Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 19:51:05

R Annales UMCS

@@ & Annales UMCS Informatica Al 4 (2006) 135-147 Informatica

2"4.3‘ o5 Lublin-Polonia
oL o® Sectio Al

http://www.annales.umcs.lublin.pl/

Grouping and joining transformations in the data extraction process

Marcin Gorawski*, Pawet Marks

Institute of Computer Science, Silesian University of Technology,
Akademicka 16, 44-100 Gliwice, Poland

Abstract
In this paper we present a method of describing ETL processes (Extraction, Transformation
and Loading) using graphs. We focus on implementation aspects such as division of a whole
process into threads, communication and data exchange between threads, deadlock prevention.
Methods of processing of large data sets using insufficient memory resources are also presented
upon examples of joining and grouping nodes. Our solution is compared to the efficiency of the
OS-level virtual memory in a few tests. Their results are presented and discussed.

1. Introduction

Nowadays data warehouses gather tens of gigabytes of data. The data, before
loading to the warehouse, is often read from many various sources. These
sources can differ in terms of a data format, so there is necessity of applying
proper data transformations making the data uniformly formatted. In consecutive
steps the data set is filtered, grouped, joined, aggregated and finally loaded to a
destination. The destination can be one or more warchouse tables. A whole
process of reading, transforming and data loading is called data extraction
process (ETL).

The transformations used in the ETL process can differ in terms of
complexity. A few of them are simple (e.g. filtration, projection), whereas others
are very long lasting and require a lot of operational memory (e.g. grouping,
joining). However, the common feature of the transformations is that each one
contains at least one input and an output. This allows to describe the extraction
process using a graph, whose nodes correspond to objects performing some
operations on tuples, and its edges define data flow paths.

Most of commercial tools like Oracle WB do not consider internal structure
of transformations and graph architecture of ETL processes. Exceptions are the
research [1,2], where the authors describe ETL ARKTOS (ARKTOS II) tool. It

*Corresponding author: e-mail address: Marcin.Gorawski@polsl.pl

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 19:51:05

136 Marcin Gorawski, Pawel Marks

can (graphically) model and execute practical ETL scenarios, providing us with
primitive expressions that brings the control over the typical tasks using
declarative language. Work [3] presents advanced research on the prototypes
containing the AJAX data cleaning tool.

To optimize the ETL process, there is often designed a dedicated extraction
application, adjusted to requirements of a particular data warehouse system.
Based on the authors’ experiences [4,5], a decision was made to build a
developmental ETL environment using JavaBeans components. Similar
approach was proposed, in the meantime in work [6]. J2EE architecture with the
ETL and ETLLet container was presented there, providing efficient ways of
execution, controlling and monitoring of ETL process tasks for the continuous
data propagation case.

Further speeding up of the ETL process forced us to give the JavaBeans
platform up. An ETL-DR environment [7] is a successor to the ETL/JB and
DR/JB [8]. It is a set of Java object classes, used by a designer to build
extraction applications. These are analogous to JavaBeans components in the
DR/JB environment. However, object properties are saved in an external
configuration file, which is read by an environment manager object. It relieves
us from recompilation of the application each time the extraction parameters
change. In comparison to ETL/JB and DR/JB we improved significantly the
processing efficiency and complexity of the most important transformations:
grouping and joining. The possibility of storing data on a disk was added when
the size of the data set requires much more memory than it is available.

In the following sections we present in detail a method of describing ETL
processes using graphs and we show how this description influences the
implementation. The problems resulting from the graph usage are also discussed
and the methods of data processing using insufficient memory resources are
presented.

2. Extraction graph

Operations performed during the extraction process can be divided into three
groups:

— reading source data,

— data transformations,

— writing data to a destination.

CO~Co~CH

Fig. 1. One of the simplest extraction graphs. Node E is an extractor, node
T is a transformation and node / is an inserter

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 19:51:05

Grouping and joining transformations in the data extraction process 137

Nodes belonging to the above mentioned operation groups are respectively:
extractors (E), transformations (T) and inserters (I). From the graph point of
view extractors have only outputs, transformations have both inputs and outputs,
whereas inserters contain inputs only. By connecting inputs to outputs we create
a connection net that defines data flow paths (Fig. 1). The data flow inside the
node is possible in one direction only: from the inputs to the outputs, in the
opposite direction it is forbidden. It is also assumed that connection net does not
contain closed loops, which means there is no possibility to enter the same graph
node traversing along the selected path of the graph. Such a net of nodes and
connections is called the directed acyclic graph DAG.

