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Abstract

Elementary particle physics experiments, searching for very rare processes require the efficient
analysis and selection algorithms able to separate signal from the overwhelming background. In
the last ten years a number of powerful kernel-based learning machines, like Support Vector
Machines (SVM), have been developed. SVM approach to signal and background separation is
based on building a separating hyperplane defined by the support vectors. The margin between
them and the hyperplane is maximized. The extensions to a non-linear separation are performed by
mapping the input vectors into a high dimensional space, in which data can be linearly separated.
The use of kernel functions allows us to perform computations in a high dimension feature space
without explicitly knowing a mapping function.

We have implemented an SVM algorithm and integrated it with the CERN ROOT package,
which is currently a standard analysis tool used by elementary particle physicists. We also used the
implemented SVM package to identify hadronic decays of t leptons in the ATLAS experiment at
LHC accelerator. The performance of the method is compared to the likelihood estimator, which
does not take into account correlations between variables. The use of SVM significantly reduces
the number of background events.

1. Introduction

In elementary particle physics the efficient analysis of a huge amount of
collected data requires the use of sophisticated selection and analysis algorithms.
Scientists taking part in all of the future LHC (Large Hadron Collider proton
accelerator at CERN) experiments [1] are searching for new phenomena in
physics (Higgs boson, new symmetries, additional dimensions), which are very
rare processes, with a probability going down to even 107", The efficient search
for such rare phenomena requires multivariate analysis tools capable of high
level background suppression.
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The reason for application of statistical learning multivariate methods is, in
most cases, simply the lack of knowledge about the mathematical dependence of
the quantity of interest on the relevant measured variables. Either there is no
mathematical model at all and an exhaustive search is the only possibility to find
the correct dependence, or the known models are insufficient and statistical
learning provides a better description of data. These methods require a set of
training data, which is typically supplied by the Monte Carlo simulation.

2. Support Vector Machine

In the early 1960s the linear support vector method was developed to
construct separating hyperplanes for pattern recognition problems [2,3]. It took
30 years until the method was generalized for constructing nonlinear separating
functions [4,5] and for estimating real-valued functions (regression) [6]. At that
moment it became a general purpose algorithm performing data classification
and regression which can compete with neural networks. Typical applications of
SVMs include text categorization, character recognition, bioinformatics and face
detection.

The main idea of the SVM approach is to build a separating hyperplane which
maximizes the margin. The position of the hyperplane is defined by the subset of
all training vectors called support vectors. The extension into non-linear SVM is
performed by mapping input vectors into a high dimensional feature space in
which data can be separated by a linear procedure using the optimal separating
hyperplane. The wuse of the kernel functions eliminates the explicit
transformation to the feature space and simplifies the computations.

2.1. Linear Support Vector Machine

A detailed description of SVM formalism can be found for example in [7],
here only a brief introduction is given. Consider a simple two-class classifier
with oriented hyperplanes. If the training data is linearly separable, then such a

set of (w,b) pairs can be found that the following constraints are satisfied:
V. (% -w+b)-120, (1)
where x; are the input vectors, y; the desired outputs (y~==1) and (w,b) define a
hyperplane. The decision function of the classifier is f(X;)=sign(x,-w+Db),
which is +1 for all points on one side of the hyperplane and —1 for the points on
the other side. Intuitively, the classifier with the largest margin will give better
generalization. The margin for this linear classifier is just 2/ |vT/| . Hence, in order

to maximize the margin, one needs to minimize the cost function W:

w=(2) . )
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with the constraints from Eqn. 1. At this point it would be beneficial to consider
the significance of different input vectors x;. The training data points lying on the
margins, which are called the support vectors (SV), are the data that contribute
to defining the decision boundary (see Fig. 1). If the other data are removed and
the classifier is retrained on the remaining data, the training will result in the
same decision boundary. To solve this constrained quadratic optimization
problem, we first reformulate it in terms of a Lagrangian:

L(w,b,a)=1/2]wf —Zai(yi (% -w)+b)-1), 3)

where 0,20 and the condition from Eqn. 1 must be fulfilled.

