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Abstract
In the article a new approach for solving Markovian linear systems is presented. It is the
inverse iteration with the use of the WZ factorization. The paper contains the theoretical base of
the method and numerical experiment results where the accuracy and the performance time were
investigated. A modified (with the use of the SBLAS library and the Harwell-Boeing sparse matrix
storage scheme) method was also presented. The experiments were carried out with the matrices
generated for a Markovian model of a leaky bucket with tokens.

1. Introduction

Behaviour of a real system can often be described by specifying all the states
in which a given system can be and by showing the ways the system changes its
states in time. If future states of the system depend only on the present state (not
on any past states) the behaviour of the system can be presented as a Markov
process (a kind of a stochastic process). If a Markov process state space is
discrete, the process is called a Markov chain.

A system modelled with a Markov process assumes exactly one state (from
the whole set) in each time moment. The system evolution is described with the
probabilities of transitions from one state to another. In such a model we are
usually interested in probabilities of particular states in a given time moment ¢.

In this paper we are interested in discrete-time Markov chains (DTMC). For
such a Markov chain the system state is probed in a discrete set 7 of time
moments — the set 7' is usually identified with the set of natural numbers.
Moreover, we assume our DTMC is homogeneous, that is the probabilities of
transitions between states are independent of time.
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If this Markov chain is ergodic (i.e. irreductible and aperiodic), the
probability vector 7(t) converges (as ¢ grows) to a stationary one 7, independent
of the initial vector 7(0), so we have:

r=nP, (1)
where P is a matrix of transition probabilities between states.

To find 7 we can solve (1) with the constraints:

720, me=1,

where ez(l,l,...,)T.
The equation (1) can be transformed to 7P—-7=0 and farther to
7(P-1)=0. Now we can denote P—1 by Q (Q is called a rransition rate

matrix or an infinitesimal generator matrix) and we get a linear equation system
with the constraints:
7Q=0, 720, me=1. 2)

The matrix Q is a square nxn matrix (usually a huge one — but we consider
only finite state spaces), of the rank (n - 1) (in the cases interesting for us), with
the dominant diagonal. It is singular and sparse, so we need appropriate
approaches to the system (2).

There are indirect methods, — like iterative and projection methods — that are
widely used. However, we sometimes need a direct method (when we need the
most accurate results, for example). The most popular of the direct methods are
the LU factorization method and its relatives. In this article we want to present
another direct method for solving (2), namely the WZ factorization method.

Two approaches for solving (2) with the WZ factorization were presented in
[1]. In those experiments, we applied a not-packed storage scheme for transition
rate matrices, as for a case of dense matrices. The use of the BLAS libraries
made a significant improvement in performance of those algorithms [2,3].

In this article there is presented an approach based on the WZ factorization
(sections 2 and 3) and the inverse iteration (section 4). The Harwell-Boeing
storage scheme and the BSLAS (Sparse BLAS) library (section 5) is used in
experiments, numerical results are displayed (section 6).

2. The WZ factorization
In this section we present shortly the WZ factorization and the method for
solving a linear system
Ax=b were AeR™, BeR"
with the WZ factorization.
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The WZ factorization is described in [4-6]. A =WZ, where matrices W and
Z are of the following forms (for the even size n of the matrix A):

1 0
w, 1 0w,
W 1 0 3)
- 0 1 ’
Wn—l,l O 1 anl,n
_Zn Z],n_
2y Zom
z z
Z = N , (4)
Z‘]I’ qu
Zn—l,2 anl,n
_an “ee e oo “ee “ee e .o oo Znn_
where
m=|(n-1)/2], p=|(n+1)/2], q=[(n+1)/2].
After factorization we can solve two linear systems:
Wc =Dh, )
Zx=c,

(where c is an auxiliary vector) instead of one (2).

3. Sequential algorithm for WZ factorization

The WZ method algorithm for solving linear systems (after [4,6]) consists of
two parts: reduction of the matrix A (and the vector b) to the matrix Z (and the
vector C) and next solving equation (5).

The first part consists in partial zeroing of columns of the matrix A. In the
first step, we zero the elements from the 2nd to n-1st in the 1* and nth columns.