3. ETL-DR data extraction environment

ETL-DR is our research environment designed in Java. It uses the extraction
graph idea presented above to describe the extraction processes. During
processing each graph node is associated with a thread, that is an instance of a
transformation, or an extractor, or an inserter.

Available components are:

1. Extractors

— FileExtractor (FE) — reads tuples from a source file,

— DBExtractor (DE) — reads tuples from a database,
2. Transformations

— AggregationTransformation (AgT) — aggregates a specified attribute,

— FilterTransformation (FiT) — filters the stream of tuples,

— FunctionTransformation (FuT) — user-definable tuple transformation,

— GeneratorTransformation (GeT) — generates ID for each tuple,

— GroupTransformation (GrT) — grouping,

— JoinTransformation (JoT) — joining,

— MergeTransformation (MeT) — merges two streams of tuples,

— ProjectionTransformation (PrT) — projection,

— UnionTransformation (UnT) — union,

3. Inserters

— Filelnserter (FI) — writes tuples to a destination file,

— DBInserter (DI) — writes tuples to a database table via JDBC interface,

— OracleDBInserter (ODI) — writes tuples to a database using Oracle specific

SQL*Loader,
4. Specials

— VMQueue (VMQ) — FIFO queue which stores data on a disk.

Most of the components process data on-the-fly, which means each tuple just
received is transformed or analyzed independently and there is no need to gather
a whole data set. The exceptions are: joining node JoT, grouping node GrT and
VMQ queue.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 19:51:05

138 Marcin Gorawski, Pawel Marks

3.1. Implementation of graph nodes interconnections

In order to facilitate analysis of interconnections between the graph nodes we
have to describe the structure of inputs and outputs of the ETL-DR extraction
graph nodes. Each node has a unique ID. Each node input contains ID of a
source node assigned by the graph designer, and an automatically assigned
number of an output channel of the source node. A node output is a multi-
channel FIFO buffer with the number of channels equal to the number of inputs
connected to the node (Fig. 2). When a node produces output tuples, it puts them
into its output, where they are grouped into tuple packets. Upper limit of the
packet size is defined by the designer. Packets are gathered in queues, separately
for each output channel. The queue size is also limited to avoid unnecessary
memory consumption.

/ID =123 / ID= 124\
#0 Input:
- sourcelD = 123

Output # |:“> - sourceChannel = 1

S > N LOgi?é}l Input

. connection Data

#n %:t:?

Fig. 2. Nodes interconnection on the implementation level. Data produced by the node
123 are stored in a multichannel output buffer. Source of the node 124 is defined
as a node with ID = 123 and logical channel number = 1

)
IR)

Output

3.2. Data exchange between nodes and a risk of deadlock

Let us analyze a case of processing performed by a part of the graph
presented in Fig. 3a. The function node FuT(11) produces tuples with attributes
(eID, date, transactionsPerDay), and the grouping node GrT(12) computes an
average number of transactions for each employee. This is similar to the SQL
query below:

SELECT elID, AVG(transactionsPerDay) AS avgTPD
FROM GrTFuT
GROUP BY eID

The joining node JoT(13) performs an action defined by the following SQL
query:
SELECT sl.eID, sl.date, sl.transactionsPerDay, s2.avgTPD

FROM JoTFuT s1, JOTGrT s2
WHERE s1.eID = s2.elD

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 19:51:05

Grouping and joining transformations in the data extraction process 139

Such simple operations like grouping and joining are dangerous because they
can be a reason of deadlock. This is a result of the data transferring method
between node threads.

