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Abstract
A practical computing algorithm has been developed for calculating the macroscopic energy of
nuclei. Four different models of the macroscopic energy are examined and their influence on the
results is discussed.
The results of the calculations are presented in the form of curves to illustrate how the different
macroscopic models influence on the spontaneous fission energy barriers of super-heavy nuclei.

1. Introduction

For the first time, the charged liquid-drop model was successfuly applied
about 70 years ago [1]. Brilliant employment of the nuclear drop concept was
used to explain the nuclear fission phenomenon [2].

Since then, many papers have been devoted to the nuclear model formalism
and its improvements. Since then those times, various new terms in the
corresponding energy expressions have been proposed.

The contemporary expressions commonly used for the nuclear energy are
given by the liquid drop model [3], the droplet expansion [4], the folded-
Yukawa plus exponential approximation [5] and recently developed the Lublin-
Strasbourg drop (LSD) [6]. The LSD model represents the revised and improved
version of the charged liquid drop formula, in which the parameters were
adjusted to the known masses and isotopes.

Although, in the above mentioned formulae, the various new terms have been
proposed, but the basic concept of the charged liquid drop which could deform
and fission remained valid.

The formulae from [3-6] have been used to construct a universal computing
algorithm, written in FORTRAN 77, allowing to calculate the nuclear liquid
drop energy in different, popular in literature models.
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It is well known that the smooth part of the nuclear energy, represented by the
various drop models considerably influences on the spontaneous fission half-
lives (Tsp) [7-8].

The code introduced in our publication is a very important unit of programme
to obtain the estimations of spontaneous fission (T) as well as the a-decay half-
life times of the heavy and super-heavy nuclei within the macroscopic-
microscopic model [9-12].

2. Theory
2.1. Nuclear shape parametrisation
The shape of the nucleus is defined by the surface X:
> f(r,0,9)=0. (1)
There are many multi-parameter descriptions of nuclear shapes used in

literature. One which is the most familiar and general is the expansion of the
radius R into spherical harmonics:

RO.0.0)=R[1+> > Y, (0.9)]. )

22
In the above equation R, =7, A" is the radius of the spherical nucleus with
q 0o =1 p

the atomic number 4 and & denotes the full set of deformation parameters. For
the axial shapes only eq. 2 simplifies to:

RO, =R[1+> BY,(O). 3)

The p-expansion defined by eq. (3) is usually limited to the low order
coefficients: f,_.(quadrupole), f;-.(octupole) and f,_.(hexadecapole) degrees of
freedom. But for strongly elongated and mass-asymmetric shapes, it is necessary
to have a freedom of choosing higher order multipoles. In our code the upper
limit on the multipoles is 4,,, = 9.

2.2. Various nuclear liquid-drop models.

If we normalize the energy to zero at spherical shape [§8], the formulae for
liquid drop model [3] including the surface and Coulomb energy can be written:

Eyp(B) = Eg (Bo(B) =)+ g (By (£)-1). (4)
The numerical value of the parameters £, and E, is taken from a mass
formula[3]. All deformation dependence is contained in Bs(ﬁ) and Bc(ﬁ)

coefficients. They both can be expressed by the two or three dimensional
integrals:
1

47R;

s =

ngS, (5)
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Bo=2 5<_[>W(r)dV (6)

here W(r) denote the Coulomb potential:

—dr_' ‘ 7
—F
The improved version of liquid drop model was proposed by Myers and
Swiatecki [5] in 1969 as the liquid drop model extension in the form of
curvatures and corrections resulting from non — uniform distribution of charges
on the nucleus surface.
The macroscopic energy can expressed in that model as:

Ensorser ( B) =0 (B ( B) 1)+ bea ( Beow (B) 1)+ (. (8) 1) +

{00 )-1) . o ()1

The free parameters included in this Equation (b, i=s, c, cur, r, w) are
determined phenomenologically by their adjustment to nuclear masses,
multipolar moments and barriers for fission. The functions B; (i =s, c, cur, r, W)
depend on nuclei shapes only. Two of them i.e. the relative surface energy Bg
and the relative Coulomb energy B are defined as in the liquid drop model (Egs.
5, 6).

