Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 00:16:30

éw‘“;"ﬁ/s&lr Annales UMCS

£ @%1% Annales UMCS Informatica Al 2 (2004) 291-299 Informatica

R AR Lublin-Polonia
g Sectio Al

http://www.annales.umcs.lublin.pl/

FLASH — a tool for surgery of solar plasma

Matgorzata Selwa’, Krzysztof Murawski

Institute of Physics, Maria Curie-Sktodowska University,
Radziszewskiego 10, 20-031 Lublin, Poland

Abstract

The universe has always been object of our fascination. Because the Sun is our nearest star
naturally a long time ago it became an object of our extensive observations. Nowadays,
investigations of the Sun are carried by means of observations and theoretical modeling.
Unfortunately, due to their intrinsic complexity most of theoretical models cannot be solved
analytically. As a consequence, we adopt FLASH which is a modular parallel computation,
adaptive mesh refinement, hierarchical data format code capable of solving magnetohydrodynamic
equations. In this paper the FLASH code is applied to simulate oscillations in coronal loops.

1. Introduction

The FLASH code was originally written in 2000 by Fryxel et al. [1] and then
it was improved by the members of the ASCI Center for Astrophysical
Thermonuclear Flashes which was founded in 1997 [2]. Due to the contract with
the United States Department of Energy it became a part of its Accelerated
Strategic Computing Initiative (ASCI). The main purpose of its development is
to handle magnetized flow problems found in many astrophysical environments
such as thermonuclear flashes on the surfaces of compact stars like neutron stars
and white dwarfs.

As the FLASH code is not widely known, the aim of this paper is to present
this code to get accustomed quickly with its basic structure and provide its
performance for waves in a solar coronal loop.

This paper is organized as follows. The following part contains a brief user
guide. Sect. 3 provides an application of the code. This paper is concluded by a
short summary.

* Corresponding author: e-mail address: mselwa@kft.umcs.lublin.pl

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 00:16:30

292 Malgorzata Selwa, Krzysztof Murawski

2. A brief user guide

The FLASH code can be run on various Unix-based platforms, e.g. SGI
systems (IRIX), Intel — and Alpha-based systems, including clusters (Linux),
Cray T3E (UNICOS), ASCI Nirvana machine (built by SGI), IBM SP2 systems,
IBM SP4 systems, Sun E10K Starfire Clusters, Compaq Unix Clusters (TRU64)
and ASCI Red machine (built by Intel). These platforms are distinguished in the
Makefile.h file that specifies a platform, hostname, paths and compilation flags.

To run the FLASH code on a platform it is necessary to install Fortran 90 and
C compilers. Then, we need to configure an implementation of MPI, e.g. freely
available MPICH [3] and HDF libraries which are used for writing the output
data [4]. A package like IDL [5] can be a good choice for data visualization
purposes. Moreover, the FLASH code requires Python language for the setup
script and GNU make utility.

2.1. Installation

We describe the installation of the FLASH code on platforms running Linux,
particularly Red Hat 7.* and Slackware 8.* with gcc version 2.9%. We need a
Fortran 90 compiler (e.g. a free release of Intel 6.0 [6]) which we unpack and
install to e.g. /opt/intel/compiler60/ia32. We ship over HDF4 library (e.g.
HDF4.115), configure it with options CC=/opt/intel/compiler60/ia32/bin/icc
FC=/opt/intel/compiler60/ia32/bin/ifc ./configure --prefix=/usr/local and install
(by executing Smake, $make test and $make install). We can download and
install HDF5 (e.g. hdf5-1.4.4) in a similar way as HDF4 library and compile
with options CC=gcc FC=/opt/intel/compiler60/ia32/bin/ifc ./configure --
prefix=/usr/local. Subsequently we refresh system libraries by adding the path
Jusr/local/lib to the /etc/ld.so.conf file and run $ldconfig.

The next component we install is a freely available version of MPI — MPICH-
1.2.5 [3]. We install it with the configuration options CC=gcc
CXX=/opt/intel/compiler60/ia32/bin/icc ~FC=/opt/intel/compiler60/ia32/bin/ifc
F90=/opt/intel/compiler60/ia32/bin/ifc F77=/opt/intel/compiler60/ia32/bin/ifc
Jconfigure --prefix=/opt/mpich --with-device=ch _p4 —rsh=ssh. If MPICH is
installed e.g. in the /opt/mpich directory we modify the paths in the .bashrc
and .bash_profile files as PATH=8PATH:$HOME/bin:/opt/mpich/bin export
PATH and then log into a system one more time or re-read .bash* files by
executing $. .bashrc or 8. .bash_profile.