The joining node works as follows: it receives tuples from the slave input and
puts them into a temporary buffer, next it receives tuples from the primary input.
Each tuple from the primary input is checked if it can be joined with tuples in a
temporary buffer according to the specified join condition. In the presented
example, slave input is the one connected to the grouping node, as it is greatly
possible, that after grouping the size of the data set will decrease and a smaller
number of tuples will be kept in memory. Tuples generated by the function node
are simultaneously gathered in both output channels of the node for the nodes
JoT(13) and GrT(12). The grouping node aggregates data all the time, but the
joining node waits for the grouped data first, and it still does not read anything
from the function node. After exceeding the limit of the output queue size, the
function node is halted until the queue size decreases below the specified level.
This way a deadlock occurs:

— the node FuT(11) waits until the node JoT(13) starts reading data from it,

— the node GrT(12) waits for the data from the node FuT(11),

— the node JoT(13) waits for the data from the node GrT(12).

~ED @D @D~
N/ ‘ ‘

(b)

(a)

Fig. 3. Typical deadlock prone graph nodes connections (a) and a way of deadlock avoidance
by the use of VMQueue component (b)

To eliminate the reason for the deadlock we have to make sure that the data
from the function node FuT(11) are fetched continuously without exceeding the
queue size limit. To do it we created a special VMQueue component. This is a
FIFO queue with ability of storing data on a disk. It reads tuples from its input,
no matter if they can be hand further or not. If tuples are fetched from the VMQ
node continuously it does nothing more but transfers data from the input to the
output. In the other case, it writes tuples to the disk in order to avoid overfilling
of the output queue of its source node. Next, when VMQueue destination
continues processing, the tuples are read from the disk and sent to the queue
output. Inserting a VMQueue node between FuT(11) and JoT(13) avoids the
deadlock (Fig. 3b).

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 19:51:05

140 Marcin Gorawski, Pawel Marks

3.3. Formal definition of the deadlock prone graph nodes subset

A deadlock may occur if two or more data flow paths that split in one node of
the graph, meet again in another node. In other words, a given node X is
connected with any of its direct or indirect source nodes by two or more paths.
This let us conclude that node X must have more than one input.

Let us represent a set of source nodes of the node X as SourceNodes(X), and a
set of source nodes of the i-th input of X as InputSourceNodes(X,i). We can
define:

— InputSourceNodes(X,i) = SourceNodes(X.in[i].sourcelD){X.in[i].sourcelD}
— SourceNodes(X) = ¢ if X is an extractor,

SourceNodes(X) = U:lenputSourceNodes(X ,i) if X is a transformation or an

Inserter
— CommonNodes(X,i,j) = InputSourceNodes(X,i) N InputSourceNodes(X,j)
— LastNode(N) = {X € N: SourceNodes(X) = N\ {X}}
If for each node X of an extraction graph, which is not an extractor, the
following condition is satisfied:
AR ECN CommonNodes(X,i,j) =¢

Vv

ie[l,n] je[l,n]
then deadlock cannot occur. Otherwise deadlock is possible and we should use
VMQueue component and insert it into the graph, to avoid the application hang.
Insertion of VMQueue node makes sense only behind the nodes from a
LastNode(CommonNodes(X,1,j)) set, that is a set of the last nodes from the set of
common parts of the two data flow paths. In the example presented in the
previous section it was the FuT(11) node (Fig. 3b).

3.4. Temporary data buffering on disk

During an extraction process a large number of tuples is processed. When
they need to be buffered, there is a problem of selection of the right place for the
buffer. Keeping them in memory is impossible because the size of the data set is
usually much bigger than that of the available RAM. The only solution is storing
the data on a disk. Two approaches are possible: virtual memory supported by
the operating system or storing implemented on the application level in
algorithms used in transformation nodes. In our ETL-DR environment the nodes
using application-level virtual memory are: VMQueue, GroupTransformation
and JoinTransformation.

VMQueue Component. As it was presented in Sect. 3.2 VMQueue component
is a FIFO queue able to store the buffered data on a disk. Its task is to ensure the
data is read from its source as it comes, even if the node receiving data from
VMQueue does not work. In such a case tuples are stored in a disk file rather
than put into the output buffer. Next when possible, tuples are read from the file

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 19:51:05

Grouping and joining transformations in the data extraction process 141

and hand further. Because of a sequential access to the disk file, this solution is
more efficient than the OS-level virtual memory.

