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Abstract 
Elementary particle physics experiments, searching for very rare processes require the efficient 

analysis and selection algorithms able to separate signal from the overwhelming background. In 
the last ten years a number of powerful kernel-based learning machines, like Support Vector 
Machines (SVM), have been developed. SVM approach to signal and background separation is 
based on building a separating hyperplane defined by the support vectors. The margin between 
them and the hyperplane is maximized. The extensions to a non-linear separation are performed by 
mapping the input vectors into a high dimensional space, in which data can be linearly separated. 
The use of kernel functions allows us to perform computations in a high dimension feature space 
without explicitly knowing a mapping function. 

We have implemented an SVM algorithm and integrated it with the CERN ROOT package, 
which is currently a standard analysis tool used by elementary particle physicists. We also used the 
implemented SVM package to identify hadronic decays of  leptons in the ATLAS experiment at 
LHC accelerator. The performance of the method is compared to the likelihood estimator, which 
does not take into account correlations between variables. The use of SVM significantly reduces 
the number of background events. 
 

1. Introduction 
In elementary particle physics the efficient analysis of a huge amount of 

collected data requires the use of sophisticated selection and analysis algorithms. 
Scientists taking part in all of the future LHC (Large Hadron Collider proton 
accelerator at CERN) experiments [1] are searching for new phenomena in 
physics (Higgs boson, new symmetries, additional dimensions), which are very 
rare processes, with a probability going down to even 10-13. The efficient search 
for such rare phenomena requires multivariate analysis tools capable of high 
level background suppression. 
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The reason for application of statistical learning multivariate methods is, in 
most cases, simply the lack of knowledge about the mathematical dependence of 
the quantity of interest on the relevant measured variables. Either there is no 
mathematical model at all and an exhaustive search is the only possibility to find 
the correct dependence, or the known models are insufficient and statistical 
learning provides a better description of data. These methods require a set of 
training data, which is typically supplied by the Monte Carlo simulation. 
 

2. Support Vector Machine 
In the early 1960s the linear support vector method was developed to 

construct separating hyperplanes for pattern recognition problems [2,3]. It took 
30 years until the method was generalized for constructing nonlinear separating 
functions [4,5] and for estimating real-valued functions (regression) [6]. At that 
moment it became a general purpose algorithm performing data classification 
and regression which can compete with neural networks. Typical applications of 
SVMs include text categorization, character recognition, bioinformatics and face 
detection.  

The main idea of the SVM approach is to build a separating hyperplane which 
maximizes the margin. The position of the hyperplane is defined by the subset of 
all training vectors called support vectors. The extension into non-linear SVM is 
performed by mapping input vectors into a high dimensional feature space in 
which data can be separated by a linear procedure using the optimal separating 
hyperplane. The use of the kernel functions eliminates the explicit 
transformation to the feature space and simplifies the computations. 
 

2.1. Linear Support Vector Machine 
A detailed description of SVM formalism can be found for example in [7], 

here only a brief introduction is given. Consider a simple two-class classifier 
with oriented hyperplanes. If the training data is linearly separable, then such a 
set of ( , )w b  pairs can be found that the following constraints are satisfied: 
 1 0i i iy x w b , (1) 
where xi are the input vectors, yi the desired outputs (yi= 1) and ( , )w b  define a 
hyperplane. The decision function of the classifier is ( ) ( )i if x sign x w b , 
which is +1 for all points on one side of the hyperplane and –1 for the points on 
the other side. Intuitively, the classifier with the largest margin will give better 
generalization. The margin for this linear classifier is just 2 / w . Hence, in order 
to maximize the margin, one needs to minimize the cost function W: 
 21 2W w , (2) 
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with the constraints from Eqn. 1. At this point it would be beneficial to consider 
the significance of different input vectors xi. The training data points lying on the 
margins, which are called the support vectors (SV), are the data that contribute 
to defining the decision boundary (see Fig. 1). If the other data are removed and 
the classifier is retrained on the remaining data, the training will result in the 
same decision boundary. To solve this constrained quadratic optimization 
problem, we first reformulate it in terms of a Lagrangian: 
 2, , 1 2 1i i i

i
L w b w y x w b , (3) 

where i 0 and the condition from Eqn. 1 must be fulfilled. 
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Fig. 1. Hyperplane classifier in two dimensions. Points x1, x2 and x3 define the margin,  
i.e. they are the support vectors 