After downloading and licensing the FLASH code we adopt it to our platform
by making a new directory in FLASHZ2.3/source/sites. This directory name
contains hostname and domain name of the platform. Now we copy Makefile.h
from FLASH?.3/source/sites and adjust it to our platform by modifying HDF,
MPI, paths and compilers flags.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 00:16:30

FLASH — a tool for surgery of solar plasma 293

If we are going to visualize FLASH data by IDL we change HDF and IDL
paths in FLASH?2.3/tools/fidlr2/Makefile.linux and run Smake —f Makefile.linux.
Assuming that IDL 5.6 is installed in /us?/local/rsi we modify the .bashrc and
.bash_profile files by adding the following:

IDL DIR=/usv/local/rsi/idl 5.6

IDL _PATH=/home/user/FLASH?2.3/tools/fidlr2:3IDL_DIR:$IDL_DIR/lib
IDL STARTUP=~/.idlrc

export IDL_DIR IDL _PATH IDL _STARTUP

XFLASH DIR=/home/user/FLASH?2.3/tools/fidlr2

export XFLASH DIR

Here /home/user/FLASH.3 is the exemplary path to FLASH directory which
is different for every user. The .idlrc file, which is located in the same directory
as .bashrc and .bash_profile, contains user settings for IDL (e.g. white
background that is not supported by default in FLASH routines).

For SGI running Irix or Compaq running TRU64 unix platforms we must
install Python which is not delivered by default and use GNU make utility
(gmake) instead of make. The Makefile.h file must be taken from another Irix or
TRUG64 directory.

2.2. Running FLASH

A new physical problem requires writing different setup files. There are three
essential files that must be created: Config which specifies required modules and
registers runtime parameters, flash.par sets the values of runtime parameters,
init_block.F90 initializes data in each block for the problem.

In order to run FLASH for the first time we create a directory for our problem
in FLASH?2.3/setups. This directory can be called first problem. The name of the
directory is arbitrary and is just used as an argument when calling setup script.
We put there Config, flash.par and init block.F90. Then, we execute the
command $./setup first problem -2d -auto from the main FLASH directory. The
option -/d, -2d or -3d corresponds to the dimensionality of the problem. A useful
setup option is -maxblocks=nr_of blocks. It defines maximum number of blocks
which will be computed on a single processor.

If we succeed with the above commands we execute $make. The
Flash2.3/object directory is created. This directory should be cleaned before
running each job by $make clean. If we do not succeed with setup or make we
have to improve Config file and repeat these commands. If we make changes in
init_block.F90 we should re-run only make (without setup). There is no need to
run setup or make after editing the flash.par file.

To store data associated with a given problem it is better to create a new
directory, not necessarily in the main FLASH directory and copy there flash.par
with the executable file FLASH?2.3/object/flash2.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 00:16:30

294 Malgorzata Selwa, Krzysztof Murawski

For running problems on a platform with a single processor the mpirun
command is optional. We can run flash2 instead. If we have an access to few
processors — the command $mpirun -np nr_of processors flash2 is required. A
job can be run as a background process with the use of the screen or nohup
command. The output data can be found in the directory where the code was run.

After the first run of FLASH we notice such files as: flash.log indicates
parameter settings, the run and build time, the build machine, it also echoes
when the code was refined and output data were stored; flash.dat contains the
integral quantities as a function of time, e.g. total mass, total energy, total
momentum, etc.; amr_log contains messages from PARAMESH package. A run
of the code results in two different groups of files: *Adf*chk* that are checkpoint
files containing dumps of entire simulation at given intervals of time, suitable for
restarting the simulation and *hdf*plt cnt* that are plot files which store only
required fluid quantities.

2.3. A structure of the code

The FLASH code is a collection of different modules which can be combined
in various ways for specific applications. Each module can be divided into three
components: configuration layer, interface layer and algorithm. Some modules
contain sub-modules. The configuration layer contains the information about
module dependencies, default sub-modules, runtime parameter definitions and
library requirements. It is stored in a Config file in all module directories. The
aim of the interface layer is to provide an access to the data. Wrapper functions
communicate directly with FLASH database module to access the data. While
algorithms are not permitted to query the database module directly, they may
communicate with database by a formal list of arguments. We can distinguish
two classes of interface functions — directly connected with quantities and
typical AMR functions.

