

Annales UMCS Informatica AI 3 (2005) 235-242
Annales UMCS

Informatica
Lublin-Polonia

Sectio AI
http://www.annales.umcs.lublin.pl/

Application of MPI standard in computer modelling

of the ion source plasma

Marcin Turek*, P. Franzena, Juliusz Sielanko

Institute of Physics, Maria Curie-Skłodowska University,
pl. M.Curie-Skłodowskiej 1, 20-031 Lublin, Poland

aMax Planck Institute of Plasma Physics, Garching,Germany

Abstract
In the paper the adaptation of the TRQR code to run on the massive parallel computer using

MPI standard is described. We present the modification of the procedure used for the calculations
of the potential spatial inside the plasma chamber of the ion source based on PIC (Particle In Cell)
model and the Poisson equation. Parallelisation of the procedure enables us to reduce the CPU
time by the factor 6-7 in the case of 8 processor job queue.

1. Introduction
Neutral beam injection for heating of the fusion plasma in the TOKAMAK

require the intensive well defined ion beams. Because of a very high
neutralization efficiency, the negative ion beam is a very promising candidate
for this purpose. Negative ion beam formation and extraction from the plasma
source is quite different in comparison with that for a positive ions. The
understanding and modelling of the transport properties of negative (mainly H-
and D-) ions is a very important, but also rather difficult issue. The TRQR code
[1-3] based on the PIC method was developed for the purpose of study of the
plasma behavior as well as extraction and formation of the ion beams emitted
from the plasma ion source. The trajectories of the charged particles in the
electric field created by the electrode system as well as self consistent field are
calculated by solving the equation:

 i i
i

i

d q E B
dt m
ν

ν⎡ ⎤= + ×⎣ ⎦

where mi, vi, qi, E, B are the particle mass, velocity, charge, electric field and
magnetic field for the i-th particle of the plasma species respectively. The spatial

*Corresponding author: e-mail address: mturek@kft.umcs.lublin.pl

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 19/01/2026 01:50:58

UM
CS

Marcin Turek, P. Franzen … 236

distribution of the electric potential V is obtained by solving the Poisson
equation:

 () ()2

0

, ,
, ,

x y z
V x y z

ρ
ε

∇ = −

where ε0 is the dielectric constant and),,(zyxρ is the charge density.
After each time step, determined by the solution of the motion of the plasma

particles, new positions of the particles generate new electric field distribution.
In consequence, the Poisson equation should be solved after each iteration step.
Because of the dense spatial grid required for the good accuracy of the
calculation of spatial distribution of the potential V(x,y,z,), the CPU time
consumption by the code may be great. Some lowering of the CPU time of the
calculatin can be obtained by the parallelisation of the code and its run on the
cluster or the multiprocessor computer. The purpose of this work was the
adaptation of the TRQR code to run on the massive parallel computer using MPI
standard and parallelisation of the procedure responsible for solving the Poisson
equation.

2. Parallel calculations of the plasma potential

In the original TRQR code the Poisson equation solving is done by the
sligthly modified SOR iterative method. This part of the code can be very CPU
time-consuming due to rapidly changing charge distribution. In the parallel
version of the TRQR we are going to use the domain decomposition approach.
In this method the whole domain in which the Poisson equation is solved
(typically – 100×100×100 Cartesian grid) is divided into smaller pieces,
subdomains. Each of them is assigned to a separate processor. In every
subdomain the potential is calculated by the SOR method, which usually
converges the faster, the smaller is the subdomain.

It should be mentioned that the border grid points have to be shared by
neighbouring subdomains, which is schematicaly shown in Figure 1.

In our code the one-dimensional communicator (named and ordered group of
processes) is created by MPI_CART_CREATE command, then the process
ranks (idn) are obtained using MPI_RANK. Ranks of neighbour processes, the
next and the previous one, are provided by another MPI subroutine:
MPI_CART_SHIFT.

Keeping in mind the way array elements are stored in memory we decided to
slice the domain perpendicular to z-axis, see Figure 2. This allows us to avoid
using MPI derived data types during the iteration phase, as long as we consider
one-dimensional communicator.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 19/01/2026 01:50:58

UM
CS

Application of MPI standard in computer modelling … 237

Fig. 1. Schematic view of 2D grid divided into 4 subdomains.

Note, that the border grid points are common

Before the SOR iteration can be started, the initial values of potential (that is

the potential values on electrodes) have to be distributed among processes.
Neither MPI_SCATTER nor MPI_SCATTERV utility can be used in this case,
because they cannot refer to the same place in memory more than once.
Consequently, we decided to use the pairs of MPI_SEND and MPI_REDUCE
instead of collective comunication.