The coefficient Bcyr is associated with the average curvature of nucleus
surface, By is associated with the non-uniform charge distribution, By is used to
describe the non-uniformity of charge distribution on the nucleus surface. The
explicit equations for function B; in the liquid drop model are as follows:

®)

BS:4—1RZngS, ©9)
Bo=1r- 2RS(jSW(r)aIV (10)
B, 631532795[ (Pd (an
, 6422;645[%) (12)

Beuw :ﬁcﬁds. (13)

The integration is carried out over the nucleus surface S or over the volume
V. The value W(r) is proportional to the Coulomb potential (Eq. 7).

The Yukawa — plus — exponential model [5] presented in 1979 is a more
universal model of macroscopic energy of nucleus. The following term
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describing the broadening of nucleus surface is added to the surface energy Es
and the relative Coulomb energy E¢ in that model:

Jr—r"

c e “
E, =——-= rd’r! 14
" 872'RN’ J‘|r—r'|d rdr (19

with R, constituting the nucleus radius with sharp cut-off of matter density on
the surface and @ constituting the broadening function range (for ¢ — 0 this
term disappears). The known fact that the matter density on the surface of actual
nuclei is not changed abruptly, but decreased in accordance with the Yukawa
model has been considered in the present model.

The macroscopic nuclear energy according to the curvature dependent LSD
model proposed in [6] is given by the formula:

Epgp () =bs (1-5,17) 4*° (BS (B)—1)+
beyr (1 - KCURIZ )Al/3 (BCUR (ﬁ) - 1) + E()C (BC (B) - 1)-

Definitions of the curvature Bcyr, Coulomb B and the surface By coefficients
remain the same as in the standard drop model (Coulomb and surface
coefficients) or in the Droplet model (curvature coefficient Bcyr. The parameters
appearing in Eq. 7 are the following

by =-15.4920 MeV,
xy =1.8601,
bs =16.9707 MeV, (16)
Ks =2.2938,
bCUR =3.8602 MCV,
KcUurR™ -2.3764.

Such a liquid drop formula results in rms mass deviations equal to
0.698~MeV for binding energies of 2766 nuclei with Z > 8 and N > 8$ and
rms = 0.88 MeV for 40 fission barrier heights experimentally known.

(15)

3. Program organization

The program has been prepared in FORTRAN77, but it is also compatible

with the previous versions of that language.

The file contains the module of main program ENERGY and several

procedures associated with that program.

The whole program may be subdivided into three main blocks:

1. The main program named ENERGY (main) reading the data, opening the
required files and calling the procedures LIQDROP, ENZ, YUKAWA,
ELSD.

2. Four principal procedures, counting the nucleus energy in the four applied
models:

— LIQDROP - liquid drop model,
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— ENZ —liquid droplet model,
— YUKAWA —Yukawa + exponential model,
— ELSD - Lublin-Strasbourg liquid drop model.
3. Auxiliary procedures
— QG32 — calculating the integrals using 32-point Gauss-Legendre’
formula,
— QG16 — ditto, but for 16-point Gauss formula,
— QG12 — ditto, but for 12-point Gauss formula,
— CEL2 — calculating the elliptical integrals; first and second kind,
— BC1 — calculating the constant value B, in liquid drop model,
— FPBCI — defining the integrand in calculation of B,
— BSI — calculating the constant value By in liquid drop model,
— FPBSI — defining the integrand in calculation of B,
— COEF - calculating the remaining factors in liquid drop model,
— RSUR - calculating the value of nucleus radius vs. angle 0.
The procedures BC1, BS1 and a part of procedure COEF, liquid droplet
coefficients and other required coefficients for the remaining macroscopic
nucleus models are presented below:

C**************************** BSl kkhkkkkhhkkhhkhkhhkhhkhhkhkkhkkhhkkhkk*

FUNCTION BS1(CMALE)
COMMON /DEF/ BET1,BET2,BET3,BET4,BET5,BET6,BET7,BET8,BET9
C
C BS1 CALCULATES CONSTANT BS
C
EXTERNAL FPBS1
XG=1.
IF(ABS(BET3)+ABS(BETS5)+ABS(BET7)+ABS(BET9).EQ.0.) XG=0.
XD=-1.
UM1=(XG-XD)*0.5
CALL QG32(XD,UM1,FPBS1,RA)
CALL QG32(UM1,XG,FPBS1,RB)
RES=RA+RB
BS1=RES*CMALE**2
IF(XG.EQ.1.) BS1=BS1*0.5

