
 

Annales UMCS Informatica AI 4 (2006) 20-33 
Annales UMCS 

Informatica 
Lublin-Polonia  

Sectio AI 
http://www.annales.umcs.lublin.pl/ 

 
Mathematical foundations of the infinity computer 

 
Yaroslav D. Sergeyev* 

 
Dipartimento di Elettronica, Informatica e Sistemistica, Università della Calabria,  

Via P. Bucci, Cubo 41-C, 87030 Rende (CS), Italy 
Software Department, N. I. Lobatchevsky State University, Nizhni Novgorod, Russia 

 
Abstract 

All the existing computers are able to do arithmetical operations only with finite numerals. 
Operations with infinite and infinitesimal quantities could not be realized. The paper describes a 
new positional system with infinite radix allowing us to write down finite, infinite, and 
infinitesimal numbers as particular cases of a unique framework. The new approach both gives 
possibilities to do calculations of a new type and simplifies fields of mathematics where usage of 
infinity and/or infinitesimals is required. Usage of the numeral system described in the paper gives 
possibility to introduce a new type of computer – Infinity Computer – able to operate not only with 
finite numbers but also with infinite and infinitesimal ones.  

 
1. Introduction 

Problems related to the idea of infinity are among the most fundamental and 
have attracted the attention of the most brilliant thinkers throughout the whole 
history of humanity. Numerous trials (see [1-7]) have been done in order to 
evolve existing numeral systems and to include infinite and infinitesimal 
numbers in them. To emphasize importance of the subject it is sufficient to 
mention that the Continuum Hypothesis related to infinity has been included by 
David Hilbert as the problem number one in his famous list of 23 unsolved 
mathematical problems that have influenced strongly development of 
Mathematics and Computer Science in the XXth century (see [5]).  

The point of view on infinity accepted nowadays is based on the famous ideas 
of Georg Cantor (see [1]) who has shown that there exist infinite sets having a 
different number of elements. However, it is well known that Cantor’s approach 
leads to some paradoxes. The most famous and simple of them is, probably, 
Hilbert’s paradox of the Grand Hotel (see, for example, [8]). Problems arise also 
in connection with the fact that usual arithmetical operations have been 
introduced for a finite number of operands.  
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There exist different ways to generalize traditional arithmetic for finite 
numbers to the case of infinite and infinitesimal numbers (see [1,3,6,7,9]). 
However, arithmetics developed for infinite numbers are quite different with 
respect to the finite arithmetic we are used to deal with. Moreover, very often 
they leave many undetermined operations where infinite numbers take part (for 
example, infinity minus infinity, infinity divided by infinity, sum of infinitely 
many items, etc.) or use representation of infinite numbers based on infinite 
sequences of finite numbers. These crucial difficulties did not allow people to 
construct computers that would be able to work with infinite and infinitesimal 
numbers in the same manner as we are used to do with finite numbers.  

In fact, in modern computers, only arithmetical operations with finite 
numbers are realized. Numbers can be represented in computer systems in 
various ways using positional numeral systems with a finite radix b. We remind 
that numeral is a symbol or group of symbols that represents a number. The 
difference between numerals and numbers is the same as the difference between 
the words and the things they refer to. A number is a concept that a numeral 
expresses. The same number can be represented by different numerals. For 
example, the symbols ‘3’, ‘three’, and ‘III’ are different numerals, but they all 
represent the same number.  

Usually, when mathematicians deal with infinite objects (sets or processes) it 
is supposed that human beings are able to perform certain operations infinitely 
many times. For example, in a fixed numeral system it is possible to write down 
a numeral with any number of digits. However, this supposition is an abstraction 
(courageously declared by constructivists e.g, in [10]) because we live in a finite 
world and all human beings and/or computers finish operations they have 
started.  

The point of view proposed in this paper does not use this abstraction and, 
therefore, is closer to the world of practical calculus than the traditional 
approaches. On one hand, we assume existence of infinite sets and processes. On 
the other hand, we accept that any of the existing numeral systems allows one to 
write down only a finite number of numerals and to do a finite number of 
operations. Thus, the problem we deal with can be formulated as follows: How 
to describe infinite sets and infinite processes by a finite number of symbols and 
how to do calculations with them?  