 
Lagrangian L should be minimized with respect to w  and b and maximized 

with respect to . The solution has an expansion in terms of a subset of input 
vectors for which i 0 (these are the support vectors): 
 i i i

i
w y x , (3) 

since at extremum / 0L b  and / 0L w . The optimization problem 
becomes the one of finding the  which maximizes: 

 
,

1
2i i j i j i j

i i j
L y y x x . (4) 

2.2. Non-separable data 
The above algorithm can be extended to non-separable data. The correct 

classification constraints in Eqn. 1 are modified by adding a slack variable i to 
it ( i = 0 if the vector is properly classified, otherwise i is a distance to the 
decision hyperplane). 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 20/01/2026 03:45:27

UM
CS



Marcin Wolter, Andrzej Zem a  152

 1 0i i iy x w b          0i . (6) 
This allows some points to be misclassified. The training algorithm needs to 

minimize the cost function, i.e. a trade-off between the maximum margin and the 
classification error: 
 21 2 i

i
W w C . (7) 

The selection of C parameter defines how much a misclassification increases 
the cost function. 

 
2.3. Nonlinear Support Vector Machine 

The formulation of SVM presented above can be further extended to build a 
nonlinear SVM, which can classify nonlinearly separable data. Consider a 
function  which maps the training data from n  to some higher dimensional 
space n . In this high dimensional space, the data can be linearly separable, 
hence the linear SVM formulation above can be applied to these data (see  
Fig. 2). 
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Fig. 2. Example of data separable by an elliptic curve in 2, but linearly separable in the feature 

space 3. The mapping to transforms 2 2
1 2 1 2 1 2( , ) ( , , 2 )x x x x x x . 

In the SVM formulation data appear only in the form of dot products ( )i jx x  
(see Eqn. 5). The dot product ( ) ( )i jx x  appears in the high dimension 
feature space. It can be replaced by a kernel function: 
 ,i j i jK x x = x x . (8) 
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By computing the dot product directly using a kernel function, one avoids the 
mapping ( )x . This is desirable, because ( )x  can be tricky or impossible to 
compute. Using a kernel function, one does not need to know explicitly what the 
mapping is. The most frequently used kernel functions are: 

 

2

2

,

, tanh

1, exp
2

d

i j i j

i j i j

i j i j

K x x x x c polynominal

K x x x x sigmoid

K x x x x Gaussian

 (9) 

A question arises whether there is any constraint on the type of kernel 
function suitable for this task. It was shown that a function must fulfill the 
Mercer’s condition to form a suitable kernel: 
 , 0K x y g x g y dxdy  (10) 

for any function g such that 
2

g x dx  is finite. 

To extend the methodology described for a linear case to nonlinear problems, 
one substitutes i jx x  for ( , )i jK x x  in Eqn. 5. Due to Mercer’s conditions on the 
kernel, the corresponding optimization problem is a well defined convex 
quadratic programming problem, which assures us that there exists a global 
minimum. This is an advantage of SVMs compared to neural networks, which 
may find one of the local minima. 

