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Abstract

The problems of artificial neural networks learning and their parallelisation are taken up in this
article.

The article shows comparison of the Levenberg-Marquardt’s method (LMM) and its two
modifications JWM (method with Jacobian matrices formed in each step) and BKM (Jacobian
calculations only in the first step) for training artificial neural networks. These algorithms have the
following properties: 1) simpler calculations; 2) they are partly parallelized. The experiments
proved their efficiency. Experimental results demonstrate that neural network for training by them
needs a similar number of epochs as the LMM and lesser time for training.

1. Introduction

The learning for the big feedforward artificial neural networks with a large
training set takes a long time (in terms of days) [1,2], it also becomes imperative
to look at train algorithms modifications and parallel implementation schemes to
reduce this training time.

The experience of training feedforward artificial neural networks by
Levenberg-Marquardt’s method and its JWM and BKM modifications on single
processor computer and realization for multiprocessors cluster are stated in the
article.

LMM is the fastest and most popular of Newton’s methods [3]. These
methods use the batch training mode, rather than the pattern mode which is
based on derivatives of instantaneous errors. We propose two modification
schemes of it. These algorithms have lesser convergence than LMM, but
calculation time lesser than LMM.
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2. LMM

Levenberg-Marquardt algorithm originates from the Gauss-Newton method.
It is the fastest and most popular of Newton’s methods. These methods use the
batch training mode, rather than the pattern mode which is based on derivatives
of instantaneous errors [1,2].

For simplicity, we consider two layer perceptrons with weights matrice W ",
W7, p, L, m — number neurons in input, hidden, output layers accordingly. The
weight vector W is formed by scanning these matrices in rows.

The training set consists of N examples.

Let us assume that:

The length of w is

K=L(p+m).
All weights have been arranged in one vector
W= [wl...wj...wK] .

All (instantaneous) errors form a column vector
T
e(w,n)=d(n)-y(n)=[g..€..€,] .
The instantaneous performance index
m 1

E@m@=%2}ﬂ@=55@)500.
k=1
The total performance index

F(w)=--3 E(wn),

n=1

where M = mN (m — number of outputs).
The symbol F is used instead of J to avoid confusion with the Jacobian
matrix.

— The instantaneous Jacobian matrix, J(n), is mXK , one column per weight,
and can be partitioned into two blocks related to the hidden and output
weights, respectively:

Im=[3"(n) I’(m].
— The batch weight update is the linear equations system solving
(JT(W)~J(W)+/1-|)-AWT =-J"(w)-e(w),
where £ is a small constant, | is the identity matrix.
We propose to solve the system of linear equations using Householder’s

transformation [4]. This numeric method allows getting good solution accuracy.
Its parallelization gains good decreasing training time results, as well.
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Fig. 1. Functional dependence of total perform index from the number
of epochs demonstrate of LMM

LMM algorithm convergence is demonstrated in Figure 1. Every line in the
figure corresponds to different weights vectors Wy, but they have the same
training set N.

We attempt to parallelize it for the work on cluster. To solve this system we
use Householder’s transformation for each column of the system matrix. After
those transformations, the matrix will gain triangle shape.

We can parallelize some of the algorithm parts [2].
The matrix columns are shared between the processors and that way

processor p; gets columns {c,,cy,;,Cyy.;0--f » N — mean number of processors,

pi — processor number, ¢;— column number.

Then one by one we define Householder’s transformation of each column.
The vector we get is sent to the other processors [4]. The next step is based on
each processor usage of the vector it gets to transform its own vectors.

The parallelization of LMM algorithm for different training sets and the same
weights vectors Wy is demonstrated in Figure 2. The number of columns in
Jacobian is equal to the vector w size. One epoch is the time for one batch
weight update calculation.

3. JWM and BKM

The JWM is a method of training artificial neural network. It is LMM
modification for g4 =0 case. Then weights update system linear equation

becomes
J(w)-Aw" =e(w).
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Fig. 2. Dependence of training time on the number of columns in Jacobian
in single computer and 2,3 processor cluster

This is a standard Gauss-Newton method. One problem of the Gauss-Newton
method is that the system of linear equations does not often have solutions. For
solving this problem we update the weights in the K+ literation by the next
rule:

W, =w, +t- AW+«
where Wy is the previous weights value, Aw is the batch weights update, t is the
learning rate variation, « is the noise (small random value).

We use conjugate gradient algorithm use to find learning rate variation t [3,5].

The results of the artificial neuron network learning by means of JWM for
test patterns are demonstrated by diagrams in Fig. 3.

The other BKM method is the BFGS algorithm modification. It does not need
to calculate Jacobian matrix for each iteration. Instead we calculate By matrix. It
is defined as:

B, =J(w),
T
ISk
Bk+1 = Bk T. °
Sk Sk
.= Bksk —Ye>
S = Wiy — W,

Y :e(Wk+1)_e(Wk)’
W, =w, +t-Aw+a,
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where Wy is the previous weights value, Aw is the batch weights update, t is the
variation of learning rate, « is the noise (small random value). We use conjugate
gradient algorithm to find variation learning rate.

Error
0,18

0,16

0,14

0,1

AN
ol O\
0,04 \ -

o:oz %
=\ —

1 155 309 463 617 771 925 1079 1233 1387 1541 1695 1849 2003 2157 2311 2465 2619 2773 2927

Number of epochs

Fig. 3. Functional dependence of total perform index on the number
of epochs demonstrate of JWM

The results of the artificial neuron network learning by means of BKM for
test patterns are demonstrated by diagrams in Fig. 4.
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Fig. 4. Functional dependence of total perform index on the number
of epochs demonstrated for BKM
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Training time per epoch is demonstrated in Figure 5. The upper line is for the
LMM time, the lower line is for JWM and BKM. The number of columns in
Jacobian is equal to the vector w size. One epoch is the time for one batch
weight update calculation.
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Fig. 5. Calculating time of one epoch

4. Conclusions

This paper presents two algorithms for artificial networks learning. The main
advantage of the proposed algorithms is that they allow to train neural network
faster than the standard Levenberg-Marquardt’s algorithm. BKM method does
not need calculating Jacobian matrices of each step. Algorithms give good
results for recognition task accomplishing.

JWM and BKM are interesting with respect to parallelisation. Both methods
are partially parallel. The next experiment series could show which of them is
faster.
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