The second important point in the paper is linked to the latter part of this 
question. The goal of the paper is to construct a new numeral system that would 
allow us to introduce and to treat infinite and infinitesimal numbers in the same 
manner as we are used to do with finite ones, i.e., by applying the philosophical 
principle of Ancient Greeks ‘the part is less than the whole’ which, in our 
opinion, reflects very well the world around us but is not incorporated in 
traditional infinity theories.  
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Of course, due to this more restrictive and applied statement, such concepts as 
bijection, numerable and continuum sets, cardinal and ordinal numbers cannot 
be used in this paper. However, the approach proposed here does not contradict 
Cantor. In contrast, it evolves his deep ideas regarding existence of different 
infinite numbers.  

Let us start our consideration by studying situations arising in practice when 
it is necessary to operate with extremely large quantities (see [8] for a detailed 
discussion). Imagine that we are in a granary and the owner asks us to count how 
much grain he has inside it. There are a few possibilities of finding an answer to 
this question. The first one is to count the grain seed by seed. Of course, nobody 
can do this because the number of seeds is enormous.  

To overcome this difficulty, people take sacks, fill them in with seeds, and 
count the number of sacks. It is important that nobody counts the number of 
seeds in a sack. At the end of the counting procedure, we shall have a number of 
sacks completely filled and some remaining seeds that are not sufficient to 
complete the next sack. At this moment it is possible to return to the seeds and to 
count the number of remaining seeds that have not been put in sacks (or a 
number of seeds that it is necessary to add to obtain the last completely full 
sack).  

If the granary is huge and it becomes difficult to count the sacks, then trucks 
or even big train waggons are used. Of course, we suppose that all sacks contain 
the same number of seeds, all trucks – the same number of sacks, and all 
waggons – the same number of trucks. At the end of counting we obtain a result 
in the following form: the granary contains 16 waggons, 19 trucks, 12 sacks, and 
4 seeds of grain. Note, that if we add, for example, one seed to the granary, we 
can count it and see that the granary has more grain. If we take out one waggon, 
we again be able to say how much grain has been subtracted.  

Thus, in our example it is necessary to count large quantities. They are finite 
but it is impossible to count them directly using elementary units of measure, u0, 
i.e., seeds, because the quantities expressed in these units would be too large. 
Therefore, people are forced to behave as if the quantities were infinite.  

To solve the problem of ‘infinite’ quantities, new units of measure, u1, u2 and 
u3 are introduced (units u1 – sacks, u2 – trucks, and u3 – waggons). The new units 
have the following important peculiarity: it is not known how many units ui 
there are in the unit ui+1 (we do not count how many seeds are in a sack, we just 
complete the sack). Every unit ui+1 is filled in completely by the units ui. Thus, 
we know that all the units ui+1 contain a certain number Ki of units ui but this 
number, Ki, is unknown. Naturally, it is supposed that Ki is the same for all 
instances of the units. Thus, numbers that it was impossible to express using 
only initial units of measure are perfectly expressible if new units are introduced.  

This key idea of counting by introduction of new units of measure will be 
used in the paper to deal with infinite quantities. In Section 2, we introduce a 
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new positional system with infinite radix allowing us to write down not only 
finite but infinite and infinitesimal numbers too. In Section 3, we describe 
arithmetical operations for all of them. Applications dealing with infinite sets, 
divergent series, and limits viewed from the positions of the new approach can 
be found in [8] and are not discussed in this paper. After all, Section 4 concludes 
the paper.  

We conclude this Introduction by emphasizing that the goal of the paper is 
not to construct a complete theory of infinity and to discuss such concepts as, for 
example, ‘set of all sets’. In contrast, the problem of infinity is considered from 
positions of applied mathematics and theory and practice of computations – 
fields being among the main scientific interests (see, for example, [8,11]) of the 
author. A new viewpoint on infinity and the corresponding mathematical and 
computer science tools are introduced in the paper in order to give possibilities 
to solve applied problems.  