GroupTransformation Component. A grouping component can work in one of
three modes:

1. input tuples are sorted according to the grouping attribute values,

2. tuples are not sorted, grouping in memory,

3. tuples are not sorted, external grouping.

procedure Group()
Begin
List fileList;
While Input.hasTuples() do

Tuple T = Input.getTuple();

If not HM.contains(Attributes(T)) then
HM.put(Attributes(T), Aggregates(T));

End if

Aggregates AG = HM.get(Attributes(T));

AG.doAggregate(T);

If HM.size() > SIZELIMIT then
fileList.add(WriteToFile(HM));
HM.clear();

End if

End while

AggrSource as = getSource(fileList, HM);
Aggregates AG = null;

While as.hasNext() do

If AG == null then
AG = a.next();

Else
Aggregates newAG = as.next();

If (newAG.attr == AG.attr) then
AG.aggregate(newAG);
Else
ProduceOutputTuple(AG);
AG = newAG;
End if
End if
End while
ProduceOutputTuple(AG);
End

Fig. 4. External grouping algorithm

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 19:51:05

142 Marcin Gorawski, Pawel Marks

In case 1) aggregates are computed as they come, and memory usage level is
very low. In case 2) each new combination of the grouping attributes is saved in
a hash table with associated aggregates. If such a combination appears again
during processing, it is located and the aggregates are updated. The number of
entries in the hash table at the end of the processing equals to the number of
tuples produced. Both cases 1) and 2) use only RAM.

Case 3) has features of the processing used in cases 1) and 2). First, data set is
gathered in the hash table and aggregates are computed (Fig. 4). When the
number of entries in the table exceeds the specified limit, the content of the table
is written to the external file in the sorted order according to the grouping
attribute values. Next, the hash table is cleared and the processing is continued.
Such a cycle repeats until the input tuple stream ends. Then the data integration
process is run. Tuples are read from the previously created files and final
aggregates values are computed. This is very similar to case 1) processing with
the exception of getting data from external files instead of the node input.
JoinTransformation Component. A joining node works based on the
algorithm presented in Fig. 5. The first step is collecting tuples from the slave
input. They can be loaded to a temporary associating array or written to a
temporary disk file. Before writing to the file, tuples are sorted according to the
joining attributes using the external version of the standard Merge-Sort
algorithm: tuples are gathered in memory, if the limit of tuples in memory is
exceeded they are sorted and written to a file. Next portions of the data set are
treated in the same way. Finally, tuples from all the generated sorted files are
integrated into one big sorted file. Sorting lets us locate any tuple in the external
file in Jog(n) time using the binary search algorithm.

procedure Join()
Begin
While Input(2).hasTuples() do
Tuple T = Input(2).getTuple();
HM.put(Attributes(T), T);
End while
While Input(1).hasTuples() do
Tuple T = Input(1).getTuple();
Tuple[] TT = HM.get(Attributes(T));
For each JT in TT do
Tuple O = Join(T, JT);
ProduceOutputTuple(O);
End for
End while
End

Fig. 5. General joining algorithm

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 19:51:05

Grouping and joining transformations in the data extraction process 143

Additional indexing structure located in memory also decreases searching time,
by reducing the number of accesses to the file. The index holds locations of the
accessed tuples, which enables narrowing down the searching range when
accessing consecutive tuples.

The second phase is the same, no matter if the temporary buffer is located in
memory or on a disk. Only the implementation of the HM (HashMap) object
changes in the algorithm presented in Fig. 5. Each tuple from the primary input
is checked if it can be joined with tuples in the temporary buffer according to the
specified join condition.

4. External processing tests

For tests we used data files that forced Java Virtual Machine to use much
more memory than it was physically available. Tests were performed using the
computer with AMD Athlon 2000 processor working under WindowsXP
Professional. During tests we were changing the size of the available RAM.

