The coefficients are
explicitly given by the inner product between element in the state space X and
the appropriate eigenfunctions ¢; of the operator A:
x; () =<x(t),4; >y i=123,... j=12,.,m, (13)
Additionally, in the series of the equations (10) there exist constant
coefficients al.* and ,Bl.*, which are defined by the equalities (14) and (15) [5]
pp-295:

a;=2(a0+061/1i+062\/7i) i=12,3,.. (14)
ﬂi*:ﬂo+ﬂ1/1i+ﬂ2\/7i i=123,.. (15)

Basing on the infinite series of the equations (10) we can transform given
system (1) to the more convenient form in the control theory, namely the form of
infinite series of the set of first order finite-dimensional ordinary finite
dimensional differential equations with constant coefficients (16) as follows [5]:
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M
& (D=4 ¢, 0+ Bu(t—hy), i=123,.. (16)
k=0

where the state vector is given by the equality (17) [5]:

T
6 O=[&0O m©O ~ &GO wO o & O @ O], i=123. (17
and the state matrix 4; and the input matrix B; have form (18), (19) respectively

[5]: ) )
0 1 - 0 0 - 0 0
_ﬂi* _al_* e 0 0O - 0 0
0 0 - 0 1 - 0 0

4 = " . i=123,.. (18)

0 0 - -f -a - 0 0
0 o - 0 o - 0 1

0 0O - 0 0 .- _ﬂi* _ai*_

i 0 0 0 T

(basdn)y <bklz>¢il>X <bkp>¢i1>X

0 0 0

- [0 o
By = <bk1’¢’7| >X <bk12’¢i11>x <bkp’¢il| >X _[bk;‘lz:|2m,.xp i=123,. (19)
I T

_<bk1’¢im,- >X <bk12 ’¢iml- >X T <bkp’¢im,- >X_
The variables &, (¢), 4, () are defined by formula (20) as follows [5]:

{@m=%m

=123, j=12,m,
/’ll‘j(t):xij(t)

i

(20)

3. The Jordan decomposition of the state matrix

The Jordan decomposition of the state matrix (18) is investigated in paper [5]
and now let us recall the results. This matrix has two distinct eigenvalues s;1, s
each with the same multiplicity m; [5] pp.297:

2 2 2

S =

e2y)
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Depending on the particular values of the coefficients ¢; >0, £ >0, i=0,1,2
the Jordan’s canonical forms J(4,) and the transition matrices 7(4;) have the

following forms, respectively [5]:
*2

3.1.Case 1: 8 =0, B i% (22)
J(A) =diag[s, .5, Sy 5] i=12.3,..., (23)
0 0 - 0 2 0 0 - 0 S"ﬂ
B; B;
0 0 0O 1 0 0 - 0 1
0 0 a9 9 o ... Z1o
B b
0 0 1 0 0 0 10
T(4)=| i & i i i =123, (24)
0 2 0o 0 o 0 0
B, B;
0O 1 - 0 0 0 1 0 0
iz 0 0 2L o 0 0
B; B;
10 0 0 1 0 « 0 0]
m; —times m; —times
3.2.Case2: B =0, #0 (25)
J(A4)=diag [0..0 —a; ...—a;] i=12,3,.., (26)
—_— J

m; —times m; —times
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_ .
0 0 0 1 0 0 0 —-—
a;
0 0 00 O 0 0 1
0 0 1 0 O 0 - 1* 0
a;
0 0 00 O 0 1 0
T(4)=|: + .. : : : : : i=1,23,... (27)
0 1 00 0 - 1* 0 0
@;
0 0 00 O 1 0 0
1 0 0 0 - 1* 0 0 0
Q;
10 0 0 0 1 0 0 0 |
2m; —times
a’
3.3. Case 3: @*:T',a,.* #0 (28)
o 4
J(4)=diag|| 2 ]2 | i=n23. @)
0 % 0 %
2 2
m; —times
0 0 -
a; f
0 0 1 0
T(4)=| : : : : i=12,3,.. (30)
- 2* - 412 O 0
a; i
! 0 0 0 |
2m; —times
34.Cased: o, =3 =0 (31)
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i 0 1 01 .
J(4)= lagHO O} [O OH i=1,2,3,.. (32)
' m; —times ,
[0 0 1 0]
0 0 1
T(A)=|: : . : | i=123,. (33)
0 0 0
01 -~ 0 0]
2m; —times

Obviously the following identity holds true for all the Jordan’s decomposition

cases:
A =T(A4)-J(4)- T (4) i=12,3,..