 
2. Infinite and infinitesimal numbers 

Different numeral systems have been developed by humanity to describe 
finite numbers. More powerful numeral systems allow one to write down more 
numerals and, therefore, to express more numbers. However, in all existing 
numeral systems allowing us to do calculations numerals corresponding only to 
finite numbers are used. Thus, in order to have a possibility to write down 
infinite and infinitesimal numbers by a finite number of symbols, we need at 
least one new numeral expressing an infinite (or an infinitesimal) number. Then, 
it is necessary to propose a new numeral system fixing rules for writing down 
infinite and infinitesimal numerals and to describe arithmetical operations with 
them.  

Note that introduction of a new numeral for expressing infinite and 
infinitesimal numbers is similar to introduction of the concept of zero and the 
numeral ‘0’ that in the past have allowed people to develop positional systems 
being more powerful than numeral systems existing before.  

In positional numeral systems fractional numbers are expressed by the record  
 ( )( )1 1 0 1 2 1n n qq b

a a …a a a a …a a− − − −− −.  (1) 

where numerals  ia q i n, − ≤ ≤  are called digits, belong to the alphabet 
{0,1,…,b–1}, and the dot is used to separate the fractional part from the integer 
one. Thus, the numeral (1) is equal to the sum  
 ( )11 1 0 1

1 1 0 1 ( 1)
qn n q

n n q qa b a b … a b a b a b … a b a b− −− − −
− − − − −+ + + + + + + +  (2) 

In modern computers, the radix b = 2 with the alphabet {0,1} is mainly used 
to represent numbers.  

Record (1) uses numerals consisting of one symbol each, i.e., digits 
ai ∈ {0,1,…,b–1}, to express how many finite units of the type bi belong to the 
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number (2). Quantities of finite units bi are counted separately for each exponent 
i and all symbols in the alphabet {0,1,…,b–1} express finite numbers.  

A new positional numeral system with infinite radix described in this section 
evolves the idea of separate count of units with different exponents used in 
traditional positional systems to the case of infinite and infinitesimal numbers. 
The infinite radix of the new system is introduced as the number of elements of 
the set N of natural numbers expressed by the numeral Î called grossone. This 
mathematical object is introduced by describing its properties postulated by the 
Infinite Unit Axiom consisting of three parts: Infinity, Identity, and Divisibility 
(we introduce them soon). This axiom is added to those for real numbers 
similarly to addition of the axiom determining zero to the axioms of natural 
numbers when integer numbers are introduced. This means that it is postulated 
that associative and commutative properties of multiplication and addition, 
distributive property of multiplication over addition, existence of inverse 
elements with respect to addition and multiplication hold for grossone as for 
finite numbers.  

Note that usage of a numeral indicating totality of the elements we deal with 
is not new in mathematics. It is sufficient to remind the theory of probability 
where events can be defined in two ways. First, as union of elementary events; 
second, as a sample space, Ω, of all possible elementary events from where 
some elementary events have been excluded. Naturally, the second way to define 
events becomes particularly useful when the sample space consists of infinitely 
many elementary events.  

– Infinity. For any finite natural number n it follows n < Î.  
– Identity. The following relations link Î to identity elements 0 and 1  

 00 0 0    0    1    1    1 1⋅ = ⋅ = , − = , = , = , =ÎÎ
Î Î Î Î Î

Î
. (3) 

– Divisibility. For any finite natural number n sets Nk,n, 1 k n≤ ≤  being the 

nth parts of the set, N, of natural numbers have the same number of 
elements indicated by the numeral Î/n where  

 { } ,
1

2 3    1   
n

k n k n
k

k k n k n k n … k n,
=

= , + , + , + , , ≤ ≤ , =∪N N N . (4) 