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 09/02/2026 05:47:31

18 Beata Bylina

Next, we update the matrix A and the vector b. After m + 1 such steps we get the
matrix Z = A™", (as defined in (4)) and the vector ¢ = b™"". We get

wm. W A=Z
so

A= {W('”}'l -...'{W(O)}_l Z=WZ.

The second part of the method is to solve a linear system (5). This part
consists in solving a linear system with two unknown quantities x, and x, and
next updating the vector b.

Formally we can write this with the use of a MATLAB-like notation:

% part 1: the elimination loop -- the reduction
% from the matrix A to the matrix Z
for k=0:m

k2=n-k+1;

det=A(k,k)*A(k2,k2)-A(k2,Kk)*A(k,k2);
% computing elements of the matrix W
for 1=k+1:k2-1
wkl=(A(k2,k)*A(1,k2)-A(k2,k2)*A(1,k))/det;
wk2=(A(k,k2)*A(i1,k)-A(k,k)*A(i,k2))/det;
% updating the matrix A
for j=k+1:k2-1
A, 3)=AC, ) +wk1*A(k, J)+wk2*A(k2, ) ;
% updating the vector b
b(1)=b(i)+wk1*b(k)+wk2*b(k2);

% part 11: computing the solution vector X
for j=m:0
% solving an auxiliary 2x2 system
J2=n-j+1;
det=A(j,§)*A(i2.i2)-ACi2,§)*AG .§2)
x()=(bUA)*A(J2,32)-b(12)*A(J .Jj2))/det;
x(J2)=(bU2)*AQ.1)-bU)*A(Q2,3))/det;
% updating the vector b
for 1=j-1:0
i2=n-i-1
b(i)=b(1)-x@)*A(i.J)-x(F2)*A(i.J2);
b(12)=b(12)-x()*A(i2,J)-xJ2)*A(12,j2);

4. The inverse iteration

As we noted above, we are interested in finding the vector 7 from (2). In our
case we need to solve a homogenous linear system with n equations and »
unknowns. Such a system has a non-zero solution if and only if the coefficient
matrix is singular. The matrix Q has a zero eigenvalue [7], so it is singular. Let

us assign 7 =X" and transpose (2) to get:
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Q'x=0, x>0, e'x=1.

We want to present an approach to solve such a linear system. We assume
that the Markov chain represented by Q is irreductible (so Q is of rank (n-1)).

The inverse iteration was introduced in [8]. It is a method for finding
eigenfunctions of linear operators. It is used here to find an eigenvector X
of a matrix A:

AX = AX
where A is a real or complex square matrix and A is an eigenvalue. The inverse
iteration is a method to compute an eigenvector associated with a known
eigenvalue. Given an approximation u of the eigenvalue A and a starting vector
Xo, the inverse iteration generates a sequence of vectors (X;) being solutions of
the systems:
(A—pl)x, =s,x,_, for k>1

where s is responsible for normalization of X, — usually it is chosen to make
||Xk || =1 with respect to a suitable norm.

The sequence (X;) usually converges to the eigenvector associated with the

eigenvalue A, especialy when the A is the eiganvalue closest to x# and when the
vector Xy is a linear combination of the eigenvectors (what is almost sure).

Let A=Q".Now A =0 is an eigenvalue of A so we can write (with s, = 1):

(Q"-01)x, =x, ,
and then:
Q'X, =X,_,.
For k=1 we get:
QX =X,.

As a starting vector we can choose X, =€, and we are to solve a system
Q'x, =e, what we can do by the WZ factorization. Let Q" =WZ, so we get
WZx, =e, and then we are to solve

{Wy =e,,
ZX, =Y.
It is obvious (see (3)) that the solution of the equation Wy =e is y=¢ , so we

are only to solve
Zx, =e, . (6)



Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 09/02/2026 05:47:31

20 Beata Bylina
First, let us consider an even n. The equation (6) takes the form:
le e “ee e “ee eee “ee Zl’n xl 0
222 “ee DY IS LAY Zz’n xz O
z z by 1
o “pq Pl g (7)
Z‘IP qu xq 0
Zn—l 2 Zn—l n xn—l O
_an e “ee e “ee eee “ee Znn__xn_ _0—

The determinant z,,z,, - Z,z, =0 (because Q' was singular and diagonal
dominant), so the linear system is contradictory. We can try to solve a system
very similar to (7): with z,,z,, - 2,4z, €qual to the minimal positive real number
on the given machine. Such an approach gives very accurate results which was
explained in [9] and which is shown in the numerical experiments described in
this paper.