4.1. Grouping test

Grouping was tested based on the extraction graph containing an extractor
FE, a grouping node GrT and an inserter / (Fig. 6). The extractor reads the tuple
stream with attributes (elD,date,value), in which for each employee e/D and for
each day of his work, the transaction values were saved. The number of
employee transactions per day varied from 1 to 20. The processing can be
described by SQL query as:

SELECT elD, date, sum(value) as sumVal, count(*) as trCount
FROM GI'TFE
GROUP BY elD, date

Fig. 6. Grouping test extraction graph

The processing time was measured depending on the number of input tuples
(10, 15, 20 and 25 millions) and the type of processing. The result chart contains
the total processing time (TT) and the moment of loading the first tuple to a
destination, so called Critical Time (CT). During all the tests using external
grouping (Ext) JVM was assigned only 100MB of RAM. During grouping in
memory, we examined the two cases: JVM memory was set with some margin
(Normal) and with a minimal possible amount of RAM (Hard) that guaranteed
successful completion of the task. The obtained results are shown in Fig. 7.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 19:51:05

144 Marcin Gorawski, Pawel Marks
8000
7000
£ 6000 -
[
£ 5000 -
2 4000
»
$ 3000 -
o
© 2000 -
o
1000
0 < —9
10m 15m 20m 25m
Number of input tuples
---9--- CTExX ---A--- CTIntNormal ---®--- CT IntHard
—o—TT Ext —&— TT IntNormal —®&—TT Int Hard

Fig. 7. Processing times measured during grouping test. 77 is a total processing time, whereas CT
denotes a moment when the first output tuple is produced (Critical Time)

The test computer contained 384MB physical RAM, and for JVM using
virtual memory and for 10m and 15m tuples it was assigned respectively 450MB
and 550MB during Normal test, then 300MB and 425MB during Hard test.

As it can be seen, the most efficient processing method is definitely the one
using application-level data storing. Its processing time changes from 129 sec. to
322 sec. depending on the number of input tuples. The use of OS-level virtual
memory causes that the whole process takes much more time. Only for 10
million of input tuples and strongly limited JVM memory, which resulted in a
very low usage of the virtual memory, we obtained results slightly better than for
built-in data storing. However, for 15 million tuples the processing takes an
extremely long time (the line going rapidly outside the chart). The main reason
for so low efficiency of a virtual memory are random accesses to the memory
caused by updating aggregates in temporary buffers and Java garbage collector.
The application-level storing accesses data files sequentially, and as a results this
method is much more efficient.

We have not finished the OS-level virtual memory tests for 20m and 25m
tuples because it needed extremely long time (several hours). Our goal was only
to show that the application-level buffering can be much better than the OS-level
buffering.

4.2. Joining test

Joining test is based on the extraction graph shown in Fig. 8. The extractors
read the same number of tuples: FE1 reads tuples with attributes

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 19:51:05

Grouping and joining transformations in the data extraction process 145

(elD,date,depID), describing where each employee was working each day,
whereas FFE2 reads a set of tuples produced in the previous test
(elD,date,sumVal,trCount). Joining attributes are (elD,date) and processing
times were measured for the following number of input tuples from each
extractor: 10, 15 and 20 millions.

FE2)
\/\

Fig. 8. Joining test extraction graph

During the test the computer was equipped with 256MB RAM, JVM was
assigned 100MB RAM when joining with data storing on disk was used, and
respectively 400MB and 600MB for 10 and 15 million of tuples when using
virtual memory. In this test we can still observe benefits of using application-
level data storing, but the difference in comparison to OS virtual memory is not
so big as in the grouping test because this time the external file is accessed
randomly, not sequentially. The obtained results are presented in Fig. 9.

8000 -
7000 -

Processing time [s]
N w N (&) (o]
o o o o o
o o o o o
o o o o o

1000 A
0 ? SSIOUUITTR ? SRR Y
10m 15m 20m

Number of input tuples

---#---CTExt ——TTExt ---A--- CTInt —A—TT Int

Fig. 9. Processing times measured during joining test. 77 is a total processing time, whereas CT
denotes a moment when the first output tuple is produced (Critical Time)

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 19:51:05

146 Marcin Gorawski, Pawel Marks

4.3. Real extraction test

We also performed a real extraction test. The ETL process generates a star
schema data warehouse containing a fact table and two dimensions. In this test,
both grouping and joining nodes appear in the extraction graph and they run
concurrently: when the grouping node GrT(2) produces output tuples, the joining
node JoT(30) puts them into its internal buffer (memory or a disk file). This test
lets us examine the behavior of the buffering techniques when more than one
node require a lot of memory resources.