For example for n = 1,2,3 we have  
 { }1,2,3,4,5,6,7,...→ =NÎ  
 

 
1 2

2 2

{1 3 5 7 }

2
{ 2 4 6 }

…

…

,

,

= , , , ,

= , , ,

/
2

N

N

Î  
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1 3

2 3

3 3

{1 4 7 }

{ 2 5 }
3

{ 3 6 }

…

…

…

,

,

,

= , , ,

= , ,→

= , ,

/

2

N

N

N

Î  

Before the introduction of the new positional system let us see some 
properties of grossone. Its role in infinite arithmetic is similar to the role of  
number 1 in the finite one and it will serve us as the basis for construction of 
other infinite numbers. It is important to emphasize that to introduce Î/n we do 
not try to count elements k, k + n, k + 2n, k + 3n, … In fact, we cannot do this 
since our possibilities to count are limited and, therefore, we are not able to 
count for infinity. In contrast, we postulate following the above mentioned 
Ancient Greeks’ principle the part is less than the whole (see [8,9,12,] for 
detailed discussions on such a kind of approaches) that the number of elements 
of the n th part of the set, i.e., Î/n, is n times less than the number of elements 
of the whole set, i.e., than Î. In terms of our granary example Î can be 
interpreted as the number of seeds in the sack. Then, if the sack contains Î 
seeds, its nth part contains Î/n seeds.  

The numbers Î/n have been introduced as numbers of elements of sets Nk,n 
thus, they are integer. For example, due to the introduced axiom, the set  
 { }2 5 2 7 12 …, = , , ,N  
has Î/5 elements and the set  
 { }3 10 3 13 23 …, = , , ,N  
has Î/10 elements.  

The number of elements of sets being union, intersection, difference, or 
product of other sets of the type Nk,n is defined in the same way as these 
operations are defined for finite sets. Thus, we can define the number of 
elements of sets being results of these operations with finite sets and infinite sets 
of the type Nk,n. For instance, the number of elements of the set  
 { }2 5 3 10 2 3 4 5, ,∪ ∪ , , ,N N  

is 2
5 10
+ +

Î Î  because  

 2 5 3 10 2 5 3 10   2    3, , , ,∩ =∅, ∈ , ∈N N N N . 
It is worthwhile noticing that, as it is for finite sets, infinite sets constructed 

using finite sets and infinite sets of the type Nk,n have the same number of 
elements independently of objects outside the sets. A general rule for 
determining the number of elements of infinite sets having a more complex 
structure can be also given but it is not discussed in this paper (see [8]).  
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Introduction of the numeral Î allows us to write down the set, N, of natural 
numbers in the form  
 { }1 2 3       2  1  …= , , , − , − ,N Î Î Î . (5) 

It is worthwhile noticing that set (5) is the same set of natural numbers we are 
used to dealing. We have introduced grossone as the quantity of natural 
numbers. Thus, it is the biggest natural number and numbers  
 3  2  1… − , − , −Î Î Î  (6) 
less than grossone are natural numbers as the numbers 1,2,3,… The difficulty to 
accept existence of infinite natural numbers is in the fact that traditional numeral 
systems did not allow us to see these numbers. Similarly, primitive tribes 
working with unary numeral system were able to see only numbers 1, 2, and 3 
because they operated only with numerals I, II, III and did not suspect existence 
of other natural numbers. For them, all quantities bigger than III were just 
‘many’ and such operations as II + III and I + III give the same result, i.e., 
‘many’. Note that this happens not because II + III = I + III but due to weakness 
of this primitive numeral system. This weakness leads also to such results as 
‘many’+ 1 = ‘many’ and ‘many’+ 2 = ‘many’ which are very familiar to us in 
the context of views on infinity used in the traditional calculus: 

1  2∞ + = ∞, ∞ + = ∞ .  
As an example let us consider a numeral system S able to express only 

numbers 1 and 2 by the numerals ‘1’ and ‘2’ (this system is even simpler than 
that of primitive tribes which was able to express three natural numbers). If we 
add to this system the new numeral Î it becomes possible to express the 
following numbers  

 N1 2       2 1 1 2       1 2 1
2 2 2 2 2finite infinite

infinite

… …, , − , − , , + , + , − , − ,��	�
������	�����


Î Î Î Î Î
Î Î . 

