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Abstract

All the existing computers are able to do arithmetical operations only with finite numerals.
Operations with infinite and infinitesimal quantities could not be realized. The paper describes a
new positional system with infinite radix allowing us to write down finite, infinite, and
infinitesimal numbers as particular cases of a unique framework. The new approach both gives
possibilities to do calculations of a new type and simplifies fields of mathematics where usage of
infinity and/or infinitesimals is required. Usage of the numeral system described in the paper gives
possibility to introduce a new type of computer — Infinity Computer — able to operate not only with
finite numbers but also with infinite and infinitesimal ones.

1. Introduction

Problems related to the idea of infinity are among the most fundamental and
have attracted the attention of the most brilliant thinkers throughout the whole
history of humanity. Numerous trials (see [1-7]) have been done in order to
evolve existing numeral systems and to include infinite and infinitesimal
numbers in them. To emphasize importance of the subject it is sufficient to
mention that the Continuum Hypothesis related to infinity has been included by
David Hilbert as the problem number one in his famous list of 23 unsolved
mathematical problems that have influenced strongly development of
Mathematics and Computer Science in the XXth century (see [5]).

The point of view on infinity accepted nowadays is based on the famous ideas
of Georg Cantor (see [1]) who has shown that there exist infinite sets having a
different number of elements. However, it is well known that Cantor’s approach
leads to some paradoxes. The most famous and simple of them is, probably,
Hilbert’s paradox of the Grand Hotel (see, for example, [8]). Problems arise also
in connection with the fact that usual arithmetical operations have been
introduced for a finite number of operands.
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There exist different ways to generalize traditional arithmetic for finite
numbers to the case of infinite and infinitesimal numbers (see [1,3,6,7,9]).
However, arithmetics developed for infinite numbers are quite different with
respect to the finite arithmetic we are used to deal with. Moreover, very often
they leave many undetermined operations where infinite numbers take part (for
example, infinity minus infinity, infinity divided by infinity, sum of infinitely
many items, etc.) or use representation of infinite numbers based on infinite
sequences of finite numbers. These crucial difficulties did not allow people to
construct computers that would be able to work with infinite and infinitesimal
numbers in the same manner as we are used to do with finite numbers.

In fact, in modern computers, only arithmetical operations with finite
numbers are realized. Numbers can be represented in computer systems in
various ways using positional numeral systems with a finite radix . We remind
that numeral is a symbol or group of symbols that represents a number. The
difference between numerals and numbers is the same as the difference between
the words and the things they refer to. A number is a concept that a numeral
expresses. The same number can be represented by different numerals. For
example, the symbols ‘3°, ‘three’, and ‘III’ are different numerals, but they all
represent the same number.

Usually, when mathematicians deal with infinite objects (sets or processes) it
is supposed that human beings are able to perform certain operations infinitely
many times. For example, in a fixed numeral system it is possible to write down
a numeral with any number of digits. However, this supposition is an abstraction
(courageously declared by constructivists e.g, in [10]) because we live in a finite
world and all human beings and/or computers finish operations they have
started.

The point of view proposed in this paper does not use this abstraction and,
therefore, is closer to the world of practical calculus than the traditional
approaches. On one hand, we assume existence of infinite sets and processes. On
the other hand, we accept that any of the existing numeral systems allows one to
write down only a finite number of numerals and to do a finite number of
operations. Thus, the problem we deal with can be formulated as follows: How
to describe infinite sets and infinite processes by a finite number of symbols and
how to do calculations with them?

The second important point in the paper is linked to the latter part of this
question. The goal of the paper is to construct a new numeral system that would
allow us to introduce and to treat infinite and infinitesimal numbers in the same
manner as we are used to do with finite ones, i.e., by applying the philosophical
principle of Ancient Greeks ‘the part is less than the whole’ which, in our
opinion, reflects very well the world around us but is not incorporated in
traditional infinity theories.
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Of course, due to this more restrictive and applied statement, such concepts as
bijection, numerable and continuum sets, cardinal and ordinal numbers cannot
be used in this paper. However, the approach proposed here does not contradict
Cantor. In contrast, it evolves his deep ideas regarding existence of different
infinite numbers.