RETURN
END

C**************************** BCl R R R R R R R R R R R

FUNCTION BC1(CMALE)
C
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C BC1 CALCULATES CONSTANT BC
CALLED FROM INTRO

Q

COMMON /DEF/ BETA1,BETA2,BETA3,BETA4,BETA5 BETAG,BETA7,
* BETAS8,BETA9

EXTERNAL FPBC1

DATA PI /3.14159265/

XG=PI

IF(ABS(BETA3)+ABS(BETA5)+ABS(BETA7)+ABS(BETA9).EQ.0.) XG=PI/2.

CALL QG16(0.,.XG,FPBC1,RES)
BC1=RES*3./4./PI*CMALE**5
IF(XG.EQ.PI) BC1=BC1*0.5

RETURN
END

CALL QG16(-1.,1.,RIG,W)
BJ=0.375*W

CALL QG16P(-1.,1.,CUR,W)
BK=0.25*W

IF(I.EQ.2) RETURN

CALL QG12(-1.,1.,WDS,W)
BP=3./(8.*PI)*W

BV=6.*BC*BS-5.*BP

CALL QG12(-1.,1.,WSDS, W)
BQ=9./(32.*PI**2)*W
BW=25.*BQ-60.*BC*BP+36.*BC**2*BS
CALL QG12(-1.,1., WBM, W)
BM=315./(544.*PI*PI)*W
BR=85.*BM-84.*BC**2

RETURN

END

The application of Gauss procedures for integration with various numbers of
knot points should be emphasized, owing to its impact on computation time. The
procedures have been tested in order to maintain the error of obtained
macroscopic nucleus energy 6 < 0.001MeV in the whole range of applied
deformations [3;.
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The application of the basic procedures used for energy values calculations in
various models has been illustrated by means of the following code fragment.

C
DO 105 IJ=1,NJ
IN = INO + (IJ-1) * 2
IA =IN + IZ
A=IA

WRITE (1J+31,103) IZ, IA, NJ
WRITE (1J+31,104)

kkhkkkkkkkhkkkhkkhkk YUKAWA kkhkhkkkhhkhhhkhhkkhhkhkkkhkkhkx

aaoaaoaaaa

CALL YUKMOD(Z,A,0OM,BC,YS,YSC,ECOUL,YXMASO,YDEF)
YXMAS = YXMASO + YDEF

QQ

kkhkkhkkhkkkkhkkhhkkhhkk*x DROP khkkhhkkhhkhkhkhkhkkhkhkkhkkhk*x

CALL LIODROP(Z,A,BS,BC,DBSURF,DBCOUL)
DROP = DBCOUL + DBSURF

C kkhkhkkkhkkhhkkhkkhhkk*x DROPLET khkkhkkhkkhhkhkkhhkkkhkkhkkk*x

DLIOQQP=ENZ(Z,A,BS,BK,BC,BV,BW,BR)
DLIOQK=ENZ%(Z,A,1.,1.,1.,1.,1.,1.)
DLIOQ=DLIQQP - DLIOQK

Q

kkhkkkkhkkkhkkhkkhhkhhkk*k DROP LSD*********** khkkhkkkkhkk*k

Q

DDLSD=ELSD(Z,A,BS,BK,BC)

dhhkhhhhdhhhdhhdhhdddhdddhdhdhddddhddddddrddhdddddrddddtx

aaQaaQ

105 CONTINUE

Input data

The creation of a text file with the name DATA.INP is required for the input
data in the same directory. The input data is organized as NAMELISTE. Refer to
the data sequence example presented below:
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$JADDAT 1Z=100, IA=260, NJ=8, $END
$DEFOR NBET2=24, BETA2D= 0.0, DBETA2=0.05,
NBET4=12, BETA4D=-0.08, DBETA4=0.04, $END

Where
IZ — nucleus atomic number
IA — nucleus mass number
NJ — nucleus isotopic number
NBET2 — number of deformation points [3,

BETAZ2D - initial deformation value 3,
DBETAZ2 — deformation change step f3,

NAMELIST $DEFOR encompasses only the deformations to be actually
considered in our calculations. Remaining deformations, not specified in the list,
will be equal to zero. The macroscopic energies for even — even nuclei, with the
atomic number of IZ and the mass numbers of IA, IA + 2, ... successively are
calculated by the program until NJ range is exhausted.