In this record the first two numbers are finite, the remaining eight are infinite, 
and dots show the natural numbers that are not expressible in this numeral 
system. This numeral system does not allow us to do such operations as 2 + 2 or 
2 + Î/2 + 2 because their results cannot be expressed in this system but, of 
course, we do not write that results of these operations are equal, we just say that 
the results are not expressible in this numeral system and it is necessary to take 
another, more powerful one.  

The introduction of grossone allows us to obtain the following interesting 
result: the set N is not a monoid under addition. In fact, the operation Î + 1 
gives us as the result a number greater than Î. Thus, by definition of grossone, 
Î + 1 does not belong to N and, therefore, N is not closed under addition and is 
not a monoid.  
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This result also means that adding the Infinite Unit Axiom to the axioms of 
natural numbers defines the set of extended natural numbers indicated as lN  and 
including N as a proper subset  

 l { }2 2 21 2 1 1 1 1… … …= , , , − , , + , , − , , + ,N Î Î Î Î Î Î . 

Again, extended natural numbers greater than grossone can also be 
interpreted in the terms of sets of numbers. For example, Î + 3 as the number of 
elements of the set { }a b c∪ , ,N  where numbers a b c, , ∉N  and Î2 as the 
number of elements of the set ×N N . In terms of our granary example Î + 3 can 
be interpreted as a sack plus three seeds and Î2 as a truck.  

We have already started to write down simple infinite numbers and to do 
arithmetical operations with them without focusing our attention upon this 
question. Let us consider it systematically.  

To express infinite and infinitesimal numbers we shall use records that are 
similar to (1) and (2) but have some peculiarities. In order to construct a number 
C in the new numeral positional system with base Î we subdivide C into groups 
corresponding to powers of Î:  
 01 1

1 0 1

m k

m k

p p pp p
p p p p pC c … c c c … c −−

− −
= + + + + + +Î Î Î Î Î . (7) 

Then, the record  
 01 1

1 0 1

m k

m k

p p pp p
p p p p pC c …c c c …c −−

− −
= Î Î Î Î Î  (8) 

represents the number C, symbols ci are called grossdigits, symbols pi are called 
grosspowers. The numbers pi are such that pi > 0, p0 = 0, p-i < 0 and  
 1 2 1 1 2 ( 1)m m k kp p …p p p p …p p− − − − − −> > > > > > >  

In the traditional record (1) there exists a convention that a digit ai shows how 
many powers bi are present in the number and the radix b is not written 
explicitly. In record (8) we write ipÎ  explicitly because in the new numeral 
positional system the number i in general is not equal to the grosspower pi. This 
gives possibility to write, for example, such numbers as 244 5 327 3. −Î Î  where 
p1 = 244.5, p–1 = –32.  

Finite numbers in this new numeral system are represented by numerals 
having only one grosspower equal to zero. In fact, if we have a number C such 
that m = k = 0 in representation (8), then due to (3) we have C = c0Î

0 c0. Thus, 
the number C in this case does not contain infinite and infinitesimal units and is 
equal to the grossdigit c0 which being a conventional finite number can be 
expressed in the form (1), (2) by any positional system with finite base b (or by 
another numeral system). It is important to emphasize that the grossdigit c0 can 
be integer or fractional and can be expressed by a few symbols in contrast to the 
traditional record (1) where each digit is integer and is represented by one 
symbol from the alphabet {0,1,2,…,b – 1}. Thus, the grossdigit c0 shows how 
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many finite units and/or parts of the finite unit, 1 = Î0, there are in the number 
C. Grossdigits can be written in positional systems, in the form p/q where p and 
q are integer numbers, or in any other finite numeral system.  

Analogously, in the general case, all grossdigits ci k i m− ≤ ≤  can be integer or 
fractional and expressed by many symbols. For example, the number 
(7/3)Î4(84/19)Î–3.1 has grossdigits c4 = 7/3 and c–3.1 = 84/19. All grossdigits can 
also be negative; they show how many corresponding units should be added or 
subtracted in order to form the number C.  