Let us start our consideration by studying situations arising in practice when
it is necessary to operate with extremely large quantities (see [8] for a detailed
discussion). Imagine that we are in a granary and the owner asks us to count how
much grain he has inside it. There are a few possibilities of finding an answer to
this question. The first one is to count the grain seed by seed. Of course, nobody
can do this because the number of seeds is enormous.

To overcome this difficulty, people take sacks, fill them in with seeds, and
count the number of sacks. It is important that nobody counts the number of
seeds in a sack. At the end of the counting procedure, we shall have a number of
sacks completely filled and some remaining seeds that are not sufficient to
complete the next sack. At this moment it is possible to return to the seeds and to
count the number of remaining seeds that have not been put in sacks (or a
number of seeds that it is necessary to add to obtain the last completely full
sack).

If the granary is huge and it becomes difficult to count the sacks, then trucks
or even big train waggons are used. Of course, we suppose that all sacks contain
the same number of seeds, all trucks — the same number of sacks, and all
waggons — the same number of trucks. At the end of counting we obtain a result
in the following form: the granary contains 16 waggons, 19 trucks, 12 sacks, and
4 seeds of grain. Note, that if we add, for example, one seed to the granary, we
can count it and see that the granary has more grain. If we take out one waggon,
we again be able to say how much grain has been subtracted.

Thus, in our example it is necessary to count large quantities. They are finite
but it is impossible to count them directly using elementary units of measure, u,
i.e., seeds, because the quantities expressed in these units would be too large.
Therefore, people are forced to behave as if the quantities were infinite.

To solve the problem of ‘infinite’ quantities, new units of measure, u;, u, and
u3 are introduced (units u; — sacks, u, — trucks, and u; — waggons). The new units
have the following important peculiarity: it is not known how many units u;
there are in the unit u;1; (we do not count how many seeds are in a sack, we just
complete the sack). Every unit u;, is filled in completely by the units ;. Thus,
we know that all the units u; contain a certain number K; of units u; but this
number, K;, is unknown. Naturally, it is supposed that K; is the same for all
instances of the units. Thus, numbers that it was impossible to express using
only initial units of measure are perfectly expressible if new units are introduced.

This key idea of counting by introduction of new units of measure will be
used in the paper to deal with infinite quantities. In Section 2, we introduce a
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new positional system with infinite radix allowing us to write down not only
finite but infinite and infinitesimal numbers too. In Section 3, we describe
arithmetical operations for all of them. Applications dealing with infinite sets,
divergent series, and limits viewed from the positions of the new approach can
be found in [8] and are not discussed in this paper. After all, Section 4 concludes
the paper.

We conclude this Introduction by emphasizing that the goal of the paper is
not to construct a complete theory of infinity and to discuss such concepts as, for
example, ‘set of all sets’. In contrast, the problem of infinity is considered from
positions of applied mathematics and theory and practice of computations —
fields being among the main scientific interests (see, for example, [8,11]) of the
author. A new viewpoint on infinity and the corresponding mathematical and
computer science tools are introduced in the paper in order to give possibilities
to solve applied problems.

2. Infinite and infinitesimal numbers

Different numeral systems have been developed by humanity to describe
finite numbers. More powerful numeral systems allow one to write down more
numerals and, therefore, to express more numbers. However, in all existing
numeral systems allowing us to do calculations numerals corresponding only to
finite numbers are used. Thus, in order to have a possibility to write down
infinite and infinitesimal numbers by a finite number of symbols, we need at
least one new numeral expressing an infinite (or an infinitesimal) number. Then,
it is necessary to propose a new numeral system fixing rules for writing down
infinite and infinitesimal numerals and to describe arithmetical operations with
them.

Note that introduction of a new numeral for expressing infinite and
infinitesimal numbers is similar to introduction of the concept of zero and the
numeral ‘0’ that in the past have allowed people to develop positional systems
being more powerful than numeral systems existing before.

