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The application of adaptive algorithm to potential problem
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Abstract
The paper presents an algorithm of adaptation by successive mesh regeneration and its
application to the potential nonlinear flow problems. The Newton-Raphson method is applied to
the solution of nonlinear problem. The Kutta-Zhukovsky condition is implemented by the penalty
function method. The adaptation algorithm is based on the modification of mesh size function
depending on the error indicator calculated at every node. Numerical tests are presented.

1. Introduction

In the case of flows when the Mach number is less than 1 it is still sensible [1]
to solve the nonlinear potential model instead of Navier-Stokes equations. It is
assumed that the flow is stationary, irrotational, subsonic, comprehensible,
inviscid in domain €2 around profile P [1,2].

The boundary of €2 consists of three parts: 0 Q=T"UT, U X.

\

P Trail edge

Fig. 1. The computational domain
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The following constants are introduced:
V. — travelling velocity at infinity, p,,C, — density and sound speed of
motionless air,
x >1 — adiabatic gas constant (x = 1.4 for dry air).

As the flow is irrotational there exists the potential u of the speed then from
the continuity equation it is obtained:

div [p(|Vu|2) VuJ = 0in Q, (1)
L
. . . Kk—1_|<!
where p is the density of air and p (S)z Lol 1— by S )
CO
On the slit = the following conditions [3] should be satisfied:
ou”  ou” ou
u'—u =4, - =0 on E, — =p,un_, on I,
p on*  on’ Pon =7
where:

n, normalto I',, p, = p ( ‘ VOO‘ ) .
[ is found by the Kutta-Zhukovsky condition [2]:
2 2
K(B)=|vu'|_—|vu|_=0. )

2. Full potential problem formulation
Weak formulation is followed by [3]:

div [p (| Vu|2) Vu} =0 in Q,

ou L ou"  ou- _
%ZO on FP’ u —u =ﬁ, an+ _an+ =O on =,
L2 2
K(,B)Z‘VU TE_‘VU ‘TEZO'

3. Weak formulation and the derivation of principal vectors
and matrices for discretisation
For weak formulation of the problem the following Sobolew spaces [2]
spaces are defined.

Let 8&0221—‘ Ul UZ where Q=Q-3%, then

W (02 )={V:VELP(Q), %e L () . izl,z}, and
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W"p([o.?j:{v:VeLp([O)), gﬂe Lp(f.zj , i=1,2}.
X;

The weak formulation takes the form: find u which satisfies the following
variational principle

”p(|Vu|)Vqudxdy = j gvdxdy veW"” [Qj ,
) )

u"—u =g, on ¥, g=p,un on I
Equivalent formulation is in the form of extremum for the following
functional:

= %J;)J' R(|Vu|2 )dxdy —TJ; gudr",

S

where R(s)= _fp(s)ds.

0

By substitution H (X y,u,u,, ):%R(|Vu|2), it is obtained:

”H X, ¥,U,Uy, )dXdy—jgudF, Qc R,
T

3. The finite element method
Let {ul sUy ey Uy } be a set of basis functions for FEM then:

u=iz::xiui.
Let f (%, _|(Zx ]

The necessary conditions for the extremum of function f lead to the following
solution for the system of algebraic nonlinear equations:

of
gk (7\,1,...,?\,,\‘):520.

k
It can be derived that g, (A,,...,Ay )= H D odxdy thus:
0

:”(pl Dergydxdy, k, j=12,...,N,

where:



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 00:17:15

40 Jan Kucwaj
.
oH oH oH
Dp=s|— — — |,
ou ou, ou,

the Hessian of function H is introduced:

[ O°H  PH oH
ouou  dudu,  duou,
O°H  oH o°H
" loudu audu, duau,
O°H  oH o°H
_auyau ou,.ou,  ou.ou, |

and
ul H H uN
U= Uy 5o Uy
Uy s Uy,

Then ¢, is the k-th column of matrix U.
In the case of FEM:

9, @ ” D Lo dxdy = ZH Dy p,dxdy .

e1'|'

Let Az[ﬂq,..., N ] , then

D(u,,U,,...,Uy )
Jg(A)z—DMJPW’ ) { } {Zl‘,gw pr,] 3)

The implementation of Kutta-Zhukovsky condition is fulfilled by the peanalty
method:

|*(u)=|(u)+izl_l:|v|(zki—,1mi)2. (4)

In formula (3) M is a big number in comparison to the elements of matrix (3).

NAVAVAYS

Fig. 2. The Kutta-Zhukovsky condition on slit £
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4. The application of Newton-Raphson method

. Fix the initial vector A satisfying the Kutta-Zhukovsky condition,

2. Repeat points 3, 4, 5 until || g(Ai)|\<g A,

3. Solve the following system of linear algebraic equations with the

4.

