
Annales UMCS Informatica AI 2 (2004) 251-262 
Annales UMCS 

Informatica 
Lublin-Polonia  

Sectio AI 

http://www.annales.umcs.lublin.pl/ 

 
Computer simulation of the potential distribution inside  

the plasma chamber of negative ion source 
 

Juliusz Sielankoa∗, Marcin Tureka, A. Tangab 

 
aInstitute of Physics, Maria Curie Skłodowska University,  

pl. M.Curie-Skłodowskiej 1, 20-031 Lublin, Poland 
bMax Planck Institute of Plasma Physics, Garching, Germany 

 
Abstract 

In the paper the computational method and results of simulation of potential distribution inside 
the plasma region of the negative ion source are presented. The code uses the well known PIC 
method [1] for the local charge density determination and finite differences method for the Poisson 
equation [2]. For simplification, the plasma model does not take into account the interaction 
between the plasma particles. The results of calculations are compared with the experimental data 
obtained for the RF negative ion source [3]. 
 

1. Introduction 
The negative ion is considered a valuable particle, which may be used 

succesfully used in various fields as a substitute particle for a positive ion. The 
difference between negative and positive ions appears in charge polarity, energy 
of ionisation and its energy polarity related to neutralization. The energy related 
to the ionization (electron affinity) is low (about 1eV) and the polarity energy is 
negative (absorbable when neutralized). Such features reduce surface charge up 
voltage during ion implantation of insulated materials and increase a secondary 
ion production during sputtering the target. The negative ions beam is useful also 
in the neutral beam injection (NBI) systems in fusion research because of their 
high neutralisation efficiency. This article describes the computer code, which 
simulates the phenomena inside the plasma chamber of negative ion source, and 
the results of calculations of potential distribution as well as concentration 
distribution of positive and negative ions. For the simulation purpose we use the 
geometry of calculation area, which is related to only part of the area of real RF 
negative ion source, and which my be extrapolated over the whole design due to 
periodic boundary conditions used in the modeling method.  
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2. Computational method 
2.1. Particle In Cell (PIC) model 

In the PIC method a very large number of real particles is represented by a 
much smaller, numerically tractable number of “macro particles” [1]. A typical 
computer simulation follows the trajectories of 105-106 computational particles, 
i.e. “macro particles” which represent a region that contains 103-109 real 
particles. At each time step, the “macro particles” are advanced by the single 
particle equation of motion. The charge density and electromagnetic fields are 
calculated with the assumption that all particles in a region move with the 
computational particle. In other words, the “macro particle” advances as a single 
particle, but is assigned multiple charges when the charge density and fields are 
calculated.  

In the PIC method the space is divided into small regions creating a spatial 
mesh. The method weighs particles to a spatial grid using a particle shape factor 
to obtain charge on the grid. The charge assignment process is the heart of a PIC 
simulation. It may be the simplest nearest-grid-points (NGP) method based on 
counting the number of particles between grid points and assigning the 
corresponding density to the cell centre. In other models, “macro particles” are 
given a mathematical finite size with a diameter roughly that of the cell to 
generate density functions with smoother variations. Depending on its position, a 
fraction of a particle may be assigned to a cell. This procedure is called the cloud 
in cell CiC method. In the presented code, the PIC model may be optionally 
chosen as the NGP or CiC [4] method. The calculations are performed in the 3D 
Cartesian coordinate system. 

 
2.2. The plasma particles trajectory calculations 

As mentioned above the PIC model uses the “macro particles” to simulate the 
motion of a much higher number of real particles. The motion of “macro 
particle” is treated as the single particle in a given electromagnetic field. To 
obtain the E field value in every grid point we use the charge density calculated 
by the PIC method and solve the Poisson equation: 