For an odd n we have:

le “ee R e “ee “ee Z‘l’n xl 0
Zy Zyn Xy 0
z,, x, |= 1
Zn71,2 e e e anl,n xnfl O
_an e .o “ee e e Znn AL xn | _O_

and z,, = 0. Here we solve the system with z,, replaced with the minimal positive
real number.

For both cases we compute only X; because next approximations do not give
b?tter results [7,9]. In the end we normalize the solution to satisfy the equation
e'x=1.

5. Harwell-Boeing storage scheme and SBLAS library

In the Harwell-Boeing storage scheme [10] a sparse matrix is stored in three
one-dimensional arrays. The first one consists of values of non-zero matrix
elements by rows, the second one consists of column indices of those elements
and the third one consists of starting points of matrix rows.

SBLAS (Sparse BLAS) is a library written in Fortran 77 as a BLAS (Basic
Linear Algebra Subprograms) library improvement for sparse vectors and
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matrices. In this library a sparse vector is represented by a triple (NZ, X,
INDX), where

— NZ — an integer, the number of non-zero elements;

— X —a one-dimentional array of values of non-zero elements;

— INDX - a one-dimentional array of integer indices of non-zero elements.

For some BLAS operations there is no need for a new sparse variant, for
example:

— _ NRM2 — the Euklid norm ||X
— _ASUM - the 1-norm ||X

)

o

— _ SCAL - the vector scaling ax.

Some operations have to be treated differently, for example:

— _DOT+ — the dot product of a sparse vector and a dense vector;

— _AXPYI —updating a dense vector y with a sparse vector X(y —y+ ax) .

In procedure/function names above, the symbol + is used for one of the
letters S, D, C, Z which denote vector elements type (single precision real,
double precision real, single precision complex double precision complex,
respectively).

In the our algorithm the SBLAS library was used in the WZ factorization.
When the vector b is updated, four auxiliary sparse vectors are created which

consist non-zero elements of the matrix A, namely A(ij), A(i,j2), A(i2,j),

A(i2,j2). Next the vector b is updated with the DAXPYT subroutine. Such a
modified WZ factorization algorithm will be called SWZ.

6. The numerical experiment and its results

The algorithms described above were implemented with the use of the
language C for computations with double precision real numbers (however, the
input data were given in single precision). For the SBLAS version the SBLAS
routines were imported. For the minimal positive real number, we used

FLT MIN from <float.h>. The programs were compiled with the gcc

compiler with the compiler option -O3 on. Algorithms were tested for the

matrices generated for a leaky bucket model with tokens [11] (with various
parameters). The model described in [11] uses a DTMC.

The performance times of the algorithms are presented in Table 1 and the
accuracy — in Table 2.
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Table 1. The performance times (in seconds) of the inverse iteration algorithm
with the WZ factorization with the use of the gcc compiler
Pentium IV 2.8 GHz Pentium I1I 733 MHz
Matrix size Wz SWzZ Wz SWzZ
1166 123 119 788 477
2101 1211 1160 4824 4782
2850 3437 3233 19415 15153
4049 10462 10135 54213 50843
5225 24992 24170 118082 117592
Table 2. The Euclid norm of the results of the described algorithms
with the use of the gcc compiler
Pentium IV 2.8 GHz Pentium I1I 733 MHz
Matrix size Wz SWZ wz SWZ
1166 2.84305e-08 2.84305e-08 2.84305e-08 2.84305¢e-08
2101 3.43647e-08 3.43647e-08 3.43647e-08 3.43647e-08
2850 4.77358¢-08 4.77358e-08 4.77358e-08 4.77358e-08
4049 4.66344e-08 4.66344e-08 4.66344e-08 4.66344¢-08
5225 5.48455¢-08 5.48455¢-08 5.48455¢-08 5.48455¢-08

7. Conclusion

The approach presented above is the alternative to the traditional LU

factorization and to the iteration and projection methods. We showed that the
inverse iteration with the WZ factorization is applicable to the Markovian
modelling. The numerical experiment showed that the use of the SBLAS library
speeds up the performance without changing the accuracy (which goes down
with the rise of the matrix size).
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