5.
6.

implementation of the Kutta-Zhukovsky condition Jg (A;)A
A=A +AA
i=i+1,

End of computations.

-G(A):

i1 =

i+1°

The number & is an error tolerance, thus the norm in R" is defined:

1
| Il ||, = max|x]|, where x=(X,,....X,) eR".
i=l...N

5. Unstructured grid generator with the mesh density function

It is assumed, that the boundary of the 2-D domain consists of the following
curves topologically equivalent to the straight line segment [4,5]: straight line
segment, arch of the circle and B-spline curve.

Main steps of the grid generation:

1.

W

Points generation on the elementary curves with a given mesh density
function by an algorithm dependent on the curve type,

. Starting with boundary segments right oriented with respect to the domain

points insertion by the advancing front technique,

. Delaunay triangulation on the obtained set of points.
. Laplacian smoothing.

C

p(A)

A B

Fig. 3. Satisfaction of the mesh density functions requirements

Let AB be the current boundary segment, point C should satisfy the
following conditions:
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p(A)+p(C)Z|AC
2

p(B)+p(C) ~|BC|.

b

In the practical code implementation the simplified condition is used:

|AC|=p(C).
|BC|=p(B).

6. The algorithm of adaptation

The algorithm of adaptation consists of the following steps [6]:

1.

NN DN kW

\O o0

Division of the domain into subdomains in such a way that slit X is a part
of the common boundary for the two neighboring subdomains.

. Taking the initial mesh density function.

. Grid generation in subdomains with the taken mesh density.

. Solution to potential problem on the generated mesh.

. Evaluation of nodal values of error indicators.

. Modification of nodal values of mesh density function

. Description of a new mesh density function by the interpolation of the

nodal values.

. If an error is not satisfactory go to point 3.
. End of computations.

7. Modification of the mesh density function

Explanation needs point 6 of the adaptation algorithm, which realized during
every adaptation step. The main idea of this part of the algorithm consists in the
reduction of the values of mesh density function by the appropriately chosen

function.
For every node P, i=1,...,N,,,a weighted value of the error indicators is
defined as follows:
S area(T, )e,
~ kely
S I
Y area(T, )
kely

where T, is a triangle of the triangulation, and: L, = {j P eT, } .

Let a= min €., = max &

k=1,...Nyop k=1,....Nnop

Obviously o <€ < pg for k=1,...,N;.
The following values are introduced:
A —avalue indicating the smallest mesh density reduction,
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M —a value indicating the greatest mesh density reduction.
It is assumed, that: 0 < 4 < A, and additionally 4 <1.
Let |:[a,B][u,A] be an affine mapping satisfying: |(a)=2 and
\(B)=w.
Provided, that: Q, =1(&;), then we have: _min Q=u, max Q=4.

i=1,...,Nyop .---Nyop

Introducing the function r::D > R

r(x)=TII(x), if xeT, for some 1<k<N,,

where I1 is an affine mapping of two variables satisfying the following
conditions:

I(R)=Q for i=1,2,3, where B,P,,P, are the vertices of the triangle
T, of the triangulation of Q.

The function r(x) is defined in the whole domain € because the triangles

Nr
{T,} cover it. The new mesh density function is defined by the recurrent
j=1

formula:

P (X)=p (X)r(x) VxeQ.
It can be shown that:
X,y e Q such that up, (x)=p,,,(x) and p.,(y)=2p0(Yy).
191 = il <16y max {1 = 221 = 2]}

b

Fig. 4. Initial mesh
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Fig 5. Mesh after 6 adaptation steps

8. Numerical tests
Numerical tests were performed for the NACAO0012 profile with an angle of
attack equal to zero and the traveling velocity equal to 0.6 Mach. Figs. 4 and 5
represent initial and final mesh, and Figs. 6 and 7 isolines for potential function
and velocity. Further calculations will be performed with the variety of angles of
attacks and traveling velocities.
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Fig. 6. Isopotential lines

Standard error indicator [6] is applied based on the calculating differences of
discontinuity of derivatives at the edges of neighboring elements of the obtained

solution.
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Fig. 7. Speed isolines

9. Conclusions
This paper presents an algorithm of adaptation based upon grid generation

with the mesh density function. The algorithm is applied to subsonic potential
flow, and numerical results are presented.

Further development will be connected with solution to transonic potential

flow and consideration of variety of angles of attacks over known profiles. To
find the coeffiecient £ in formula (2) the secant method is applied. The whole

numerical procedure has three iterations:

- loop over successively generated meshes,
- loop of secant method,
- loop of Newton-Raphson method.
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