 
2.4. Regression SVM 

A version of a SVM which can perform regression (called SVR) was 
proposed in 1997 [8]. The model produced by support vector classification (as 
described above) depends only on a subset of training data, because the cost 
function for building the model does not care about training points that lie 
beyond the margin and are properly classified. Analogously, the model produced 
by SVR depends only on a subset of the training data, because the cost function 
for building the model ignores any training data that is close (within a threshold) 
to the model prediction: 

 
2

1

: max 0,

1 2 .
m

i i
i

y f x y f x

W w C m y f x
 (11) 

The -insensitive cost function is more robust to small changes in data and in 
model and also less sensitive to outliers when compared to least squares cost 
function used by neural networks. 
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2.5. Comparison of SVM and Neural Networks 

For Support Vector Machines, in contrast to neural networks, the capacity is 
independent of dimensionality of the data. The algorithm can get bounds on the 
error, is statistically well motivated, and it uses the theory of structural risk 
minimization (theory which characterizes generalization abilities of learning 
machines). Finding the weights is a quadratic programming problem guaranteed 
to find a minimum of the error surface. Thus the algorithm is efficient and SVMs 
generate almost optimal classification and obtain good generalization 
performance due to a high dimensionality of the feature space. It has also very 
few free parameters. In the case of classification these are: the type of the kernel 
function, kernel parameters (frequently one parameter only, like in the case of 
Gaussian kernel) and the cost parameter C. Therefore it is generally possible to 
perform a grid search to identify an optimal set of parameters. By contrast, in the 
case of neural network the entire network architecture has to be optimized. 

On the other hand, the training of SVM is definitely slower due to 
computationally intensive solution of minimization problem, especially for large 
amounts of training data. SVM generates complex solutions (frequently more 
than 60% of training points are used as support vectors) especially for large 
amounts of training data. 
 

3. Packages ROOT and TMVA 
In the last years the ROOT framework [9] has become the standard analysis 

tool used by particle physicists all over the world. The system, developed at 
CERN laboratory, provides a set of object oriented frameworks with all the 
functionality needed to handle and analyze large amounts of data in a very 
efficient way. Having the data defined as a set of objects, specialized storage 
methods are used to get direct access to the separate attributes of the selected 
objects, without having to touch the bulk of the data. Included are 
histogramming methods in 1, 2 and 3 dimensions, curve fitting, function 
evaluation, minimization, graphics and visualization classes to allow an easy 
setup of an analysis system that can query and process the data interactively or 
in batch mode.  

ROOT is an open system that can be dynamically extended by linking 
external libraries. This makes ROOT a premier platform on which data 
acquisition, simulation and data analysis systems are built. 

The Toolkit for Multivariate Analysis (TMVA) [10] provides a ROOT-
integrated environment for the parallel processing and evaluation of MVA (i.e. 
machine-learning) techniques to discriminate signal from background. At 
present it includes:  
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– Rectangular cut optimization  
– Likelihood estimator (PDE approach)  
– Multi-dimensional likelihood estimator (PDE - range-search approach)  
– H-Matrix (chi-squared) estimator  
– Fisher discriminant  
– Artificial Neural Network 
– Boosted/Bagged Decision Trees  
– RuleFit  
The TMVA package includes implementations for each of these 

discrimination techniques, their training and testing (performance evaluation). In 
addition, all these methods can be tested in parallel, and hence their performance 
on a particular data set may be easily compared.The training, testing and 
evaluation phases are performed in parallel for various methods. The evaluation 
accommodates several numerical performance estimators as well as various 
plots, like the efficiency vs. background rejection curves, correlation matrices 
etc. 
 

4. Implementation of SVM in the ROOT/TMVA framework 
We have implemented the SVM algorithm in the ROOT/TMVA framework. 

This implementation uses a Sequential Minimal Optimization (SMO) [11] to 
solve the quadratic problem. Further modifications proposed by Keerthi [12] 
speed up the algorithm. To speed up the minimization most of the algorithms 
divide a set of vectors into smaller subsets. The SMO method puts the subset 
selection to the extreme by selecting subsets of two vectors. 

Let us give a brief description of the SMO algorithm, the details can be found 
in [11] and [12]. The pairs of vectors are chosen, using heuristic rules, to make 
the largest possible minimization step. Because the working set is of the size of 
two it is straightforward to write down the analytic solution. The minimization 
procedure is repeated recursively until the minimum is found. The SMO 
algorithm has proven to be significantly faster than the other methods like 
chunking [13] or SVMlight [14], and has become the most common 
minimization method used in the SVM implementations. 