Fig. 2. Schematic view of the domain division in z-direction

The SOR iteration for the potential value in the grid point (i,j,k) is described

by the formula

() () () ()()
() ()()
() ()()

()

0 1

2

3

4

, , , , 1, , 1, ,

 , 1, , 1,

 , , 1 , , 1

 , ,

V i j k c V i j k c V i j k V i j k

c V i j k V i j k

c V i j k V i j k

c i j kρ

= ⋅ + ⋅ − − +

+ ⋅ − − +

+ ⋅ − − +

+ ⋅

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 19/01/2026 01:50:58

UM
CS

Marcin Turek, P. Franzen … 238

where ci are the coefficients depending on the overrelaxation parameterω and
the sizes of the grid cell (∆x, ∆y, ∆z) are precalculated at the code beginning and
then distributed by MPI_BCAST:

 0
11
2

c ω= − ,

 1 2 2

1
c

y z
x x

ω
=

∆ ∆⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟∆ ∆⎝ ⎠ ⎝ ⎠

,

 2 2 2

1

c
x z
y y

ω
=

⎛ ⎞ ⎛ ⎞∆ ∆
+ +⎜ ⎟ ⎜ ⎟∆ ∆⎝ ⎠ ⎝ ⎠

,

 3 2 2

1
c

x y
z z

ω
=

∆ ∆⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟∆ ∆⎝ ⎠ ⎝ ⎠

,

 4

2 2 2
1 1 1

c

x y z

ω

ε
=

⎛ ⎞
+ +⎜ ⎟∆ ∆ ∆⎝ ⎠

.

The iteration runs from the lower limit of subdomain (nsdom) up to the upper
limit (nedom) in the z-axis direction, and along the diagonal lines in the xy
plane. Once the run of iteration loop is completed in every subdomain, the new
potential values in the border grid points have to be exchanged between the
neigboring processes. This is done using the pairs of MPI_SENDRECV
subroutines and illustrated in Figure 3.

Fig. 3. The exchange of the potential values between the border grid points

The iteration loop stops when the difference between old and new potential

values is smaller than the precision parameter. The maximal differences are

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 19/01/2026 01:50:58

UM
CS

Application of MPI standard in computer modelling … 239

exchanged by MPI_ALLREDUCE subroutine with the MPI_MAX flag. After
the iteration is completed, the new potential values are gathered to the master
process by the pairs of MPI_SEND and MPI_RECV subroutines.

Timing for transmission and iteration phases is provided by the pairs of
MPI_BARRIER and MPI_WTIME commands, note that is wall-clock, not CPU
time.

Fig. 4 presents the initial data used to test or parallel code. The shape of
electrodes and potential values resembles much those in ‘production’
simulations of ion sources. Test runs were performed on 32-way IBM eServer
p690 machine with 1.3 GHz

Fig. 4. Block scheme of the electrodes and its potential values used in tests

POWER4 processors and 64 GB of memory. The machine is a node of

‘Regatta’ cluster in the Institute of Plasma Physics in Garching running under
AIX 5L system. The code was compiled using IBM XL Fortran v. 9.1 compiler
with –O2 and –qipa optimization switches.

0 2 4 6 8 10
0

2

4

6

8

10

X [cm]

Z
[c

m
]

0,1000

2,093

4,087

6,080

8,073

10,07

12,06

14,05

16,05

18,04

20,03

22,03

24,02

26,01

28,01

30,00
Potential [V]calculated potential (cross-section)

0 2 4 6 8 10

0

2

4

6

8

10
calculated potential (cross-section) Potential [V]

Z
[c

m
]

X [cm]

0,1000

2,093

4,087

6,080

8,073

10,07

12,06

14,05

16,05

18,04

20,03

22,03

24,02

26,01

28,01

30,00

Fig. 5. Potential distribution obtained in the case of boundary conditions I (left) and in the case

of boundary condition II (right)

We considered boundary conditions of two types: potential values are well-

defined and invariant on the grid boundary (boundary condition of kind I), or the

0 2 4 6 8 10
0

2

4

6

8

10

Z
[c

m
]

X [cm]

0 V

26 V 30 V

electrodes' potential

20 V

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 19/01/2026 01:50:58

UM
CS

Marcin Turek, P. Franzen … 240

case of vanishing gradient of potential on the boundary (boundary condition of
kind II). Figure 5 presents the calculated potential distributions for both cases.

