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Abstract 

In this paper we want to present problems connected with the generation and storing of huge 
sparse matrices, arising during modelling the queuing networks with the use of Markov chains. We 
also want to present an algorithm for distributed generation of such matrices. 
 

1. Introduction 
A distributed algorithm for solving huge and sparse linear systems that appear 

in the Markov chain analysis of queuing network models was presented in [1]. 
That algorithm requires the linear system coefficients matrix Q to be distributed 
(nearly) evenly among machines before the start of the computations. 

One solution to that problem is to generate the matrix Q on one computer and 
then distribute it among others. However, this approach is rather time-
consuming – because we use only one machine of the whole cluster/grid and the 
distribution after the matrix generation is expensive from the communicational 
point of view – and space-consuming – because we try to store the whole huge 
matrix on one machine which can be expensive or even impossible. One of the 
advantages of the algorithm described in [1] was the starting distribution of the 
matrix Q (during its generation) to use the space on the machines in the best 
manner. 

We achieve better results when we design a distributed algorithm for 
generating the matrix Q after which there will be a respective part of the matrix 
on each of the machines. In our algorithm each computer will be responsible for 
generating its own part of the matrix. Of course, there will be some 
communication but it will be reduced to the minimum. 
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2. Markov chains in the queuing networks analysis 
We designed our algorithm to generate the transition rate matrix (also known 

as the infinitesimal generator matrix) for queuing networks.  
A queuing network is a system of connected service stations (shown in 

diagrams as circles with optional queues) with customers moving instantly 
among them. A customer spends some random time being served within a 
service station, then it travels to a next station according to routing probabilities 
which determines chances for a customer which path it will take. An example of 
a queuing network is presented in Figure 1. 

 
Fig. 1. A scheme of a queuing network example 

 
To start investigating the behaviour of such a system as a Markov chain we 

have to choose a representation for the set of states. The most common way is to 
represent each system state as a vector whose components describe completely 
the states of all elements of a queuing network. For the queuing network in 
Figure 1 with the constant number N of customers and with the exponential (that 
is ‘without memory’) distribution of the service times we can define the system 
state with a four-element vector (a,b,c,d) where a, b, c and d are the numbers of 
customers waiting and being served in service stations A, B, C and D, 
respectively, and where a+b+c+d = N. 

Next, we have to enumerate all potential transitions among states and define 
for them the transition rates qij (independent of time for homogeneous Markov 
chain, most interesting for us): 
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where ( )ijp t∆  is the probability that if the system is in the state i the transition 
occurs to the state j in the time ∆t. This is how the transition rate matrix 

( )ijq=Q  is created. 

The last step (being performed by the algorithm from [1]) in the analysis is to 
compute probability vector  whose components ( )tπ ( )i tπ  are the probabilities 
that the system is in the state i at the time moment t. We are interested in finding 
the long-run (independent of time) probability vector ( )1,..., nπ π π=  from: 
 0π =Q ,   0π ≥ ,   1i

i
π =∑ .  

 
Fig. 2. A transition graph of a queuing network 

 
3. The generation of the transition rate matrix 

There are various manners to generate the transition rate matrix. There are 
methods – fast but not very general – based on indexing functions [2,3], 
probabilistic methods (giving incorrect transition matrices with a non-zero 
probability) [4] and others. We are interested in one of the most general methods 
– the Breadth First Searching algorithm (BFS), which allows us to enumerate all 
states, to number them, to enumerate all potential transition among states and to 
compute the transition rates. 

The BFS algorithm is an algorithm to traverse all the edges of a directed 
graph. We start with a list having a single (arbitrary) vertex (that is: a state 
vector) and we investigate all edges with the given vertex as a starting point. For 
each of these edges we add to the list its ending point – but only if it is not in the 
list yet. Next we go to the next vertex in the list and so on, while there are 
vertices not yet traversed in the list. 
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The algorithm described above can be used to generate the transition rate 
matrix for a queuing model. In this case it does not search the graph but it 
generates the transition graph (such a graph for the queuing network in Figure 1 
for N = 2 is presented in Figure 2) and the transition rates. Such a version of the 
BFS algorithm is presented below. 

1. Initialize L as a numbered list that contains only one, arbitrary state vector 

w (a graph vertex) of the transition graph. 

2. Initialize X as an empty list. 
3. For each vector v representing the state that is allowed as a next state after 

the state w: 
a) if v is not a member of your vector pool and is not a member the list X 

then attaches v to X else if v is a member of your vector pool and is not 

a member of the list L then attach v to L, 

b) compute the transition rate from w to v and remember it as Q[ind(w, 

L), ind(v, L)] or as QX[ind(w, L), ind(v, X)] – it depends on the list 

in which the v is (where ind(a, B) is an index of a in the list B). 

4. If w is not the last element of L then  assign the next element of L to w and 
go to 3. 

5. Send the elements of X (that have not been sent yet) to the master. 
6. Wait for the answer from the master. 
7. If the answer will not be the ‘ending signal’, then attach the received 

elements (state vectors generated by other slaves and received by the 
master) to L and go to 4. 

8. Together with the ending signal the master sends the data (mainly sizes 
and indices) that the slave uses to compose its own part of the matrix Q 

from QL and QX. 
The vector pool is a key idea for our algorithm. The vector pools are subsets 

of the state space, their intersections are empty and their union is the whole state 
space. Moreover, the pools should be of almost the same count because they are 
assigned to the slaves ‘one-to-one’ and the algorithm described in [1] works best 
in this case. The problem is that we have to know the division into the pools 
before our distributed algorithm starts. 

Our method to solve this problem is to describe each of the vector pools with 
simple conditions, which can be distributed among the slaves before the actual 
algorithm starts. Exemplary conditions for our graph in Figure 2 could be ‘the 
first element of the vector is zero’/’the first element of the vector is not zero’ 
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(one pool of 6 and the other of 4 elements) or ‘the ‘one of the vector elements is 
2/’no vector element is 2 and the first one is zero’/’no vector element is 2 and 
the first one is not zero’ (4/3/3). The slaves can easily check if the generated 
state vectors are in their pools with such conditions, but on the other hand, we 
should choose these conditions very carefully – to minimize differencies 
between quantities of the vector pools. 
 

5. Conclusion 
The presented above (section 4) distributed algorithm for generating the 

transition rate matrix can be easily implemented with the language Ada [5] or C 
with the use of MPI [6]. It can improve the distributed algorithm for solving 
sparse linear systems from [1] making it a useful tool for solving the Markovian 
models appearing during modelling various networks with queuing networks. 
The problem which must be solved separately for each model is the choice of a 
suitable division into vector pools. We are going to investigate this question 
further. 
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