Infinite numbers are written in this numeral system as numerals having 
grosspowers greater than zero, for example 7Î244.53Î–32 and  
–2Î743Î037Î–211Î–15 are infinite numbers. In the following example the left-
hand expression presents the way of writing down infinite numbers and the 
right-hand shows how the value of the number is calculated:  
 ( )14 3 6 14 3 615 17 2045 52 1 15 17 2045 52 1− −. − . = + . − .Î Î Î Î Î Î  

If a grossdigit 
ipc  is equal to 1 then we write ipÎ  instead of 1 ipÎ . 

Analogously, if power Î0 is the lowest in a number then we often use simply the 
corresponding grossdigit c0 without Î0, for instance, we write 23Î145 instead of 
23Î145Î0 or 3 instead of 3Î0.  

Numerals having only negative grosspowers represent infinitesimal numbers. 
The simplest number from this group is Î–1 = 1/Î being the inverse element 
with respect to multiplication for Î:  

 1 11 1⋅ = ⋅ =Î
Î Î

 (9) 

Note that all infinitesimals are not equal to zero. Particularly, 1/Î > 0 because 
1 > 0 and Î > 0. It has a clear interpretation in our granary example. Namely, if 
we have a sack and it contains Î seeds then one sack divided by Î is equal to 
one seed. Vice versa, one seed, i.e., 1/Î, multiplied by the number of seeds in 
the sack, Î, gives one sack of seeds.  

Inverse elements of more complex numbers including grosspowers of Î are 
defined by a complete analogy. The following two numbers are examples of 
infinitesimals 3Î–32, 37Î–2, (–11)Î–15. 

 
3. Arithmetical operations with infinite, infinitesimal, and finite numbers 
Let us now introduce arithmetical operations for infinite, infinitesimal, and 

finite numbers. The operation of addition of two given infinite numbers A and B 
(the operation of subtraction is a direct consequence of that of addition and is 
thus omitted) returns as the result an infinite number C  

 
1 1 1

      ji i

i j i

K M L
mk l

k m l
i j i

A a B b C c
= = =

= , = , =∑ ∑ ∑Î Î Î , (10) 
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where C is constructed by including in it all items i

i

k
ka Î  from A such that 

i jk m≠ , 1 j M≤ ≤  and all items j

j

m
mb Î  from B such that j im k≠ , 1 i K≤ ≤ . If 

in A and B there are items such that i jk m=  for some i and j then this 
grosspower ki is included in C with the grossdigit 

i ik kb a+ , i.e., as 

( ) i

i i

k
k kb a+ Î . It can be seen from this definition that the introduced operation 

enjoys the usual properties of commutativity and associativity due to definition 
of grossdigits and the fact that addition for each grosspower of Î is done 
separately.  

Let us illustrate the rules by an example (in order to simplify the presentation 
in all the following examples the radix b = 10 is used for writing down 
grossdigits). We consider two infinite numbers A and B where  
 ( )44 2 12 0 316 5 12 17 1 17A . −= . − .Î Î Î Î  
 ( )14 3 0 3 4323 6 23 10 1 1 17 11B − −= . . − .Î Î Î Î Î  
Their sum C is calculated as follows  

 

( )

( ) ( )

44 2 12 0 3

14 3 0 3 43

44 2 14 12 3

0 3 43

44 2 14 12 3 0 43

16 5 12 17 1 17

       23 6 23 10 1 1 17 11
       16 5 23 12 6 23
       17 10 1 1 17 1 17 11

       16 5 23 12 6 23 27 1 11

C A B . −

− −

.

− −

. −

= + = . + − + + . +

+ . + . − . + =

. + − + . +

+ . + . − . + =

. + − + . + . +

Î Î Î Î

Î Î Î Î Î

Î Î Î Î

Î Î Î

Î Î Î Î Î Î

( )44 2 14 12 3 0 43       16 5 23 12 6 23 27 1 11. −

=

. − . .Î Î Î Î Î Î

 

The operation of multiplication of two given infinite numbers A and B from 
(10) returns and as a result the infinite number C is constructed as follows.  

 
1 1

      1j i j

j i j

M K
m k m

j j m k m
j i

C C C b A a b j M+

= =

= , = ⋅ = , ≤ ≤∑ ∑Î Î  (11) 

Similarly to addition, the introduced multiplication is commutative and 
associative. It is easy to show that the distributive property is also valid for these 
operations.  