An abstract representation of the code is shown in Fig. 1. Each box represents
a different FLASH module. Typically each component is connected with a
different class of solvers. The directory tree of the FLASH code is similar to the
abstract representation (Fig. 2). The doc/ directory contains the user guide, the
documents about frequently asked questions, an implementation of the FLASH
code on specific platforms and the manual to the package PARAMESH [7]. In
the setups/ directory startup files for several problems are stored. Source codes
are stored in source/. The tools/ directory contains routines used for visualization
of data. After running make we can find linked and executable files in object/
directory.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 00:16:30

FLASH — a tool for surgery of solar plasma 295

Driver [Muby |
1a on E 5
[nitliestion || Radiative cooling|
L EVOon 1, T SOOI ||
Mesh database || |

a T . 1]
e T B Nbody | Particle-mesh |
Parlarmancs monilor
Physical n:mhrl:_ p Materials lint Conductivity |
: L e L Egniot state |
' - Multigrid |
- - woFa |
g T wOFE]

Component interface layer J

Fig. 1. Abstract representation of FLASH architecture’

Docs
FLASH root Setups
directory
Changelog
License Source
Makefile
Readme
Release Tools
Objects

Fig. 2. The directory structure of the FLASH code

The main components we can distinguish in the FLASH code are:

— driver modules among which the default driver controls initialization or
evolution and four modules implement different explicit time advancement
algorithms: euler! — first-order Euler explicit scheme, k3 — third-order
Runge-Kutta method and second-order accurate splitting method:
strang_state — algorithm in the state-vector formulation and strang_delta —
algorithm in the delta formulation,

! Thanks to the Center for Astrophysical Thermonuclear Flashes.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 00:16:30

296

Malgorzata Selwa, Krzysztof Murawski

I/O modules control how FLASH data are stored on the platform and the
format of output data: hdf4, hdf5 serial or hdf5 parallel,

a mesh module contains the package PARAMESH [7] of subroutines for
the parallelization of the code and adaptive mesh refinement (4MR),
hydrodynamic modules: the module which uses piecewise-parabolic
method PPM [8]; the module based on Kurganov [8] schemes; the MHD
module based on a finite-volume, cell-centered method with truncation-
error scheme used to satisfy V- B =0 condition,

material properties modules contain multiple fluids, different fluid
compositions, equations of state: gamma implements a perfect gas
equation of state: multigamma implements a perfect gas equation of state
with multiple fluids each of its own adiabatic index; helmholtz uses free
energy table interpolation and includes radiation pressure and stellar
conductivity module: thermal conductivity, viscosity, magnetic resistivity
and magnetic viscosity,

source terms modules contain nuclear burning module, stirring module,
ionization, heating and cooling modules,

gravity modules with gravitational potential or acceleration source terms in
the code. The modules: constant, plane parallel correspond to time
constant field that is parallel to one of the coordinate axis; ptmass
implements field due to a point mass at a fixed location; Poisson includes
field produced in simulation,

particle modules incorporate physical particles and Lagrangian mass
tracers, active and passive particles,

a cosmology module contains redshift terms in Euler equations and library
of useful cosmological functions, e.g. converting redshifts to times,

solvers used for ordinary differential equations ODE: multipole Poisson —
for spherical or nearly-spherical mass distributions with isolated
boundaries, and multigrid Poisson - for general source distributions,

a visualization module: 2d IDL module with a special widget,

a utility module consists of the collection of high-level functions
simplifying programming in FLASH.

PARAMESH (Parallel Adaptive Mesh Refinement) is a packet of subroutines
which handles mesh generation refinement/derefinement, distribution of work to
processors, guard cell filling and flux conservation. PARAMESH uses AMR
(Figs. 3, 4). PARAMESH works on Cartesian blocks. Each block contains
nxb x nyb x nzb interior cells and a set of guard cells used to compute boundary

conditions (left panel Fig. 5). The refinement/derefinement is achieved by
calculating the gradient of tested quantities. The flux is conserved at a jump of
refinement. After the refinement/derefinement is complete, the blocks are

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 00:16:30

FLASH — a tool for surgery of solar plasma 297

redistributed among the processors with the use of work-weighted Morton
space-filling curve (right panel of Fig. 5).

|
16 7

13 15 16 17

- "

it 1345

Fig. 3. An idea of grid refinement. The blocks which are surrounded by thick solid lines contain
6 x4 numerical cells”

Density [g/em™

Density (g/cm”)

20

] 5 10 15 20] 5 10 15 20
x {em) x [em)

Fig. 4. An example of refinement and derefinement. The left panel shows the initially distributed
blocks while the right panel displays the blocks at a later time. Note that the grid
is refined at certain places

- 5. =
2 . R
? LYY RN I
a
E
B
2
2
nguaid nxb nguard

% Redrawn from the NASA Goddard Space Flight Center’s Earth and Space Data Computing
Division (ESDCD) [8].