The size of the input data set was 300MB. JVM required 475MB RAM to
complete the task using virtual memory, and only 100MB when using
application-level data storing. The computer had 256MB RAM. The ETL
process using data storing took only 26 minutes, whereas when using the virtual
memory, it needed 3 hours to complete only 10% of the whole task (the whole
processing could take even 30 hours). Continuation of the test did not make
sense, because we could already conclude that in this case the efficiency of the
virtual memory was extremely low.

ﬁ.ﬁ.

.*.*“
D

Fig. 10. The main part of the extraction graph generating star schema data warehouse. Path FE(1)-
FI(32) generates fact table, whereas path FE(1)-FI(5) is responsible for producing one of the
dimension tables. Extractor FE(1) reads 300MB data file

In our opinion the obtained results come from of the random accesses to the
VM swap file. When many nodes keep a lot of data in a virtual memory and
access it randomly (because each node runs as an independent thread) the swap
file has to be read and written very often from various locations. This does not
take place during application-level buffering, the external files are accessed
sequentially if only it is possible (depending on the algorithm that is used).

5. Conclusions

This paper presents a concept of describing extraction processes using graphs,
the meaning of graph nodes and the graph edges in the extraction process. We
focused on a few implementation aspects like interconnections between nodes
and the possibility of deadlock occurrence when particular graph structures are
used. A method of avoiding deadlocks was also presented and it was described

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 19:51:05

Grouping and joining transformations in the data extraction process 147

by mathematical formulas. Next we introduced algorithms for external data
queuing, groping and joining.

Although not tested in this paper, the presented data queuing is the efficient
method of avoiding deadlocks that may occur in our ETL-DR extraction
environment due to the data transferring method we used. The grouping
transformation can process data sets of any size, the only limitation is the
available temporary disk space. It makes use of the additional tuple stream
properties, such as sorted order according to the values of the grouping
attributes. The joining transformation can also process an unlimited number of
tuples. It can store its slave-input tuples to disk files in a sorted order and then
access any tuple in the file in log(n) time.

Our research proves that a virtual memory offered by operating systems is not
always the efficient solution. Dedicated algorithms of storing data in external
files working on the application level are more efficient due to elimination of
random accesses to a disk, which is the weakest side of the OS virtual memory.
This weakness is especially emphasized in Java applications. A typical JVM
prefers allocating new memory blocks to freeing unnecessary ones as soon as
possible. This may be very efficient when only physical RAM is in use, but
when JVM enters a virtual memory area and a garbage collector tries to recover
unused memory blocks from it, the efficiency of a whole application
dramatically drops.

References

[1] Vassiliadis P., Simitsis A., Skiadopoulos S., Modeling ETL Activities asGraphs. InProc. 4th
Intl. Workshop on Design and Management of Data Warehouses, Canada, (2002).

[2] Vassiliadis P., Simitsis A., Georgantas P., Terrovitis M., it A Framework for the Design of
ETL Scenarios, CAiSE, (2003).

[3] Galhardas H., Florescu D., Shasha D., Simon E., 4jax: An Extensible Data Cleaning-Tool. In
Proc. ACM SIGMOD Intl. Conf. On the Management of Data, Teksas, (2000).

[4] Gorawski M., Piekarek M., Development Environment ETL/JavaBeans. Studia Informatica,
24 4(56) (2003).

[5] Gorawski M., Sidemak P., Graphic Design of ETL Applications. Studia Informatica, 24 4(56)
(2003).

[6] Bruckner R., List B., Schiefer J., Striving Towards Near Real-Time Data Integration for Data
Warehouses. DaWak, (2002).

[71 Gorawski M., Marks P., High Efficiency of Hybrid Resumption in Distributed Data
Warehouses. HADIS, (2005).

[8] Gorawski M., Woclaw A., Evaluation of the Efficiency of Design-Resume/JavaBeans
Recovery Algorithm. Archives of Theoretical and Applied Informatics, 15(1) (2003).

http://www.tcpdf.org