The deformation points create a multidimensional lattice (in our example two
— dimensional only f,, B4) with the initial values constituting (BETA2D and
BETAA4D) correspondingly and modified every (DBET2, DBET4), with the
ranges specified in the variables NBET2 and NBET4.

Organization of the results obtained by means of program

The macroscopic energies for even — even nuclei, with the atomic number of
17 and the mass numbers of /4, IA+2, IA+4,... successively are calculated by the
program until NJ range is exhausted.

The deformation points creates a multidimensional lattice (in our example
two — dimensional only B,, Bs) with the initial values constituting (BETA2D,
BETA4D) correspondingly and modified every (DBETA2 and DBETA4), with
the ranges specified in the variables NBET2 and NBET4.

The purpose of ENERGY program is to obtain the macroscopic energies of
the nuclei for the scope of deformations occurring in the case of nuclear fission.
It can be easily stated [9,10] that the quadrupole deformation [, responsible for
increasingly elongated shape and hexadecapole deformation P4 responsible for
developing of narrowing (necking) leading to the nucleus breaking into two
fragments, are the most important deformations in the case of fission.

The role of other kinds of deformations may be also significant, for instance
deformation f; leading to the unsymmetrical distribution of masses or 5 and Py
affecting the value of energy minimum and the thickness of fission barrier [12].

In order to enable general considerations, the program has been adapted to the
range of deformations between 3, and By (refer to Equation 3).

ENERGY program constitutes a part of a wider project performed in order to
calculate the lifetimes of nuclei being subject to fission. Refer to studies [8-12]
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for the results. Therefore the results are organized in the manner enabling further
data processing i.e. in the form of files containing formatted tables containing
required numerical data. The files are automatically generated by the program
and provided with the name composed of atomic number and extension in the
form of neutrons number for the specific isotope e.g. the file with the name
100.154 with the results for the Fermium isotope (Z = 100, N = 154). Therefore
the results can be easily applied for further processing. The block generating the
names of needed files is illustrated by means of the following code fragment.

C
DO 110 INJ=1,NJ
INO=IA - IZ
IN=INO+(INJ-1)*2
WRITE(CHZ,'(13.3))) IZ
WRITE(CHN,'(13.3)) IN
OPEN(UNIT=31+INJ,FILE=CHZ//'!//CHN)
110 CONTINUE

Refer to Figure 1 for the example of results fragment for the nucleus Z=100,
N=158. The meaning of the successive columns is as follows:
BET1..BET6 — nucleus deformations,
YUK — energy in YUKAWA-FOLDED model,
DROP — energy in droplet model,
DROPLET - energy in small droplet model,
DLSD - energy in Lublin-Strasbourg Drop (LSD) model.
The results presented below are used for preparation of nucleus macroscopic

energy map.
* Z =188 H = 158 *
* BET1 BET2 BET3 BET4 BETS BET6 YUK DROP DROPLET DL3D *
* B.00 9.80 O.80 -0.08 0.60 B6.88 1.3M 2.889 2.247 1.957 =
* B.00 B.80 O.80 -0.04 0.00 B6.88 8.349 8.523 8.569 a.491 =
* B.00 B.80 O.80 0.00 0.60 B6.88 a.8e1 a.a01 a.e18 a.881 =
* B.00 B.80 O.80 B.04 0.00 B6.88 8.349 8.522 8.569 a.492 =
* B.00 B.80 O.80 B.068 0.60 B6.88 1.386 2.868 2.229 1.958 =
* B.00 B.80 B.80 B.12 0.60 B6.88 3.893 4. 595 4.936 4336 =
* B.60 B.80 B.80 B.16 0.60 B6.88 5.4y 8.850 8.636 7.685 =
* B.60 B.80 B.80 B.20 0.680 B6.88 8,489 12.362 13.244 11.688 =
* 0.6 @.88 A.80 B.24 0.680 B6.80 11.937 17.451 1B.669 16.511 =
* 0.6 9.880 A.80 B.28 0.60 B6.80 15.982 23.233 24.821 21.995 =
* 0.6 B.88 A.80 B.32 0.60 B.80 28.491 29.623 31.6681 28.868 =
* 0.6 B.880 A.80 B.36 0.60 B.80 25.489 36.538 3B.915 34.623 =
* B.80 B.85 O.80 -9.068 0.60 B.88 1.428 2.123 2.273 1.985 =
* B.80 @.85 O.80 -9.064 0.600 B.88 8.387 B.567 8.6685 8.524 =
* B.80 @.85 B.80 B.00 0.680 B.88 a.837 8.0843 8.843 a.831 =
* B.80 @.85 B.80 B.04 0.60 B.88 8.375 B.54b 8.584 8.586 =
* B.80 B.85 B.80 B.68 0.60 B.88 1.393 2.858 2.2a83 1.933 =

