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Abstract
We present fast evaluating and differentiating algorithms for the Hermite interpolating
polynomials with the knots of multiplicity 2, which are generated dynamically in a field

K =(K,+,-) by the recurrent formula of the form
x=ax_+pf (i=12.,n-1 x,=7).
As in the case of Lagrange-Newton interpolating algorithms, the running time of these
algorithms is C(n)+O(n) base operations from the field K, where C(n)=0(nlogn) denotes

the time needed to compute the wrapped convolution in K"

1. Introduction and preliminaries
Let K =(K,+,") be a field and let x, (i=0,1,..,n—1) be n pairwise distinct

points in the field K. Additionally, let the values
Vi,z; €K (i =0,1,...,n —1)

be given. Then there exists [1] a unique polynomial
n—1 n—1
p(x)=2 ye (x)+ 2 zd,(x) (M
i=0 i=0
in the space K, [x] of all polynomials of degree less than 2n, which is

determined by the following Hermite interpolating conditions
p(x,.)zy,. and p'(x,.)zzi (i=0,l,...,n—1). 2)
Moreover, the basic polynomials c(x) and di(x) are given by the following

formulae
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G (x) = |:1_(x_xi)(li (xi)—"liy(xi))]liz (x)’
d,.(x)z(x—xl.)lf (x) (i=0,l,2,...,n—l)

n—1

3)

with
X=X

k=0k=i X; — Xy

In numerical computations [1,2], the Newton — Hermite interpolating formula

) =2 o (=) [ (=) @

is preferred, where the generalized divided differences f; (i =0,1,...,2n— 1) are
computed by the usual recurrent formulae, which requires O(n°) base operations
from the field K. A faster algorithm is announced in Section 3 without proofs.

2. Fast evaluation and differentiation of polynomials

Let x; (i=0,1,....n—1) be n pairwise distinct points from the field K
generated dynamically by the following recurrent formula

x,=ax  +f (i=12,.,n—1; x, =), (5)
where a# 0, f, y are fixed in the field K. In this case, it is possible to present a
fast algorithm for computation of values

;= p(xi) (i =0,1,...,n —l)
and derivatives

z; = p'(xi) (i =0,1,...,n —1)
of Hermite interpolating polynomial

n—1 k-1
2
x)zZ[ngrhk (x—xk)]H(x—xv) (6)
k=0 v=0
where coefficients g; and 4; (k=0,1,....n—1) are given. Of course, these
coefficients are generalized divided differences
8 :p[xo’xo"“’xkfl’xkfl’xk]’
h, = p[xo,xo,...,xk_l,xk_l,xk,xk] (k =0,1,..,n —1)

of the polynomial p(x).
Indeed, one can substitute x; into formula (6) and differentiate (6) at x = x; to

get
TEOIN ) (CERSRD WACEEN) § (CEEY m
k=0 v=0 k=0 v=0
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and
i k-1 i—1 i—-1 i-1

z =) h| | (5 —xv)2 +2giH(xi -x,) (xi —xﬂ)

k=0 v=0 v=0 v=0 u=0
HUFY
()
i1 k-1 k=1 k-1
+Z[gk+hk(x, —xk)] ZH(x,—xv) (x, —xﬂ)
k=0 v=0 v=0 ©=0
HUFY

Next we rewrite formula (5) in the form
X; :ai7+ﬁ(ai_l+ai_2+...+1). )

By inserting x; into formulae (7) and (8) we obtain

i 2 i1 2
49D 4P
Vi :ng (k_J +zhkrktikl(pk J

k=0 ik k=0 i~k
and
i 2 i—1
z, = hk(qkpiJ +2quzz
k=0 i~k =0 "uli
i1 201 k-1
4 P; 1 1 1
+22[gk+hkrktikl]( ‘ J Z —— 2. |
k=0 Pik =0 lulicut T im0 Tulick—i-u
where
e=v— ﬂ _ ) _ J+
=y-——, n=a, tj—e(a 1), (10)

l-a

J-1 J-1
g, =[] p;=]]e(e -1) (j=0.1..n-1).
v=0 v=0

In these formulae, it is assumed that products are equal to 1 and sums are
equal to 0 whenever their upper indices are smaller than the lower ones. As in
the Lagrange-Newton interpolating algorithm [3], a computation of these
formulae uses only the following six different vector operations in K"

— coordinatewise vector addition, subtraction, multiplication, division and

multiplication by scalars,

— wrapped convolution defined as

a®b:(co,cl,..,c,H),
where
az(ao,al,... a ), bz(bo,bl,... b )

s % n—1 >“n-1
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and

y: yi)g_lazz(zi)g_lar:(r;’ :l)_l)t:(ti)g_la (11)

then one can get

and
y=[(g*v)®(jfu)+(h*r*v)®(t/u) ]*u
z:{(h*v)@(j/u)+2*w*[(g*v)®u+(h*r*v)®(t/u)]+

2*[(g*v/r)® (w/u)+ (h*v)® (t*wfu) ]} *u+d.

Now we present the algorithm to compute the required values and derivatives.
It uses two classes KType and KTypeVector, which should make it possible
to perform operations in K and K".
Algorithm 1. Polynomial evaluation and differentiation at knots

x,=ax_ +b (i=12,...n—1; x,=c)

Input: A vectors g =(g¢.&,-8,1)> h=(hy,ly,....h, ;)K" and three scalars
a#0, [ and yin a field K.
Output: y,zeK".
1. Set e<—c—b/(1-a),p, <1, gy <1, r,<1and v, < 0.
2. For k from 1 to n — 1 do the following:

21. 1, «1_,-a,t, <—(rk —1)'6,

22. pp < DraTict> G < Gl
3. Set ¢, <—(rn_1 -a—l)-e.
4. Compute w<(j/r® j/t), p2«p-p,véq-q,

g gV, hvehv-r, tutlu,

Ju«jlu,d<«2-p-qg-w.
5. Compute y <« (gv® ju+hrv®mu)-u.
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Z(—(hv@ju+2~w'(gv®u+hrv®tu)—

—2'((gv/r)®(w/u)+hv®(tu/w)))'u.