The implemented SVM algorithm performs the classification tasks using the 
linear or Gaussian kernel function, the other kernels will be added in the next 
release. The Gaussian kernel allows us to apply discriminant shape in the input 
space. An exemplary problem is shown in Fig. 3, where a set of vectors forming 
a ring is chosen as a signal against the flat background. The SVM algorithm 
finds a set of support vectors on the borders of the ring and selects the signal 
points out of the background.  
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5. Application to the identification of  particle in the ATLAS experiment 
The SVM algorithm implemented within the TMVA frame has been used for 

identification of  leptons in the ATLAS experiment, one of the four great 
experimental setups constructed at the LHC accelerator at CERN. Identification 
of hadronic  decays will be the key to the possible Higgs boson and 
supersymmetry discovery in the ATLAS experiment [15] and it has been studied 
for several years [16]. 
 

 
Fig. 3. A set of signal points (empty circles) forming a ring and background points (black dots) are 
used to train an SVM. The filled black circles represent the support vectors (left plot). In the right 

plot the empty circles and black points represent the correctly classified signal and background 
vectors, the crosses stay for wrongly classified vectors 

 
Lepton  decays predominantly into a small number of charged and neutral 

pions, that form a well collimated jet characterized by one (1-prong jet) or three 
(3-prong jet) tracks in the inner part of the detector. The discriminating variables 
are not independent and no single variable provides a really good signal and 
background separation (see Fig. 4) [17,18]. Signal efficiency is defined as a ratio 
of accepted and all signal events s = Naccepted/Nall and background rejection as a 
ratio of rejected and all background events R = 1 – b = Naccepted/Nall. 
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Fig. 4. Distributions of discriminating variables for 1-prong tau candidates. None of the variables 

provides a good signal and background discrimination 
 
The SVM algorithm tested on simulated ATLAS events and used to identify  

leptons using 1-prong data. The Gaussian kernel function was chosen. The data 
was divided into two subsamples: one for training and one for verification and 
calculating the background rejection. The performance of the SVM with radial 
kernel depends on two parameters: the width of the Gaussian kernel and the cost 
parameter C. A grid search in the space of these two parameters was performed 
to maximize the background rejection for 80% signal detection efficiency. 

The results for both training and verification samples are the same (Fig. 5), 
which ensures that there is no overtraining. The performance of the SVM is 
compared to the performance of the likelihood estimator, which does not take 
into account the correlations between variables (Fig. 4). A significant 
background reduction is observed: the background rejection for 80% signal 
efficiency increases from 70% to 75% therefore the use of SVM reduces the 
number of background events by about 17%. 
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Fig. 5. The background rejection as a function of signal efficiency for the training (dashed line) 

and test (solid line) for the simulated ATLAS  data while using SVM (left plot). Also the 
distributions of the discriminants for signal and background are shown. The SVM method  

(solid line) is compared with the likelihood estimator (dotted line) (right plot) 
 

6. Conclusions and plans 
The further extension of the presented SVM implementation is foreseen. We 

plan to add the automatic optimization procedure designed to find the optimal 
kernel parameters for a given dataset. Also additional kernel functions will be 
implemented (sigmoid, polynomial) and the package will become more 
functional by adding the Least Square SVM (LSSVM). LSSVM replaces the 
linear slack variable with a sum of squares. In this case the solution follows from 
solving a set of linear equations, instead of quadratic programming for classical 
SVM’s [19]. 
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The other planned extension is an implementation of the -SVM ( -Soft 
Margin Support Vector Classifiers) [20]. In this algorithm an extra  parameter 
allows us to control the number of support vectors. It enables us to eliminate the 
regularization constant C in the classification case and the accuracy parameter  
in the regression case. 

We have shown that Support Vector Machine can be successfully used to 
analyze high energy physics data. The implementation described above will be 
included in the ROOT package, therefore it will be easily available to the entire 
particle physics community. This implementation extends the range of 
multivariate analysis tools available within the ROOT framework. 
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