In positional numeral systems fractional numbers are expressed by the record

(anaH eyl A4y O A )b (1)
where numerals a, —g<i<n are called digits, belong to the alphabet
{0,1,...,b—1}, and the dot is used to separate the fractional part from the integer
one. Thus, the numeral (1) is equal to the sum

ab" +a, b +orap +ab’ va b +ota b va b (2)

In modern computers, the radix b =2 with the alphabet {0,1} is mainly used
to represent numbers.

Record (1) uses numerals consisting of one symbol each, i.e., digits
a; € {0,1,...,b—1}, to express how many finite units of the type b belong to the
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number (2). Quantities of finite units 4’ are counted separately for each exponent
i and all symbols in the alphabet {0,1,...,6—1} express finite numbers.

A new positional numeral system with infinite radix described in this section
evolves the idea of separate count of units with different exponents used in
traditional positional systems to the case of infinite and infinitesimal numbers.
The infinite radix of the new system is introduced as the number of elements of
the set NV of natural numbers expressed by the numeral @ called grossone. This
mathematical object is introduced by describing its properties postulated by the
Infinite Unit Axiom consisting of three parts: Infinity, Identity, and Divisibility
(we introduce them soon). This axiom is added to those for real numbers
similarly to addition of the axiom determining zero to the axioms of natural
numbers when integer numbers are introduced. This means that it is postulated
that associative and commutative properties of multiplication and addition,
distributive property of multiplication over addition, existence of inverse
elements with respect to addition and multiplication hold for grossone as for
finite numbers.

Note that usage of a numeral indicating totality of the elements we deal with
is not new in mathematics. It is sufficient to remind the theory of probability
where events can be defined in two ways. First, as union of elementary events;
second, as a sample space, Q, of all possible elementary events from where
some elementary events have been excluded. Naturally, the second way to define
events becomes particularly useful when the sample space consists of infinitely
many elementary events.

— Infinity. For any finite natural number 7 it follows n < @.

— lIdentity. The following relations link @ to identity elements 0 and 1

0-0=0-0=0, C%®=O,E%=L @°=1, 1¥=1. (3)

— Divisibility. For any finite natural number n sets N,, 1<k <n being the

nth parts of the set, N, of natural numbers have the same number of
elements indicated by the numeral @/n where

N,, ={kk+nk+2nk+3n.}, 1<k<n, |JN,, =N. )
k=1
For example for n = 1,2,3 we have

©—->N={1,2,3,4,56,7,...}

o ANz U 3, 5, 7, .}
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N,= {L 4, 7, )
/
%%Nu: { 2, 5, g
N
Ny;= | 3, 6, e}

Before the introduction of the new positional system let us see some
properties of grossone. Its role in infinite arithmetic is similar to the role of
number 1 in the finite one and it will serve us as the basis for construction of
other infinite numbers. It is important to emphasize that to introduce @/n we do
not try to count elements k, k+n, k+2n, k+3n, ... In fact, we cannot do this
since our possibilities to count are limited and, therefore, we are not able to
count for infinity. In contrast, we postulate following the above mentioned
Ancient Greeks’ principle the part is less than the whole (see [8,9,12,] for
detailed discussions on such a kind of approaches) that the number of elements
of the nth part of the set, i.e., @/n, is n times less than the number of elements
of the whole set, i.e., than @©. In terms of our granary example @ can be
interpreted as the number of seeds in the sack. Then, if the sack contains @
seeds, its nth part contains @/n seeds.

The numbers @/n have been introduced as numbers of elements of sets Ny,
thus, they are integer. For example, due to the introduced axiom, the set

N,s= {2,7,12,...}
has @/5 elements and the set
N,,, =1{3.13,23,..}

has @/10 elements.

The number of elements of sets being union, intersection, difference, or
product of other sets of the type N, is defined in the same way as these
operations are defined for finite sets. Thus, we can define the number of
elements of sets being results of these operations with finite sets and infinite sets
of the type N,,. For instance, the number of elements of the set

N, UN,,,u{2,3,4,5}
is 9+9+2 because
5 10

N,; N, =0, 2eN,;, 3eN;,.