 2V ρ
ε

∇ = −  (1) 

where ρ is the charge density and ε is the dielectric constant. 
In the program the successive overrelaxation [2], finite-differences method to 

solve the equation (1) was used. Once the potentials V are known, the electric 
field on the grid can be obtained from 
 E V= −∇  (2) 
The force on the particles (ion beam particles) is obtained by interpolating E at 
each position using some weighting. In our program the simple, linear 
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interpolation was used. The particle velocity is updated using the Lorentz force 
equation 

 i i
i

i

dv q E v B
dt m

⎡ ⎤= + ×⎣ ⎦  (3) 

In the calculations presented here no external magnetic field was used, we also 
treated the nonrelativistic beam, so we may assume that the B field created due 
to the beam current is small and can be neglected. The differential equation (3) 
was solved numerically using the 4-th order Runge-Kutta procedure. As a result 
we obtained the next position xi, yi, zi and velocity vx, vy, vz of each particle 
(“macro particle”) of the ion beam.  

The scheme of the calculation of the trajectories of ion beam, in the E field 
produced by the electrodes and by the charge in the beam itself , at each time 
step looks as follows: 

1. At the time t the charge density ρ(i,j,k) (primary ions and secondary 
electrons and ions) is evaluated at the mesh points by assigning the charge 
of the “macro particles” according to their position. 

2. Next, the Poisson equation (1) is solved using overrelaxation method to 
find the electric field. 

3. The E field is used to advance the vectors x and v for the particles to (t+∆t) 
using the Runge-Kutta difference scheme to solve the equation (3). 

4. Procedure continues until the beam advances to the desired final state. 
 

2.3. CPU Time consumption optimization – omega calculations 
As has been said before, electric field in the plasma chamber is found by 

solving the Poisson equation using the successive overrelaxation method (SOR) 
[2,5,6]. This is the most time-consuming part of the code, therefore the optimal 
choice of ω (overrelaxation parameter) is crucial for the code efficiency. We 
performed some tests for the empty plasma chamber to find how fast the SOR 
method converges for different ω values The 100×100×100 Cartesian grid was 
used. It is worth mentioning that the optimal ω choice rule given e.g. in [2] does 
not work for large grids. The rule claims that optimal ωo in the case of Cartesian 
grid is the smaller of the two roots of quadratic equation 
 2 2 4 1a ω ω 0− + =  (4) 
where  

 cos cos cos
x y z

a
N N N
π π π⎛ ⎞⎛ ⎞ ⎛ ⎞

= + +⎜ ⎟⎜ ⎟ ⎜⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠
⎟  (5) 

and Nx, Ny and Nz are the numbers of the grid points in x, y and z direction, 
respectively. It is easy to see that for large grids a is close to 3, and there are no 
real solutions of eq. (5). 
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Tests were done for two kinds of boundary conditions: a) potential is 
established on walls of the chamber (boundary conditions I), b) gradient of 
potential vanishes on edges of the grid, and computational area may be treated as 
a part of a bigger plasma chamber (boundary conditions II). 
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Fig. 1. Dependence of rate of SOR method convergence on overrelaxation parameter ω for 

different values of Vb voltage and two kinds of boundary conditions 
 

The results are presented in Figure 1. In the case of boundary conditions I 
optimal ω increases with the increasing Vb voltage, whilst in the case of 
boundary conditions II it decreases. Note, that the number of iterations after 
which the SOR method converges is nearly two times greater in the case of 
boundary conditions II. Especially in this case the choice of ω value that differs 
from optimal value e.g. by 0.001 may lead to more than 10% increase of 
iterations number, which means hours of CPU time in non-test runs. 

Fig. 2 shows, that ω should be also optimized with respect to accuracy 
parameter denoted δV that determines whether iteration stops or continues. In 
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other words, iteration stops when the condition , , , ,
old new

i j k i j kV V Vδ− ≤  is fulfilled in 

every point of the grid. Optimal ω moves towards larger values with the 
increasing accuracy (i.e. with decreasing δV), and minimum becomes more 
pronounced. Due to this fact the choice of ω must be careful in order to avoid 
unnecessary CPU time consumption. 
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Fig. 2. Dependence of the convergence rate of the SOR method  