Let us illustrate this operation by the following example. We consider two 
infinite numbers  
 ( ) ( ) ( )18 2 1 2 1 35 3 0 2    1 7A B −= − − . , = −Î Î Î Î Î Î  
and calculate the product C B A= ⋅ . The first partial product C1 is equal to  

 
( )

( ) ( )

3 3 18 2 1
1

15 1 2 3 15 1 2 3

7 7 5 3 0 2

        7 35 21 1 4 7 35 21 1 4 .

C A− −

− − − − − −

= ⋅ = − − + . =

− − + . = − − .

Î Î Î Î Î

Î Î Î Î Î Î Î Î
 

The other two partial products, C2 and C3, are computed analogously:  
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 ( ) ( )1 1 18 2 1 19 3 2 1
2 5 3 0 2 5 3 0 2C A= − ⋅ = − − − + . = − − .Î Î Î Î Î Î Î Î Î , 

 ( ) ( ) ( )2 2 18 2 1 20 4 3 2
3 5 3 0 2 5 3 0 2C A= ⋅ = − − + . = − − .Î Î Î Î Î Î Î Î Î . 

Finally, by taking into account that grosspowers Î3 and Î2 belong to both C2 
and C3 and, therefore, it is necessary to sum up the corresponding grossdigits, 
the product C is equal (due to its length, the number C is written in two lines) to  

 
( ) ( )

( ) ( ) ( )

20 19 15 4 3 2
1 2 3

1 1 2 3

1 7 5 2 3 21

       0 2 35 21 1 4 .

C C C C
− − −

= + + = − − .

− . − − .

Î Î Î Î Î

Î Î Î Î
 

In the operation of division of a given infinite number C by an infinite 
number B we obtain an infinite number A and a reminder R that can be also 
equal to zero, i.e., C A B R= ⋅ + .  

The number A is constructed as follows. The numbers B and C are 
represented in the form (10). The first grossdigit 

Kka  and the corresponding 
maximal exponent kK are established from the equalities  
    

K L Mk l m K L Ma c b k l m= / , = − . (12) 
Then the first partial reminder R1 is calculated as  

 1
K

K

k
kR C a B= − ⋅Î . (13) 

If 1 0R ≠  then the number C is substituted by R1 and the process is repeated 
by a complete analogy. The grossdigit 

K ika
−

, the corresponding grosspower kK–1  
and the partial reminder Ri+1 are computed by formulae (14) and (15) obtained 
from (12) and (13) as follows: lL and 

Ll
c  are substituted by the highest 

grosspower ni and the corresponding grossdigit 
inr  of the partial reminder Ri that 

in its turn substitutes C:  
    

K i i Mk n m K i i Ma r b k n m
− −= / , = −  (14) 

 1 172    1K i

K i

k
i i kR R a B i−

−+ = − ⋅ , ≥  (15) 
The process stops when a partial reminder equal to zero is found (this means 

that the final reminder R = 0) or when a required accuracy of the result is 
reached.  

The operation of division will be illustrated by two examples. In the first 
example we divide the number 3 0 310 16 42C −= − Î Î Î  by the number 

35 7B = Î . For these numbers we have  
 3    3    10    5

L ML M l ml m c b= , = , = − , =  

It follows immediately from (12) that 02K

K

k
ka = −Î Î . The first partial 

reminder R1 is calculated as  
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 ( )3 0 3 0 3
1

3 0 3 3 0 0 3

10 16 42 2 5 7

      10 16 42 10 14 30 42 .

R −

− −

= − − − ⋅ =

− + =

Î Î Î Î Î

Î Î Î Î Î Î Î
 

By a complete analogy we should construct 1

1

K

K

k
ka −

−
Î  by rewriting (12) for 

R1. By doing so we obtain equalities  
 

1 130 5    0 3
Kk Ka k
− −= ⋅ , = +  

and, as the result, 1

1

36K

K

k
ka −

−

−=Î Î . The second partial reminder is  

 3 3 0 3 0 3
2 1 6 5 7 30 42 30 42 0R R − − −= − ⋅ = − =Î Î Î Î Î Î . 