It is worthwhile noticing that, as it is for finite sets, infinite sets constructed
using finite sets and infinite sets of the type N, have the same number of
elements independently of objects outside the sets. A general rule for
determining the number of elements of infinite sets having a more complex
structure can be also given but it is not discussed in this paper (see [8]).
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Introduction of the numeral @ allows us to write down the set, N, of natural

numbers in the form
N={1,2,3, .. @2, @®-1, @}. (5)

It is worthwhile noticing that set (5) is the same set of natural numbers we are
used to dealing. We have introduced grossone as the quantity of natural
numbers. Thus, it is the biggest natural number and numbers

.. @3, ©-2, ®-1 (6)
less than grossone are natural numbers as the numbers 1,2,3,... The difficulty to
accept existence of infinite natural numbers is in the fact that traditional numeral
systems did not allow us to see these numbers. Similarly, primitive tribes
working with unary numeral system were able to see only numbers 1, 2, and 3
because they operated only with numerals /, /7, /I and did not suspect existence
of other natural numbers. For them, all quantities bigger than /I were just
‘many’ and such operations as //+ Il and [+ [ll give the same result, i.c.,
‘many’. Note that this happens not because /7 + [II = I + III but due to weakness
of this primitive numeral system. This weakness leads also to such results as
‘many’+ 1 = ‘many’ and ‘many’+ 2 = ‘many’ which are very familiar to us in
the context of views on infinity used in the traditional calculus:
0+1=00, 0+2=00.

As an example let us consider a numeral system S able to express only
numbers | and 2 by the numerals ‘1’ and ‘2’ (this system is even simpler than
that of primitive tribes which was able to express three natural numbers). If we
add to this system the new numeral @ it becomes possible to express the
following numbers

@ © 00 O

12, o =22 1= 2242, . 1-20-10.
e 2 2 2°2 2 W
infinite '

In this record the first two numbers are finite, the remaining eight are infinite,
and dots show the natural numbers that are not expressible in this numeral
system. This numeral system does not allow us to do such operations as 2 + 2 or
2+ @®/2 +2 because their results cannot be expressed in this system but, of
course, we do not write that results of these operations are equal, we just say that
the results are not expressible in this numeral system and it is necessary to take
another, more powerful one.

The introduction of grossone allows us to obtain the following interesting
result: the set N is not a monoid under addition. In fact, the operation @ + 1
gives us as the result a number greater than ©. Thus, by definition of grossone,
@ + 1 does not belong to N and, therefore, N is not closed under addition and is
not a monoid.
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This result also means that adding the Infinite Unit Axiom to the axioms of
natural numbers defines the set of extended natural numbers indicated as N and

including N as a proper subset

N = {12, 0-10,0+1,...0*- 10" @*+1,..}

Again, extended natural numbers greater than grossone can also be
interpreted in the terms of sets of numbers. For example, @ + 3 as the number of

elements of the set NU{a,b,c} where numbers a,b,c¢N and @ as the

number of elements of the set Nx N . In terms of our granary example @ + 3 can
be interpreted as a sack plus three seeds and @ as a truck.

We have already started to write down simple infinite numbers and to do
arithmetical operations with them without focusing our attention upon this
question. Let us consider it systematically.

To express infinite and infinitesimal numbers we shall use records that are
similar to (1) and (2) but have some peculiarities. In order to construct a number
C in the new numeral positional system with base @ we subdivide C into groups
corresponding to powers of @:

C=c, @"+..+c, @"+c, D" +c, O™ +..+¢c, D", (7

Then, the record
C=c, @"..c,@"c, @"c, @"'..c, O ®)

€y
represents the number C, symbols ¢; are called grossdigits, symbols p; are called
grosspowers. The numbers p; are such that p, > 0, po =0, p_; <0 and

P > Py > D2 > D> Py > Py > Dy > Py

In the traditional record (1) there exists a convention that a digit a; shows how
many powers b; are present in the number and the radix b is not written
explicitly. In record (8) we write @” explicitly because in the new numeral
positional system the number i in general is not equal to the grosspower p;. This
gives possibility to write, for example, such numbers as 7@***°3®* where
P1= 244.5,]?,1 =-32.