Fig. 1. The example of results obtained by means of ENERGY program for the Fermium isotope
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The tables used for determination of fission static barriers for macroscopic
energies for four models being used are another type of the results. The energy
for a nucleus has been illustrated as the function of quadrupole deformation (3,
with the minimization of all remaining deformation parameters. Refer to Figure
2 for the example of results fragment for the nucleus Z =110 N = 150.

* Z2=118 HN-=158 *

*

BET2 YUK DROP DROPLET DLSD

*

* *
* B0.88 8. 861 8. 861 0.089 8. 861 =
* B.85 8.835 8.840 0. 846 8.830 *®
* 0.18 8.129 B.146 8.1 8.1685 =
* B.15 8.269 8.387 8.284 8.217 *®
* B0.28 8. 446 8.511 8.463 8.356 =
* B.25 B.646 B.7u7 B.665 8.589 *
* 0.38 8.860 1.883 8.880 8.670 =
* B.35 1.878 1.272 1.898 8.823 *
* B.48 1.214 1.817 1.161 B.845 =
* B.45 1.321 1.546 1.218 8.849 *
* 0.58 1.4087 1.663 1.263 8.833 =
* B.55 1.478 1.766 1.293 8.799 *
* B.68 1.451 1.776 1.179 8.632 =
* B.65 1.333 1.664 0.984 8.380 *®
* B.7@ 1.195 1.549 8.795% 8.122 =
* 875 0.934 1.3280 9.430 -0.298 *®
* @B.8@ B8.619 8.998 8.839 -8.756 =
* 0.85 8.201 B.646 -0.439 -1.383 *®
* B.98 -8.269 B.148 -8.993 -1.928 =
* 0.95 -9.872 -8.359 -1.606 -2.625 *®
* 1.88 -1.533 -8.998 -2.274 -3.378 =
* 1.85 -2.265 -1.681 -3.004 -4.199 *®
* 1.18 -3.877 -2.35%9 -3.735 -5.614 =
* 1.1% -3.978 -3.126 -4.558 -5.942 *®

Fig. 2. Potential barriers obtained in various models of charged droplet for Z=110 isotope

The numerical results enable the comparison of barriers curves for various
models and various isotopes of atomic nuclei in an easy and simple manner. The
diagrams for potential barriers for various isotopes of Z = 110 nucleus have been
illustrated in Figure 3.

On the basis of the presented diagrams it appears that macroscopic potential
barriers significantly differ for various isotopes. The differences in energy may
be as high as 2MeV, for the deformation B, = 1.0 resulting in significantly
diversified lifetimes of atomic nuclei, depending on the applied model [8].
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Fig. 3. The diagrams illustrating microscopic barriers in Drop, Droplet, Folded-Yukawa (Fold-
Yuk) and Lublin-Strasbourg (LSD-drop) models for various isotopes of nucleus Z =110
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Conclusions

An universal algorithm for calculations of atomic nuclei macroscopic energy
has been presented in the present study.

The present algorithm enables the estimation of atomic nuclei potential
barriers for four (4) various macroscopic models. Therefore the execution of
comparison researches is possible for the models most frequently applied in
literature.

The obtained results demonstrate the significant numerical differences,
depending on the applied model. The differences in energy may be as high as
2MeV, for the deformations close to the exit point from the barrier (§, =~ 1.0).
Therefore the obtained lifetimes for heavy and super-heavy nuclei are
significantly modified.

Such results suggest that further intensive efforts are required in order to
define the uniform model describing the nucleus energy in the course of fission
process.
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