(34

Now let us verify whether the operator 4; (18) is the infinitesimal generator of
an analytic semigroup. Following this aim let us calculate some auxiliary limits.
By the assumptions ¢; >0, £ >0, i =0,1,2, formulas (14), (15) and the property

of the state operator (4) it can be stated that ((35), (36)):

limRe[ai* +,/a72 —4,8; } # —00

i—0

i—0 i—0

W oag

Moreover, from these assumptions and (14), (15) we have (37):

* > * > * *2 _ * >
i=1,¥,l3,,..ai >0, 8 =0, Re[al. +ya,  —4p J_O.

Now based on (35)-(37) we can calculate (38), (39):

o — 2 *
hmRe[Sn]:limRe\/ % m:

2

\/—lim(a: +,/a;2 —4[7’;)
=Re

i—00
2

_ * *2_ *
1imRe[si2]:1imRe\/ I e/

. _
\/—hm(a;‘ —Je” —4@*)
=Re

i—00
2

i—0 i—0

<0

i—0 i—0

<0

* * * . 4 *
limRe[ai +,/a[2 -4 }zhmRe[ - i/ ];t—oo.
a;, +

(35)

(36)

(37

(38)

(39)
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so the operator 4; (18) is the infinitesimal generator of an analytic semigroup.

4. Basic notions

Following the aim of analyzing the approximate controllability of infinite
dimensional system with delays (1) at first let us present this notion in the case
of finite dimensional systems. At first let us consider the linear stationary
dynamical system, described by the differential equation without delays in
control [6] pp.5:

x(t) = Ayx(¢t)+ Byu(t), t=0 (40)

4.1. Definition 4.1 [6]

The dynamical system (40) is said to be controllable, if and only if there
exists such a control u(?), which will transfer the system from any given initial
state to any final state in the control space in the finite time.

4.2. Theorem 4.2 [6] pp.16, [7] pp.70

The dynamical system (40) is controllable if and only if condition (41) holds
true:

rank| B, | 4B, | 43B, |...| 4B, |=n (41)

Now let us consider linear stationary dynamical system, described by the
differential equation with delays in control (42) [6] pp.196:

M
() = Ayx(t)+ Y Byu(t—h), 120 (42)
k=0

where A4, By are the constant matrices with dimensions respectively nxn, nxp.
For the dynamical system of form (42) besides the instantaneous state
x(f) € R", we introduce also the notion of the so-called complete state at time

t, z(t) ={x(t),u,(s)} , where u,(s)=u(s) for se [t—hM,t] [15]. Therefore we

distinguish two basic notions of controllability for dynamical systems (42),
namely: relative controllability and absolute controllability [6] pp.195.
Definitions 4.3 and 4.4 taken from position [6] pp.195 are adapted to the
dynamical system (42) i.e. with multiple, lumped time-invariant delays in
control.

4.3. Definition 4.3 [6] pp.195

Dynamical system (42) is said to be relatively controllable in [f,¢ ], if for any
initial complete state z(4) and any vector x; € R”, there exists a control
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ueLz([tO,tl],R” ) such that the corresponding trajectory x(7,z(¢,),u) of

dynamical system (42) satisfies the following condition (43):
x(tl,z(to),u) =X,. (43)

4.4. Definition 4.4 [6] pp.195

Dynamical system (42) is said to be absolutely controllable in [#y,t], if for
any initial complete state z(f), any vector x; € R" and an arbitrary function
we I’ ([O,hM],R”) there exists a control u e I’ ([to,hM],R”) such that the
complete state at time #; of dynamical system (42) satisfies the following
condition (44):

z(1) ={x, w}. (44)

There are some known theorems for verifying the relative and absolute
controllability of linear time varying systems with delays and control. Let us

present two main theorems adapted to the stationary dynamical system of the
form (42).

4.5. Theorem 4.5 [6] pp.202

Dynamical system (42) is relatively controllable in [f.¢], if and only if the
dynamical system without delays in control, of the form

(1) = Ayx(t) + Byw(t), te[ty.t] (45)
where
B=| By | By || Byyyy s t€[tost)], we R (46)

is controllable in [z, +A,_,1,].