Finite numbers in this new numeral system are represented by numerals
having only one grosspower equal to zero. In fact, if we have a number C such
that m = k= 0 in representation (8), then due to (3) we have C = co®@° ¢o. Thus,
the number C in this case does not contain infinite and infinitesimal units and is
equal to the grossdigit ¢, which being a conventional finite number can be
expressed in the form (1), (2) by any positional system with finite base b (or by
another numeral system). It is important to emphasize that the grossdigit ¢, can
be integer or fractional and can be expressed by a few symbols in contrast to the
traditional record (1) where each digit is integer and is represented by one
symbol from the alphabet {0,1,2,...,b—1}. Thus, the grossdigit ¢, shows how
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many finite units and/or parts of the finite unit, 1 = @°, there are in the number
C. Grossdigits can be written in positional systems, in the form p/g where p and
g are integer numbers, or in any other finite numeral system.

Analogously, in the general case, all grossdigits ¢;—k <i <m can be integer or
fractional and expressed by many symbols. For example, the number
(7/3)@*(84/19)@ " has grossdigits ¢, = 7/3 and c_3, = 84/19. All grossdigits can
also be negative; they show how many corresponding units should be added or
subtracted in order to form the number C.

Infinite numbers are written in this numeral system as numerals having
grosspowers  greater than zero, for example 7®***°3@* and
2@™3@°37@211@ " are infinite numbers. In the following example the left-
hand expression presents the way of writing down infinite numbers and the
right-hand shows how the value of the number is calculated:

15@17.2045@°(-52.1)@°= 150" +17.20450° -52.10°°
If a grossdigit ¢, is equal to 1 then we write @” instead of 1®".

Analogously, if power @ is the lowest in a number then we often use simply the
corresponding grossdigit ¢, without @°, for instance, we write 23®'*5 instead of
23®'*5@° or 3 instead of 3@,

Numerals having only negative grosspowers represent infinitesimal numbers.
The simplest number from this group is @' = 1/® being the inverse element
with respect to multiplication for @:

1 D=1 SL 1 9
@ @

Note that all infinitesimals are not equal to zero. Particularly, 1/® > 0 because
1>0 and @ > 0. It has a clear interpretation in our granary example. Namely, if
we have a sack and it contains @ seeds then one sack divided by @ is equal to
one seed. Vice versa, one seed, i.e., 1/®, multiplied by the number of seeds in
the sack, @, gives one sack of seeds.

Inverse elements of more complex numbers including grosspowers of @ are
defined by a complete analogy. The following two numbers are examples of
infinitesimals 3@, 37@ 2, (-1 1)@ .

3. Arithmetical operations with infinite, infinitesimal, and finite numbers

Let us now introduce arithmetical operations for infinite, infinitesimal, and
finite numbers. The operation of addition of two given infinite numbers 4 and B
(the operation of subtraction is a direct consequence of that of addition and is
thus omitted) returns as the result an infinite number C

A:iak,'@k" B:ibm/@mj’ C:ich®l” (10)
Jj=1 i=1

i=l1
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where C is constructed by including in it all items a, @" from A4 such that

k,#m;, 1< j<M and all items b, @" from B such that m,#k,1<i<K.If
in 4 and B there are items such that k;=m; for some i and j then this

grosspower k; is included in C with the grossdigit b, +a,, ie., as
(bk. +a, )@k" . It can be seen from this definition that the introduced operation

enjoys the usual properties of commutativity and associativity due to definition
of grossdigits and the fact that addition for each grosspower of @ is done
separately.

Let us illustrate the rules by an example (in order to simplify the presentation
in all the following examples the radix »=10 is used for writing down
grossdigits). We consider two infinite numbers 4 and B where

A4=1650*"*(-12)0"170°1.17@"
B=230"6.23010.10°(~1.17)®°11@*
Their sum C is calculated as follows
C=A4+B=1650"+(-12)@"+17@"+1.17®7+
230"+6.230°+10.10°-1.1707° +110 =
16.50*2423@" 120" +6.23@° +
(17+10.1)@°+(1.17 -1.17)@7+11@ "=
16,502 423@0"-120"+6.230°+27.10°+1 10" =
16.50%2230"(-12)®"6.230°27.10°11@*
The operation of multiplication of two given infinite numbers 4 and B from
(10) returns and as a result the infinite number C is constructed as follows.
M K
C=)C, Cy=b, ®"-A4=) ab, @™, 1<j<M (11)
j=1 i=1
Similarly to addition, the introduced multiplication is commutative and
associative. It is easy to show that the distributive property is also valid for these
operations.