7. Return y, z.

6. Compute

Since the wrapped convolutions
conv(p,q) =pQ®gq,
with
P =(PoPrseees Pycy) and ¢ =(q0,151G,1)
can be computed by an algorithm having a running time of O(nlogn) base field
operations in K [4], it follows that computation of values and derivates requires
only O(nlogn).

3. Fast computation of generalized divided differences

For the completeness, we include also a very short description of the inverse
algorithm to Algorithm 1. Since the generalized divided differences fy
(k=0,1,....,n— 1) are coefficients at x**"' [1] in Hermite polynomials of degree
2k + 1 determined by the interpolating conditions

s(x,)=y, and s'(x;)=z (i=0,1,....k),

it follows that
k —
. . 2yj Z ‘(xj—xv)l
Jokar = Z % . . VZO’VH L (12)
=T '(xf -, I1 4(xj -%,)
v=0,v#j v=0,v#j

On the other hand, the generalized divided differences f;, (k=0,1,....n—1)
are coefficients at x** [1] of Hermite polynomials of degree 2k determined by
the interpolating conditions

w(x)=y, w'(x,)=z (i=01...k—-1) and w(x;)=y,.
Hence we get

k k-1
-1 -1
. 2 (x=x) 2 (=)
_ _ v=0,v#j _ v=0,v#j
f2k—z 1 [ [ 1 Yj
Jj=0 _ _ _ _
I | (xj xﬂ) I | (xj xﬂ) I | (xj xﬂ) | I (xj xu) (13)
u=0,p#j u=0,u#j u=0,u#j H=0,p%j
k-1 -
n J . Yk
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These formulae can be used to derive a O(nlogn) — algorithm to compute
generalized divided differences in the case when the interpolating knots are
generated by formula (9). Now we present the algorithm to compute the required
generalized divided differences in the Hermite interpolating formula (2). It uses
two classes KType and KTypeVector, which make it possible to perform

operations in K and K" K" . First we perform initial computation preparing to get
generalized divided differences.

Algorithm 2. Computation of generalized divided differences with respect to
knots

x,=ax_ +b (i=12,...n-1; x,=c)

of multiplicity 2.

Input: A vectors y=(Yg, Vs Vot )» 2=(Z29,25-,2,; ) €K" and three scalars

a#0, fand yin a field K.

Output: g,heK".

1. Set e«<—c—b/(1-a),p, <1, gy« 1, i, <1 and v, < 0.

2. For k from 1 to n — 1 do the following:

21. 1 «n_-a,t, <—(t,{71 —1)-e, Qe <Gy "ty
22, Py Pry T Ve <V 1/t

3.Set t,, «(r,-a—1)-e.

4. Compute w<(j/r® j/t), p2«p-p, q2<q-q,
r2<r-r,d<y/(p2-q2), u« p2/q2, s<ujt,
rq2 < r-q2, yw<y-w.

5. Compute g<—(2-((yw/q2)®u+(y/rq2)®u)—(z/q2)®u)/p2.

h<—2-((yw/rq2)®(s-t)+(y/r2-p2)®u)/p2—

—2-((y/r2-rq2)®(u/t)+(z/rq2)®s)/p2+d.
7. Return g, h.

6. Compute

The details of the proofs connected with this algorithm will be presented
elsewhere.

It should be noticed that Algorithms 1 and 2 give a fast way to pass between
the representations of a polynomial p(x) in K5, |[x] with respect to the Lagrange-
Hermite base

cy.dy,cp5d, e, y,d,

and the Newton base
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I, x—x,, (x—x0 )2 ,...,(x—xo)2 ...(x—xnf2 )2 (x—x,H),

(x=x0 ) (=55 ) (x=x,, )

3. A complexity of algorithm

In this section we consider complexity of computation of Algorithm 1. The
running time of this algorithm is O(nlogn) base operations from the field K,
while the running time of classical algorithm is O(n%). For example, if we choose
n of order 2'*, then we save about 98 percent of base operations. More precisely,
if n=2" and if we use Algorithm 1, then the number of base operations for
computing values and derivatives is approximately equal to 7.62x10°, whereas
the number of base operations in the classical algorithm is 5.37x10%. Hence the
number of saved base operations for Algorithm 1 equals 1.42% .
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Fig. 1. The numbers of saved operations in percentage terms

The graph in Figure 1 shows the percentage of saved operations by Algorithm
1 in comparison with the classical O(n”) — algorithm for different values of n.
The similar complexity results are also true for Algorithm 2.

4. Conclusions

In this paper, we have presented fast evaluating and differentiating algorithm
for Hermite interpolating polynomial with »n knots of multiplicity 2. These knots
are generated dynamically in a field Kby the recurrent formula of the form

x=ax_,+f (i=12..n-1; x,=7).
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The algorithm computes values and derivatives with the running time of
C(n) + O(n) base operations from the field K, where C(n) = O(nlogn) denotes
the complexity of computation of the wrapped convolution in K”. On the other
hand, the classical algorithm requires O(xn”) of base operations in K. Numerical
experiments show that this algorithm can be useful in practice, whenever 7 is
sufficiently large. For example, such a situation occurs during the computation
of shares and recovering keys in secret sharing schemes of Shamir type [5,6].
The similar results hold also for the inverse algorithm, which computes
generalized divided differences.
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