4.6. Theorem 4.6 [6] pp.207

Dynamical system (42) is absolutely controllable in [f,#] if and only if the
dynamical system without delays in control, of the form

() = Ayx(t) + Byu(t), te[ty.t,], (47)
where
R M
By=>e "B, (48)
k=0

is controllable in [7,,t, —h,,].
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5. Approximate controllability analysis

Both theorems 4.5 and 4.6 base on the transformation of the system with
delays in controls into the corresponding system without delays in controls. It
can be noticed that that the state matrix in the corresponding systems (45) and
(47) remains the same as in the investigated system with delays in controls (42).
Let us return to the considered in this paper second order infinite dimensional
dynamical system (1) in the form of the series (16). We will analyze its
approximate relative and approximate absolute controllability by theorems 4.5
and 4.6, so the system series (16) in both the corresponding forms (45) and (47)
has the same state matrices 4; like in the system (16). In point 3 we recalled the
Jordan decomposition of the state matrices 4;. This form is very convenient for
testing the controllability of a given dynamical system-involves only calculating
the 77'B, term, instead of calculating the n—1 terms of the form 4'B, in the

block matrix (41) necessary in case of using theorem 4.2. The general conditions
of the controllability for the stationary, linear, finite dimensional without delays
in the control dynamical system in the Jordan canonical form have been
formulated by C.T.Chen in Chapter 5.5 of work [8] and have been recalled in
paper [6] by theorem 1.5.1. In the next subchapters we use theorems 4.5 and 4.6
and the Chen’s theorem to find the conditions of approximate absolute and
approximate relative controllability of a given system (1).

5.1. Theorem 5.1

Dynamical system (1) is approximately absolute controllable at any time if
and only if the infinite series of equalities (49) is fulfilled:

rankf: e B =m,
o i=1,23,.. (49)
rankz e B =m,
k=0
where B; is given by (11).
Proof of the absolute controllability
The proof will be given as an example for case 1 of the Jordan decomposition
(paragraph 3.1). We will prove the conditions of the absolute controllability of
system (1) in the form of series (16) by the theorem 4.6 and mentioned Chen’s

theorem [6] pp. 25. At first let us calculate the matrix B for the system (16):
M

M
B,=Y e "B, =>"Te "I'B,, i=123,... (50)
k=0 k=0
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The key role in the Chen’s theorem plays the Tl._lf?i term. The inverse matrix

7" is calculated in work [5] pp. 300, so from (50) we have:

1

M
15 _ Ty =l _
I, B; e "I By =
k=0
e Sl 0 0 0 o o 7
. _ﬂl Sil
1 i 0 e o 0 |- s 00|, _
= =
Si=Snfml 0 0 e .0 0 0 B sy
0 - 0 0 ... Sl B s o 0 0 |
= - ~ 2m, —times
2m; —times
i —syh —sih )
0 0 e =BT g e
M —sph —s;1h,
B 1 _ﬂl_e Si1le s;1€ Sifh 0 0 3
- — ~58;2h —Sioh ik
Si1 S 63 0 0 e Bt et
: . . . . . (51)
ﬂie_S,zhk —Size_s"zh" 0 0
2m; —times

Considering that the odd rows in the series of the matrices B, (19) are zero
from (51) we have directly (52):

N A0) —sihy ()]

Sile ' bknl Sile ' bknp
M =iy 1 (i) . =iy 1 (0)
B - 1 spe by, sae by, (52)

i i R _ *Sizhkb(") e *Siz”kb(f)
il 792 k=0| —5;2€ nl Si2€ fnp
_ —Siahy 7.(7) e =iy 1, (i)

| ~Sin€ b Si2€ kap_

Now let us return to the verification of the controllability of dynamical
system (1) in the form (16). Applying the Chen’s theorem to it, based on formula
(52), considered system (16) presented in the corresponding form without delays
(47) with the input matrix Bi (given by (50)) is approximately controllable if

and only if series (53), (54) are fulfilled:
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| Sile_s'lhk b]f;)l v Sile_snhk blgr;]
rank Z : : =m,, i=1,2,3,.. (53)
i %2 k=0 ~suhy 1,(0) —suhy 7,(0)
spe by e sye kkap
—Sioly 7.() —Sioly 7.()
| Sine Dt Sne by,
rank Z : : =m;, i=1,2,3,.. (54)
S, =,
il i2 k=0 _ i _ 5
Sir€ sl bl(clz)l o Spe P bIEtIZ)p