Let us illustrate this operation by the following example. We consider two
infinite numbers

A=0"(-5)®*(-3)@'0.2, B=0(-1)@'70®"
and calculate the product C = B - 4. The first partial product C; is equal to
C =707 4=70"(0"*-50*-30'+0.2) =
TOP 35072107 +1.407°=70"(-35)D7'(-21)D*1.40°".

The other two partial products, C, and C;, are computed analogously:
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C,=-0"4=-0'(D"-50"-30'+0.2) = - 50°30*(-0.2)D',

C, =04 =0(D"-50°-30'+0.2) =0 (-5)D*(-3)D’0.2@".
Finally, by taking into account that grosspowers @ and @* belong to both C,
and C; and, therefore, it is necessary to sum up the corresponding grossdigits,

the product C is equal (due to its length, the number C is written in two lines) to
C=C +C, +C, =0"(-1)@"70"(-5)0*2@°3.21°
(-0.2)@'(-35)@7(-21)@71.40°.

In the operation of division of a given infinite number C by an infinite
number B we obtain an infinite number 4 and a reminder R that can be also
equal to zero, i.e., C=A-B+R.

The number A4 is constructed as follows. The numbers B and C are
represented in the form (10). The first grossdigit ¢, and the corresponding

maximal exponent kg are established from the equalities

a, =¢ /b, , ke=I[—m,. (12)
Then the first partial reminder R, is calculated as
R =C-a, ®*%B. (13)

If R #0 then the number C is substituted by R, and the process is repeated
by a complete analogy. The grossdigit @, , the corresponding grosspower kx|

and the partial reminder R+, are computed by formulae (14) and (15) obtained
from (12) and (13) as follows: /; and ¢, are substituted by the highest

grosspower n; and the corresponding grossdigit 7, of the partial reminder R; that

in its turn substitutes C:

ak}(,, = rn, /me ’ kK*i = ni - mM (14)
R =R —a, 172 -B, i>1 (15)

The process stops when a partial reminder equal to zero is found (this means
that the final reminder R =0) or when a required accuracy of the result is
reached.

The operation of division will be illustrated by two examples. In the first
example we divide the number C=-100’160°42@®" by the number
B =5®"7 . For these numbers we have

l,=3, m, =3, ¢ =-10, b, =5

It follows immediately from (12) that a, @ =-2@". The first partial

reminder R, is calculated as
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R =-100'160°4207 (20" )-5@°7 =

-100°160° 420 +10@°14@° = 300° 42@".
By a complete analogy we should construct a; ®* by rewriting (12) for

R;. By doing so we obtain equalities
30=q, -5 0=k, +3
and, as the result, @, @*1= 6@ . The second partial reminder is
R, =R —607.50°7=300°420"-300° 420 =0.

Thus, we can conclude that the reminder R = R, =0 and the final result of
divisionis 4=-2@°6D".

Let us now substitute the grossdigit 42 by 40 in C and divide this new number
C=-100’160°40@ by the same number B =5®°7 . This operation gives us
the same result 4> = A4=-2@"6®" (where subscript 2 indicates that two partial
reminders have been obtained) but with the reminder R=R,=-2@07. Thus, we
obtain C=B-4>+R,. If we want to continue the procedure of division, we
obtain As =-2@°6@(~0.4)®° with the reminder R =0.28@°. Naturally, it

follows C=B-As + Rs. The process continues until a partial reminder R/ =0 is
found or when a required accuracy of the result will be reached.