X, X,, X, X, support vectors

Fig. 1. Hyperplane classifier in two dimensions. Points x;, X, and x; define the margin,
i.e. they are the support vectors

Lagrangian L should be minimized with respect to |vT/| and » and maximized

with respect to @ . The solution has an expansion in terms of a subset of input
vectors for which a0 (these are the support vectors):

wzzaiyi)_éi > 3)

since at extremum OL/0b=0 and OL/0w=0. The optimization problem
becomes the one of finding the & which maximizes:

L(&)zZai—%Zaiajyiyj()?i-)?j). 4

2.2. Non-separable data

The above algorithm can be extended to non-separable data. The correct
classification constraints in Eqn. 1 are modified by adding a slack variable & to
it (& =0 if the vector is properly classified, otherwise & is a distance to the
decision hyperplane).
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Vo, (X-w+b)—1+&>0 £20. (6)
This allows some points to be misclassified. The training algorithm needs to

minimize the cost function, i.e. a trade-off between the maximum margin and the
classification error:

w=(1/2)if +C3 & (7)

The selection of C parameter defines how much a misclassification increases
the cost function.

2.3. Nonlinear Support Vector Machine

The formulation of SVM presented above can be further extended to build a
nonlinear SVM, which can classify nonlinearly separable data. Consider a
function @ which maps the training data from R” to some higher dimensional
space R". In this high dimensional space, the data can be linearly separable,
hence the linear SVM formulation above can be applied to these data (see

Fig. 2).
2
R wpuspuee | % | x|
X X
0 O: R® R3+
X ’ Feature space | X} | X |2(X|"z)m|

. v
q

Fig. 2. Example of data separable by an elliptic curve in %>, but linearly separable in the feature
space R°. The mapping to transforms (x,,x,) = (x2,x2,v/2x,x,) .

In the SVM formulation data appear only in the form of dot products (X, - X,)
(see Eqn. 5). The dot product @(X,)-D(X;) appears in the high dimension

feature space. It can be replaced by a kernel function:
K(%.%)=0(%) o(%,). (8)
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By computing the dot product directly using a kernel function, one avoids the
mapping @(X) . This is desirable, because @(X) can be tricky or impossible to
compute. Using a kernel function, one does not need to know explicitly what the

mapping is. The most frequently used kernel functions are:
d

K()?i,)?j) = (()?l "X, ) = c) polynominal
K(%,%)=tanh(x(%,-%,)+0) sigmoid )

K()?i,)?j) =exp(2

A question arises whether there is any constraint on the type of kernel
function suitable for this task. It was shown that a function must fulfill the
Mercer’s condition to form a suitable kernel:

[ K (2.9)2(%)g(7)didy =0 (10)

2
for any function g such that I g(X) dx is finite.

Ly :
> Hx,. —xAH Gaussian
o J

To extend the methodology described for a linear case to nonlinear problems,
one substitutes ¥, - X, for K(x,,x;) in Eqn. 5. Due to Mercer’s conditions on the

kernel, the corresponding optimization problem is a well defined convex
quadratic programming problem, which assures us that there exists a global
minimum. This is an advantage of SVMs compared to neural networks, which
may find one of the local minima.

2.4. Regression SVM

A version of a SVM which can perform regression (called SVR) was
proposed in 1997 [8]. The model produced by support vector classification (as
described above) depends only on a subset of training data, because the cost
function for building the model does not care about training points that lie
beyond the margin and are properly classified. Analogously, the model produced
by SVR depends only on a subset of the training data, because the cost function
for building the model ignores any training data that is close (within a threshold)
to the model prediction:

|}—f(?c)|g = max{O,

S (%))
w=(12)[a + C/le::b?l. ~f(%)

The e-insensitive cost function is more robust to small changes in data and in
model and also less sensitive to outliers when compared to least squares cost
function used by neural networks.