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 00:16:30

298 Malgorzata Selwa, Krzysztof Murawski

Fig. 5. A two-dimensional AMR block with shaded interior 8x8zones and the perimeter of 4
guardcells (left panel). The Morton space-filling curve is displayed in the right panel3

The FLASH code uses the HDF library which is a physical file format for
storing scientific data. This library and multi-object file format allows
transferring of graphical and numerical data between different machines because
it is independent of a platform.

The current 2.3 version of the code FLASH supports several types of grid
geometry: one-, two- and three-dimensional Cartesian grids, two-dimensional
cylindrical grids and one-dimensional spherical grids. No polar geometry is
involved yet. The code allows us to use different boundary conditions: periodic
or wrap-around, reflecting or non-penetrating, outflow or open, hydrostatic
(supports fluid “above” against gravity) and user-defined.

3. An application of the FLASH code to MHD waves in a coronal loop
We show an application of the code to solar plasma which is described by the
ideal MHD equations:

op
—+V.(pV)=0,
5 TV (pY)
o(pV
M+V-[(pV)V}:—Vp+i(VxB)xB,
ot y7
A (1)
6—IZ+V-(pV)=—p(7/—1)V-V,
%—?:Vx(VxB),V-BzO,
where p denotes the mass density, V is the velocity of plasma, p is the gas
pressure, B is the magnetic field and y =5/3 is the adiabatic index. A coronal

loop is modeled by mass density enhancement (Fig. 7):

2.89

r=l+——, 2

pO() COSh4(}") ()

where » is the radial coordinate. The equilibrium magnetic field has only z

component:

1.97

B.(r)y=1+———. 3

) cosh®(r) @)

The total pressure at the equilibrium must be constant. The perturbation was set
in x component of velocity:

0.005
V. (r,p,z,t =0)= , V.=V =0. 4
(r..21=0) cosh’(x—10)cosh® (y)cosh®(z)" ~ °~ @

3 From [1]

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 00:16:30

FLASH — a tool for surgery of solar plasma 299
4z

'/--\ 0.0010
L 0.0005

B, | B,

2 | 2 2 0.0000

Po | Pe -0.0005
- -

4 -0.0010 ; . . L y
0 5 10 15 20 25 30
X time

Fig. 7. A simple model of the geometry of a loop and time-signatures which are obtained by
measuring the mass density at different detection points: x=0, y=0, z=0 (solid line),
x=0, y=0, z=4 (dotted line), x=0, y=0, z=9 (dashed line)

The equations) were solved numerically on the
(—10,10)x (—10,10) x (—=10,10) Eulerian box with the open boundary conditions

at all boundaries of the simulation region.

The pulse of Eq. [4] excites a packet of waves in which the highest
contribution has a fast kink wave that involves displacements with the axis of the
loop, resembling a wriggling snake. As it is shown in Fig. 7, the pulse produces
complex time-signatures.

4. Summary

This paper contains an introduction into the FLASH code. We explain its
structure and describe briefly the main libraries. An example of applicability of
the code to solar coronal loop simulation is provided. This paper can be a useful
guide for potential users.

This work was financially supported by the grant from the State Committee
for Scientific Research Republic of Poland, KBN grant no. 2 PO3D 016 25. The
software used in this work was in part developed by the DOE-supported
ASCI/Alliance Center for Astrophysical Thermonuclear Flashes at the
University of Chicago.

References

Fryxell B., et al., ApJS, 131 (2000) 273.

http:// flash.uchicago.edu/flashcode/

http://www-unix.mcs.anl.gov/mpi/

http://hdf.ncsa.uiuc.edu/

http://www.rsinc.com/

http://www.intel.com/software/products/compilers/
http://sded.gsfc.nasa.gov/ESS/annual.reports/ess98/paramesh.html/

Murawski K., Analytical and numerical methods for wave propagation in fluids, World
Scientific, Singapore, (2002).

e e —
03N N bW~
Pl W S S St i Y)

http://www.tcpdf.org