Thus, we can conclude that the reminder R = R2 = 0 and the final result of 
division is 0 32 6A −= − Î Î .  

Let us now substitute the grossdigit 42 by 40 in C and divide this new number 
i 3 0 310 16 40C −= − Î Î Î  by the same number 35 7B = Î . This operation gives us 
the same result i 0 3

2 2 6A A −= = − Î Î  (where subscript 2 indicates that two partial 
reminders have been obtained) but with the reminder i i 3

2 2R R −= = − Î . Thus, we 
obtain i i i2 2C B A R= ⋅ + . If we want to continue the procedure of division, we 
obtain i ( )0 3 6

3 2 6 0 4A − −= − − .Î Î Î  with the reminder i 6
3 0 28R −= . Î . Naturally, it 

follows i i i3 3C B A R= ⋅ + . The process continues until a partial reminder i 0iR =  is 
found or when a required accuracy of the result will be reached.  

In all the examples above we have used grosspowers being finite numbers. 
However, all the arithmetical operations work by a complete analogy also for 
grosspowers being themselves numbers of the type (8). For example, if  
 ( )344 2 1 17 12 316 5 12 1 17X

−. . −= . − .Î Î ÎÎ Î Î , 

 ( )3 2344 2 1 17 3 423 1 17 11Y
− −. . −= − .Î Î ÎÎ Î Î , 

then their sum Z is calculated as follows  
 ( )3 2344 2 1 17 12172 439 5 12 11Z X Y

− −. .= + = . −Î Î ÎÎ Î Î  
 

4. Conclusions 
In this paper, a new positional numeral system with infinite radix has been 

described. This system allows us to express by a finite number of symbols not 
only finite numbers but infinite and infinitesimals too. All of them can be 
viewed as particular cases of a general framework used to express numbers.  

It has been shown in [13] that the new approach allows us to construct a new 
type of computer – Infinity Computer – able to operate with finite, infinite, and 
infinitesimals quantities. Numerous examples dealing with infinite sets and 
processes, divergent series, limits, and measure theory viewed from the positions 
of the new approach can be found in [8]. We conclude this paper just by one 
example showing the potential of the new approach. We consider two infinite 
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series 1 1 1 1S …= + + +  and 2 3 3 3S …= + + +  The traditional analysis gives us a 
very poor answer that both of them diverge to infinity. Such operations as 

1 2S S−  or S1/S2 are not defined.  
In our terminology divergent series do not exist. Now, when we are able to 

express not only different finite numbers but also different infinite numbers, the 
records S1 and S2 are not well defined. It is necessary to indicate explicitly the 
number of items in the sum and it is not important if it finite or infinite. To 
calculate the sum it is necessary that the number of items and the result are 
expressible in the numeral system used for calculations. It is important to notice 
that even though a sequence cannot have more than Î elements the number of 
items in a series can be greater than grossone because the process of summing 
up is not necessary. This should be done by a sequential adding items.  
Suppose that the series S1 has k items and S2 has n  items:  
 ( ) ( )1 21 1 1 1    3 3 3 3

k n

S k … S n …= + + + + , = + + + +���	��
 ���	��
  

Then ( )1S k k=  and ( )2 3S n n=  for any values of k and n – finite or infinite. 
By giving numerical values to k and n we obtain numerical values for the sums. 
If, for instance, k = n = Î then we obtain ( )1 5 5S =Î Î , ( )2 5 15S =Î Î  and  
 ( )2 15 (5 ) 10 0S S− = >Î Î Î . 

If k = 5Î and n = Î we obtain ( )1 5 5S =Î Î , ( )2 3S =Î Î  and it follows  
 ( ) ( )2 1 5 2 0S S− = − <Î Î Î . 

If k = 3Î and n = Î we obtain ( )1 3 3S =Î Î , ( )2 3S =Î Î  and it follows  
 ( ) ( )2 1 3 0S S− =Î Î  

Analogously, the expression S1(k)/S2(n) can be calculated.  
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