(In

&
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2.5. Comparison of SVM and Neural Networks

For Support Vector Machines, in contrast to neural networks, the capacity is
independent of dimensionality of the data. The algorithm can get bounds on the
error, is statistically well motivated, and it uses the theory of structural risk
minimization (theory which characterizes generalization abilities of learning
machines). Finding the weights is a quadratic programming problem guaranteed
to find a minimum of the error surface. Thus the algorithm is efficient and SVMs
generate almost optimal classification and obtain good generalization
performance due to a high dimensionality of the feature space. It has also very
few free parameters. In the case of classification these are: the type of the kernel
function, kernel parameters (frequently one parameter only, like in the case of
Gaussian kernel) and the cost parameter C. Therefore it is generally possible to
perform a grid search to identify an optimal set of parameters. By contrast, in the
case of neural network the entire network architecture has to be optimized.

On the other hand, the training of SVM is definitely slower due to
computationally intensive solution of minimization problem, especially for large
amounts of training data. SVM generates complex solutions (frequently more
than 60% of training points are used as support vectors) especially for large
amounts of training data.

3. Packages ROOT and TMVA

In the last years the ROOT framework [9] has become the standard analysis
tool used by particle physicists all over the world. The system, developed at
CERN laboratory, provides a set of object oriented frameworks with all the
functionality needed to handle and analyze large amounts of data in a very
efficient way. Having the data defined as a set of objects, specialized storage
methods are used to get direct access to the separate attributes of the selected
objects, without having to touch the bulk of the data. Included are
histogramming methods in 1, 2 and 3 dimensions, curve fitting, function
evaluation, minimization, graphics and visualization classes to allow an easy
setup of an analysis system that can query and process the data interactively or
in batch mode.

ROOT 1is an open system that can be dynamically extended by linking
external libraries. This makes ROOT a premier platform on which data
acquisition, simulation and data analysis systems are built.

The Toolkit for Multivariate Analysis (TMVA) [10] provides a ROOT-
integrated environment for the parallel processing and evaluation of MVA (i.e.
machine-learning) techniques to discriminate signal from background. At
present it includes:
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— Rectangular cut optimization

— Likelihood estimator (PDE approach)

— Multi-dimensional likelihood estimator (PDE - range-search approach)

— H-Matrix (chi-squared) estimator

— Fisher discriminant

— Artificial Neural Network

— Boosted/Bagged Decision Trees

— RuleFit

The TMVA package includes implementations for each of these
discrimination techniques, their training and testing (performance evaluation). In
addition, all these methods can be tested in parallel, and hence their performance
on a particular data set may be easily compared.The training, testing and
evaluation phases are performed in parallel for various methods. The evaluation
accommodates several numerical performance estimators as well as various
plots, like the efficiency vs. background rejection curves, correlation matrices
etc.

4. Implementation of SVM in the ROOT/TMVA framework

We have implemented the SVM algorithm in the ROOT/TMVA framework.
This implementation uses a Sequential Minimal Optimization (SMO) [11] to
solve the quadratic problem. Further modifications proposed by Keerthi [12]
speed up the algorithm. To speed up the minimization most of the algorithms
divide a set of vectors into smaller subsets. The SMO method puts the subset
selection to the extreme by selecting subsets of two vectors.

Let us give a brief description of the SMO algorithm, the details can be found
in [11] and [12]. The pairs of vectors are chosen, using heuristic rules, to make
the largest possible minimization step. Because the working set is of the size of
two it is straightforward to write down the analytic solution. The minimization
procedure is repeated recursively until the minimum is found. The SMO
algorithm has proven to be significantly faster than the other methods like
chunking [13] or SVMlight [14], and has become the most common
minimization method used in the SVM implementations.

The implemented SVM algorithm performs the classification tasks using the
linear or Gaussian kernel function, the other kernels will be added in the next
release. The Gaussian kernel allows us to apply discriminant shape in the input
space. An exemplary problem is shown in Fig. 3, where a set of vectors forming
a ring is chosen as a signal against the flat background. The SVM algorithm
finds a set of support vectors on the borders of the ring and selects the signal
points out of the background.
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5. Application to the identification of T particle in the ATLAS experiment

The SVM algorithm implemented within the TMVA frame has been used for
identification of t leptons in the ATLAS experiment, one of the four great
experimental setups constructed at the LHC accelerator at CERN. Identification
of hadronic t© decays will be the key to the possible Higgs boson and
supersymmetry discovery in the ATLAS experiment [15] and it has been studied
for several years [16].