Division of matrix (52) into two series of rank conditions (53), (54) follows
from the mentioned Chen’s theorem and the Jordan decomposition of the state
matrices 4; (18) in case 1 (point 3.1, equation (23)): we have two Jordan blocks
corresponding to two different eigenvalues s, s» (21). By the basic linear
algebra rules from (53) we have (55):

rankisile_s"h" (B; ) =m;, i=1273,.., (55)
k=0

where (B;)' matrices can be obtained from the input matrices B; (11) by

reversing the order of the rows. By this notice from (53)-(55) we directly have
the condition from the thesis of proving theorem 5.1 (49).

The Chen’s theorem gives the conditions for controllability of time-invariant
system of the Jordan form, but in theorems 4.5 and 4.6 we have controllability in
closed time ranges. But by Lemma 1.4.1 from the work [6] pp. 16 for the time-
invariant systems the notions of the controllability in a closed time range and the
controllability at any time are equivalent.

The pProof in the remaining cases 2-4 goes similarly and detailed calculations
will be omitted. A special attention should be paid to cases 3 and 4 because they
correspond to two-dimensional Jordan blocks with ones above the main diagonal
in the Jordan decomposition of the state matrices, presented in points 3.3 and 3.4
(formulas (29) and (32)).

O.E.D

5.2. Theorem 5.2

Dynamical system (1) is approximately relatively controllable if and only if
the infinite series of equalities (56) are fulfilled:

rank| By |=m,, i=123,..., (56)
where Bj; is given by (11).



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 06:34:58

Controllability of second order infinite dimensional dynamical ... 145

Proof of the relative controllability
The proof will also be given for an example for case 1 of the Jordan
decomposition (paragraph 3.1). The proof bases on theorem 4.5 and the Chen’s

theorem [6] pp. 25. The Tlfléi term can be easily calculated (57):
1 Sit |:(B[O) }
St~ 5 —Si2 [(Bz*o) }

where (B;)' matrices can be obtained from the input matrices B; (11) by

T7'B =T7"[B,]= i=1,2,3,.., (57)

reversing the order of the rows, and the matrix B, is given by (19). From (57)

and the mentioned Chen’s theorem there directly follows the series of equalities
(56) for the approximate relative controllability in the range [#y,#]. Also here by
Lemma 1.4.1 from work [6] pp. 16 for the time-invariant systems the notions of
the controllability in a closed time range and the controllability at any time are
equivalent. The proof in the remaining cases 2-4 also proceed similarly. Notice
from the proof of the absolute controllability pertaining to cases 3 and 4 holds
true in the relative controllability.

Q.E.D.

6. Mechanical example

Let us consider a mechanical system described by the following linear partial
differential equation:

o*x(z,t) 0*x(z,t) .Ox(z,t) | &x(z,t) ,3*x(z1)
S+ T t2——-6——-3 =
ot Oz 0z ot 0z~ 0t 0z (58)
= zu, (£) + 2°u, (¢ = 1) + 2u, (£) + u, (t —1)
with initial conditions (59), (60):

x(z,0)=x,(z), ze€(0,L,), (59)
@ =x(z), ze<(0,L)) (60)

and boundary conditions:

0’x(0,¢)  9’x(Ly,t)
2 o2
The function x(z,?) is equal to the movement of the considered elastic beam in
the Y axis direction in the time moment >0 and in the point z ( 0<z<L,). The
first two terms in equation (58) are the only terms taken into account for the
ideally springy elastic beam. The next two terms are modelling the phenomenon
of the internal friction and the remaining fifth term represents the effect of axial

x(0,8) = x(Ly,£) = 0, t>0 (61)



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 06:34:58

146 Jerzy Respondek

force on the beam. The boundary conditions correspond to hinged ends of the
beam. More detailed description of these terms and the phenomenon they are
describe can be found in papers [4,9,10,11].

6.1. The definition of the state differential operator
Let us define the linear unbounded differential operator 4: D(4A)c H > H
[9,11] in the following way:
3*x(z)

Ax(z) 262—4’

xeD(4), (62)

d* d*
- (0)=—§(L0)=0}

4
D(A4) = {x(z) e Hy* ([0,Lg1,R) 'd—x(z) e I*([0,LoL.R), x(0)=x(Ly) = el y
A A

Cdzt
(63)
where H’ ([O,LO],R) denotes the fourth order Sobolev space defined in the
range [0,Lo].