on the accuracy parameter δV .Results for Vb=47 V 
 
2.4. Influence of the number of pseudoparticle and their charge representation 
In the PIC method one computational “macro-particle” represents a large 

number (usually 103-109) of real particles of the same kind. We wanted to test 
the influence of this number, and what follows, the charge of “macro-particle” 
on the results of charge density and potential computations. A large number 
(denoted Np) of charged macro-particles is put into a rectangular box of sizes 
6.8 cm/2cm/2cm. These particles, corresponding to protons and electrons and 
carrying the charge +Qp and -Qp are randomly distributed inside the box. Their 
movement is neglected. It is easy to see that in the case of perfect random 
distribution of the infinite number of particles, charge density and potential 
should be equal to zero in the whole volume. Unfortunately, in computer 
simulation Np is restricted by the size of accessible memory, so it seems 
advisable to estimate limitations of that method. 

Tests were performed for several values of Np. Every time Qp was chosen to 
keep the total charge of particles of one kind constant. In other words, NpQp  is 
invariant, as seen in Table 1. 
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Table 1. The values of Np and Qp used in test simulations 
Np. Qp [C] 

100000 6.95⋅10-15

500000 1.39⋅10-15

1000000 6.95⋅10-16

2000000 3.47⋅10-16

 
In Figs. 4 and 5 the results of calculations of charge density and equivalent 

potential distribution for the randomly distributed protons and electrons (with 
their number ratio 50/50%) are presented. In this case the data are related to the 
central area of the grid system. 

As was mentioned before in all tests presented below the particles after 
generating their position in the chamber (using Monte-Carlo method) are not 
movable. 
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Fig. 4. Charge density and potential distribution obtained for 106 macro-particles distributed 
homogeneously in a rectangular box 
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Fig. 5. The same as on the previous picture but for 2⋅107 macro-particles 
 

Figs. 4 and 5 show that an increasing number of macro-particles makes the 
calculated charge density distribution smoother and more homogeneous. The 
range of charge density oscillations change from 4.5⋅10-4 C/cm3 for Np=106 to 
8.0⋅10-5 C/cm3 for Np=2⋅107. 

Charge density becomes more balanced with respect to zero value, which can 
be seen even better in the next picture. 
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Fig. 6. Charge density profiles along the chamber axis.  
The charge density is averaged on thin (6 mm) slices 
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Charge density averaged over the 6mm wide slices of the grid (perpendicular 
to the X axis) is presented for three Np  values. One can see that amplitude of 
spatial oscillations rapidly decreases for larger Np. The more inhomogeneous 
charge density distribution is the more bumpy and oscillating the potential is 
calculated via the above mentioned SOR method. For a relatively small number 
of macro-particles Np=106 the potential has “ridge” of 25V height, and “valley” 
of 10V depth next to each other. Better statistics, i.e. larger Np smoothes these 
undesired oscillation, e.g. for Np=2⋅107 potential becomes more flat and centered 
around zero value. Hence, using the large number of macro-particles and smaller 
charge per one macro-particle gives better, more physical results, and the cost of 
it is longer computation time and greater memory requirements.  
 

2.5. Comparison of the results of calculations for NGP and CiC models 
It was mentioned in section b) that there is a variety of PiC models depending 

on how macro-particle shape function is chosen. Putting it in other words: PiC 
models differ from each other mainly by the algorithm describing assignment of 
macro-particle charge to grid points. In this section we compare the results of 
charge density and potential distributions in the plasma chamber obtained using 
three different PiC schemes. The first and the simplest one is the nearest grid 
point scheme (NGP) when whole macro-particle charge is assigned to only one 
grid point. This PiC algorithm is very fast, and easy to implement. A little bit 
more complicated is the first order CiC method (denoted here by CiC1). 
According to this method, particle charge is distributed among eight grid points 
that are vortices of the grid cell particle. Description of the weighting coefficient 
can be found elsewhere. We also tested the second order CiC method (CiC2) 
very similar to that used in Numerical Tokamak Project and described in 
[7].This method distributes with sophisticated weighting coefficients charge of 
macro-particle among the nearest 27 grid points. 