-0.2~
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Fig. 3. A set of signal points (empty circles) forming a ring and background points (black dots) are
used to train an SVM. The filled black circles represent the support vectors (left plot). In the right
plot the empty circles and black points represent the correctly classified signal and background
vectors, the crosses stay for wrongly classified vectors

Lepton t decays predominantly into a small number of charged and neutral
pions, that form a well collimated jet characterized by one (1-prong jet) or three
(3-prong jet) tracks in the inner part of the detector. The discriminating variables
are not independent and no single variable provides a really good signal and
background separation (see Fig. 4) [17,18]. Signal efficiency is defined as a ratio

of accepted and all signal events €, = Nyccepres/ Nan and background rejection as a

ratio of rejected and all background events R = 1 — €, = N,cceprea/ Nair-



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 20/01/2026 03:45:27

Implementation of the SVM algorithm ... 157
E-{!-Signal AL AL E25_'\"‘|"'|'"|"'\"'|"‘|"'|"'|"'|"_' T LA L
T a0 [7] Background 3 H
20 ]
£ ER
z |
“ E 151 e
25 3
20 E 1w} B
15 3
10 ||I 3 51 4
5 =
ol 0 00, .|.|..I.l..l..l.l.-.. o
0 0.05 01 0415 0.2 0.25 0.3 0.35 04 -1 -0.8-0.6-0.4-0.2 0 0.204 0608
Vard Vart Var2
T E R B L L L I L T E9""|""|"'w””H“l"'
16 J
& 8
Eu 1 E~
o (]
zZ 2 1 z
5
4
3
20
1
a

o
o
>
o
(X
o
t

L] 0.2 0.4 0.6

Var3

Fig. 4. Distributions of discriminating variables for 1-prong tau candidates. None of the variables
provides a good signal and background discrimination

The SVM algorithm tested on simulated ATLAS events and used to identify t
leptons using 1-prong data. The Gaussian kernel function was chosen. The data
was divided into two subsamples: one for training and one for verification and
calculating the background rejection. The performance of the SVM with radial
kernel depends on two parameters: the width of the Gaussian kernel and the cost
parameter C. A grid search in the space of these two parameters was performed
to maximize the background rejection for 80% signal detection efficiency.

The results for both training and verification samples are the same (Fig. 5),
which ensures that there is no overtraining. The performance of the SVM is
compared to the performance of the likelihood estimator, which does not take
into account the correlations between variables (Fig. 4). A significant
background reduction is observed: the background rejection for 80% signal
efficiency increases from 70% to 75% therefore the use of SVM reduces the
number of background events by about 17%.
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Fig. 5. The background rejection as a function of signal efficiency for the training (dashed line)
and test (solid line) for the simulated ATLAS t data while using SVM (left plot). Also the
distributions of the discriminants for signal and background are shown. The SVM method

(solid line) is compared with the likelihood estimator (dotted line) (right plot)

6. Conclusions and plans

The further extension of the presented SVM implementation is foreseen. We
plan to add the automatic optimization procedure designed to find the optimal
kernel parameters for a given dataset. Also additional kernel functions will be
implemented (sigmoid, polynomial) and the package will become more
functional by adding the Least Square SVM (LSSVM). LSSVM replaces the
linear slack variable with a sum of squares. In this case the solution follows from
solving a set of linear equations, instead of quadratic programming for classical
SVM’s [19].
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The other planned extension is an implementation of the v-SVM (v-Soft
Margin Support Vector Classifiers) [20]. In this algorithm an extra v parameter
allows us to control the number of support vectors. It enables us to eliminate the
regularization constant C in the classification case and the accuracy parameter ¢
in the regression case.

We have shown that Support Vector Machine can be successfully used to
analyze high energy physics data. The implementation described above will be
included in the ROOT package, therefore it will be easily available to the entire
particle physics community. This implementation extends the range of
multivariate analysis tools available within the ROOT framework.
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