In all the examples above we have used grosspowers being finite numbers.
However, all the arithmetical operations work by a complete analogy also for
grosspowers being themselves numbers of the type (8). For example, if

X =16.50“27Y (_12)02°1.1707,
Y = 23@414.2@,17@*3 (_1 ) 17)®731 1®4®*23 ,

then their sum Z is calculated as follows
Z7=X+Y= :,’9‘5®44.2®1A17®’3 (_12)@)121721 1®4®’23

4. Conclusions

In this paper, a new positional numeral system with infinite radix has been
described. This system allows us to express by a finite number of symbols not
only finite numbers but infinite and infinitesimals too. All of them can be
viewed as particular cases of a general framework used to express numbers.

It has been shown in [13] that the new approach allows us to construct a new
type of computer — Infinity Computer — able to operate with finite, infinite, and
infinitesimals quantities. Numerous examples dealing with infinite sets and
processes, divergent series, limits, and measure theory viewed from the positions
of the new approach can be found in [8]. We conclude this paper just by one
example showing the potential of the new approach. We consider two infinite
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series S, =1+1+1+... and S, =3+3+3+... The traditional analysis gives us a

very poor answer that both of them diverge to infinity. Such operations as
S, =S, or §//S, are not defined.

In our terminology divergent series do not exist. Now, when we are able to
express not only different finite numbers but also different infinite numbers, the
records S; and S, are not well defined. It is necessary to indicate explicitly the
number of items in the sum and it is not important if it finite or infinite. To
calculate the sum it is necessary that the number of items and the result are
expressible in the numeral system used for calculations. It is important to notice
that even though a sequence cannot have more than @ elements the number of
items in a series can be greater than grossone because the process of summing
up is not necessary. This should be done by a sequential adding items.

Suppose that the series S; has k items and S, has n items:
Si(k)=1+1+1+..41, S,(n)=3+3+3+..43

k n

Then S, (k)=k and S,(n)=3n for any values of k and n — finite or infinite.

By giving numerical values to k& and n we obtain numerical values for the sums.
If, for instance, k = n = @ then we obtain S, (5@)=5®, S, (5®)=15® and

S, (5@)-S,(50) =100> 0.
If k=5® and n = @ we obtain S, (5@)=5®, S,(®)=3D and it follows
S,(@)-8,(50)=-20<0.
If k=3® and n = @ we obtain S, (3®)=3@, S,(®)=3D and it follows
S,(@)-5,(30)=0
Analogously, the expression S(k)/S,(n) can be calculated.

References

[1] Cantor G., Contributions to the founding of the theory of transfinite numbers. Dover
Publications, New York, (1955).

[2] Cohen P.J., Set theory and the Continuum Hypothesis, Benjamin. New York, (1966).

[3] Conway J.H., Guy R.K., The book of numbers. Springer-Verlag, New York, (1996).

[4] Godel K., The consistency of the Continuum-Hypothesis. Princeton University Press,
Princeton, (1940).

[5] Hilbert D., Mathematical problems: Lecture delivered before the International Congress of
Mathematicians at Paris in 1900. Bulletin of the American Mathematical Society, 8 (1902)
437.

[6] Loeb P.A., Wolff M.P.H., Nonstandard analysis for the working mathematician. Kluwer
Academic Publishers, Dordrecht, (2000).

[7] Robinson A., Non-standard analysis. Princeton University Press, Princeton, (1996).

[8] Sergeyev Ya.D., Arithmetic of infinity. Edizioni Orizzonti Meridionali, CS, (2003).



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 12:34:15

Mathematical foundations of the infinity computer 33

[9] Benci V., Di Nasso M., Numerosities of labeled sets: a new way of counting. Advances in
Mathematics, 173 (2003) 50.

[10] Markov A.A. Jr., Nagorny N.M., Theory of algorithms, second ed. . FAZIS, Moscow, (1996).

[11] Strongin R.G., Sergeyev Ya.D., Global optimization and non-convex constraints: Sequential
and parallel algorithms. Kluwer Academic Publishers, Dordrecht, (2000).

[12] Mayberry J.P., The foundations of mathematics in the theory of sets. Cambridge University
Press, Cambridge, (2001).

[13] Sergeyev Ya.D., Computer system for storing infinite, infinitesimal, and finite quantities and
executing arithmetical operations with them. patent application, 08.03.04.


http://www.tcpdf.org