The test run results presented in Figure 6 show the gain of code
parallelisation. We used up to 24 processors. The time of potential calculation
(SOR iteration itself and data transmission) initally decreases very rapidly, the
time of calculation is almost perfectly inverserly proportional to the number of
used processors. However, one can observe that the time of calculations does not
change significantly for a larger number of processors (aproximately 12), or
even grovs slightly. For many parallel codes such a slow-down is caused by the
increasing amount of data to exchange and hardware limitations. Figure 7 hows
that this is not the case. The transmission time is negligibly small compared to
the time iteration needs to converge.

0 2 4 6 8 10 12 14 16 18 20 22 24
0

1

2

3

4

5

6

7

8

to
ta

l t
im

e
of

 c
al

cu
la

tio
n

(s
)

number of processors

ω=0.85

Boundary conditions I

0 2 4 6 8 10 12 14 16 18 20 22 24

0

2

4

6

8

10

Boundary conrtitions II

to
ta

l t
im

e
of

 c
al

cu
la

tio
ns

 (s
)

number of processors

ω=0.85

Fig. 6. Total time of solving Poisson equation as a function of a number of used processors.

Iteration converges more slowly in case of boundary condition II

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0,00

0,02

0,04

0,06

0,08

0,10

 Boundary conditions I
 Boundary conditions II

tr
an

sm
is

si
on

 ti
m

e
(s

)

number of processors
Fig. 7. Data transmission time while solving of Poisson equation

Every process needs to be exchanged approximately 8 MB of data during one

loop run, in the case of SMP class machine the transmission time is nearly
constant. Hence, transmission delays cannot affect the total time of calculations.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 19/01/2026 01:50:58

UM
CS

Application of MPI standard in computer modelling … 241

The major factor is the increasing number of iteration loop runs, as one can see
in Figure 8 for both cases of boundary conditions.

0 2 4 6 8 10 12 14 16 18 20 22 24 26
220

240

260

280

300

320

340

ω=0.85

 boundary conditions I
 boundary conditions IIN

um
be

r o
f i

te
ra

er
tio

ns

number of processors
Fig. 8. Number of iteration the SOR method needs to converge as a function

of the number of used processors

The number of iteration loops grovs despite the fact that the subdomain size

gets smaller. This is not surprising when one keeps in mind how the speed of
SOR iteration depends on the overrelaxation parameter ω. There is an optimal
value ω0 and the number of iterations increases very quickly for ω greater than
ω0. The optimal value ω0 depends mainly on the size of the grid. The larger is
the number of used processors, the smaller are subdomains, and ω = 0.85
becomes more and more distant from the optimal ω0. If the overrelaxation
parameter remains unchanged there is no point in using a large number of
processors. It may even happen that SOR iteration fails to converge, as shown in
Figure 9.

2 4 6 8 10 12 14 16 18
0,5

0,6

0,7

0,8

0,9

 ω
 (o

ve
rr

el
ax

at
io

n
pa

ra
m

et
er

)

time (s)

number of processors

0
1,102
2,205
3,307
4,409
5,512
6,614
7,717
8,819
9,921
11,02
12,13
13,23
14,00

 White area: iteration cannot converge

Fig. 9. A map showing the dependence of SOR computation time on the number of processors

and the chosen overrelaxation parameter. If it is chosen too big, the SOR metod cannot converge

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 19/01/2026 01:50:58

UM
CS

Marcin Turek, P. Franzen … 242

What we can see in Figure 9 is a kind of valley with one slope rather flat and
the other extremely steep. The ω value very close to the optimal one in the case
of N processors may be far too large for N+1 or N+2 processors, as shown in
Figure 10.

0,90 0,91 0,92 0,93 0,94 0,95 0,96
0

200

400

600

800

1000

1200
N

um
be

r o
f i

te
ra

tio
ns

ω

 4 processors
 6 processors

in dashed area the SOR method
converges for 4 processors,
but cannot converge for 6 processors

Fig. 10. The value vs. the number of iterations for 4 and 6 processors

Finally, we conclude that ω value should be carefully adjusted, e.g. using the

simplest trial-and-error method.

3. Conclusion
In the sequential version of TRQR code solving the Poisson equation takes

approximately 15-20 % of CPU time, depending on plasma concentration. Using
parallel methods enables us to reduce this time by the factor 6-7 in the case of 8
processor job queue, which is quite satisfactory. The next step of the
modification of the TRQR code is the parallelisation of the iteration loop
combined with calculations of the plasma particle trajectories.

References

[1] Staebler A., Sielanko J., Goetz S., Speth E., Fusion Technology, 26(2) (1994) 145.
[2] Sielanko J., Muszyński M., Electron Technology, 30(4) (1997) 352.
[3] Sielanko J., Turek M., Tanga A., Annales UMCS Informatica 2 (2004) 251.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 19/01/2026 01:50:58

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