All these methods were tested in a way described in the previous section, 
which means Np macro-particles were put into a cylindrical plasma chamber 
with homogeneous distribution, and their movement was frozen. Differences in 
the results given by these PiC models are most visible in the case of small Np. 

Looking at the averaged charge density profiles (Figs. 8 and 9) one can see 
that both CIC methods give smoother distributions than this obtained by NGP. 
Even simple “smearing” of particle reduces oscillations in charge density 
profiles. Potential distributions given by CiC methods are also smoother. 
However, despite the fact that CiC2 method is far more advanced than CiC1, it 
gives roughly the same distributions in the plasma chamber we considered, so 
using this method does not seem to be purposeful in this particular case. 
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Fig. 7. The comparison of potential distributions obtained  

from the three PiC models: NGP, CiC1 and CiC2 
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Fig. 8. Charge density profiles in the three PiC models obtained for 106 macro-particles 

 
Density profiles obtained for Np=107 presented in Fig. 9 behave in a very 

similar way. 
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Fig. 9. The same as in the previous picture but for 107 macro-particles 

 
3. Results of the calculation of potential distribution and concentration 

distribution of ions inside the plasma chamber 
As for the test purpose, we use the similar geometry of simulation area (x,y 

cross section for z=0 as a middle of the chamber is presented in Fig. 10). The 
calculations were made for the plasma consisting of 3 kinds of particles – H+, H- 
and e- with the starting uniformly distributed concentration as 5E13 /1E13/4E13 
1/m3 respectively. The 106 pseudoparticles are uniformly distributed inside the 
vessel at the time t=0. There is no interaction between the plasma particles taken 
into account, it means that time of life for each particle is equal to infinity. The 
particles are moved until they hit the plasma chamber wall, and next they 
“disappeared” in the calculations. Positive grid bias is equal to 47V and no 
voltage is applied to the extraction electrode and no magnetic field inside the 
plasma chamber. 
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(bias potential 
 on the grid electrode) Periodic bondary 
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U=0V
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2cm  H+,H-,e- 

 
Fig. 10. X,Y cross section for Z=0 of ion source chamber 

 
In Fig. 11a,b the space concentration distribution of H+ and H- is presented. 
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Fig. 11. Concentration distribution of (a) - H+ and (b) - H- ions inside  
the plasma chamber of the ion source 

 
As can be seen the positve grid bias increased the H- density near the grid 

about by a factor of 2 to 3. This result is consistent with the experimental results 
obtained by the M.Bandyopadhyay and A.Tanga [3]. As mentioned before we 
also calculated the potential distribution inside the plasma chamber of an ion 
source. The results are presented in Fig 12. In Fig. 12 the plasma potential 
gradient over the distance of 6cm from the grid edge is shown. 
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Fig. 12. Plasma potential near the grid – the line represents the calculated values, point – the data 

from experimental measurements [3]. The grid electrode is biased with +47V 
 

The agreement between the experimental data and the potential gradient 
calculated by the code is good in the distance up to nearly 5cm from the grid. 
The discrepancy between the results for the last point (plane at 6cm from a grid) 
can come from the boundary condition chosen for this plane (constant potential 
equal 0). In reality there is a plasma flow from the RF chamber. 
 

4. Conclusions 
In the paper we present the code which can model the phenomena inside the 

plasma of the ion source chamber. The test of the code shows that for a given 
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geometry of grid system the number of 1×106 pseudoparticles used for the 
simulation purpose is enough to obtain guite good results for the concentration 
distribution of particles inside the chamber. The NGP method in PIC model for 
the charge density distribution gave practically satisfying results in comparison 
with the better, but much more time consuming CIC method.  

The positive grid bias increased the H- density near the grid by about a factor 
of 2 to 3. This result is consistent with the experimental results [3]. The 
calculated potential gradient of plasma is in good agreement in the near grid 
edge (up to 5cm from the electrode). 
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