It can be proved [9,11] that the eigenvalues 4; and the eigenfunctions ¢(z) of
the operator A have the form (64), (65):

4
i
A= — 1=1,2,3,... 64
: [Lj i (64)

0

2 . 7z
(z)= |—sin— i=1,2,3,... 65
,(2) ‘/LO I (65)

and the operator A4 is linear, self-adjoint and positively defined. Particularly it
can be defined by the following fractional power (8) of the operator 4 [9]:

1 2
0°x

A2x=-— e (66)

1 2
D(A?) = {x e Hy? ([0,Ly1.R): j—zx(z) e L’ ([0,L,],R) : x(0) = x(L,) = o} (67)
zZ

where Hg’z denotes the second order Sobolev space on the interval [0,L] and

D(A) < D(4"?).

6.2. The state equation
Applying operator 4 (62) to partial differential equation (58) with boundary
conditions (61) we obtain the following abstract, ordinary second order
differential equation with respect to ¢ in the Sobolev space H:
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2 1 1
d xgt) 2(A +34? j d);(;) {A +342 }C(t) = ZBku(t -h), t>0,(68)
k=0
where:
d* xz(t) dx(t) () eH (69)
dt
B,=[z 2] B = [23 1] (70)
hy=0, h =1 (71)

It is easy to see that equation (68) has form of the dynamical system (1) after
introduction of the following coefficients:

a, =0,

a =1,

az :3’ ﬁo :0’ ﬂl :19 ﬂz =3 (72)

6.3. The approximate absolute controllability analysis of the infinite dimensional

mechanical system

In this subchapter the analysis of the approximate absolute controllability of
given infinite dimensional dynamical system (58) will be performed. Also this
dynamical system will be represented by the infinite series of the finite
dimensional dynamical systems (16). These aims will be accomplished theorem

5.1. First, let us calculate the coefficients o and S on the basis of its
definitions (14), (15):

N4 N2
2| = sl B i=1,2.3,.., (73)
LO LO
N N2
¥/ 17
Ib)l [LOJ (LO] ( )

In theorem 5.1 there are needed the matrices B;. Considering (65), (70) we

have (75), (76):

2

L . L .
jzsinﬂdz 2jsinﬂdz, i=1,2,3,... (75)
Lo L, 0 L,
[ L, L, .
Iz sm—dz J.sin%dz}, i=12,3,.. (76)
L o 0 0

Let us look at the thesis of theorem 5.1. In the case of the operator (62), (63)
m; =1, so the rank in condition (49) is being testified on the 2-element horizontal
vector, and the conditions are fulfilled if and only if any of the vector elements is
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nonzero. Moreover, the e " ¢~ coefficients are nonzero. Now let us look

at the matrices B; (75), (76). By the Lemma 1 from work [5] pp. 312-313, the
I . Ly .
. . iz 3 . Tz .. ,
integrals j251nL—dz, J z smL—dz are positive. It’s also easy to check that
0 0 0
L(J .
. . iz . . .
the integral Ism—dz is  nonnegative. Thus in the sums
0 0
1 1
Ze_s"‘thik,Ze_s"zhk B, the non-negative and non-zero B, matrices are taken
k=0 k=0
into the linear combination with positive exponential coefficients obviously
giving non-zero vectors, so condition (49) is fulfilled.

6.4. The approximate relative controllability analysis of the infinite dimensional
mechanical system

Theorem 5.2 by (75) and the remarks from point 6.3 are fulfilled.

6.5. Summary of the mechanical example

The mechanical system (58) with conditions (59)-(61) is both aproximately
relative and absolute controllable at any time.

Conclusions

In the article we obtained general conditions of different types of
controllability for the infinite dimensional systems. It was possible thanks to
making the use of the Chen’s theorem. The obtained theorems of the
approximate controllability without constraints, with the cone type constraints,
and with delays in control hold true for the second order of the verified infinite
dimensional dynamical system. This is innovative outcome in the controllability
theory field.

Moreover, it should be pointed out that the presented methods can be easily
adapted to the analysis of other dynamical properties of the considered nth order
system, i.e. observability, attainability, stability and optimal control.

A possible way of further investigations can be the generalisation of the
presented results into the case of arbitrary eigenvalues multiplicities of the state
operator.
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