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Abstract 

In the article a new approach for solving Markovian linear systems is presented. It is the 
inverse iteration with the use of the WZ factorization. The paper contains the theoretical base of 
the method and numerical experiment results where the accuracy and the performance time were 
investigated. A modified (with the use of the SBLAS library and the Harwell-Boeing sparse matrix 
storage scheme) method was also presented. The experiments were carried out with the matrices 
generated for a Markovian model of a leaky bucket with tokens. 
 

1. Introduction 
Behaviour of a real system can often be described by specifying all the states 

in which a given system can be and by showing the ways the system changes its 
states in time. If future states of the system depend only on the present state (not 
on any past states) the behaviour of the system can be presented as a Markov 
process (a kind of a stochastic process). If a Markov process state space is 
discrete, the process is called a Markov chain.  

A system modelled with a Markov process assumes exactly one state (from 
the whole set) in each time moment. The system evolution is described with the 
probabilities of transitions from one state to another. In such a model we are 
usually interested in probabilities of particular states in a given time moment t.  

In this paper we are interested in discrete-time Markov chains (DTMC). For 
such a Markov chain the system state is probed in a discrete set T of time 
moments – the set T is usually identified with the set of natural numbers. 
Moreover, we assume our DTMC is homogeneous, that is the probabilities of 
transitions between states are independent of time. 
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If this Markov chain is ergodic (i.e. irreductible and aperiodic), the 
probability vector π(t) converges (as t grows) to a stationary one π, independent 
of the initial vector π(0), so we have: 
 π π= P , (1) 
where P is a matrix of transition probabilities between states. 

To find π we can solve (1) with the constraints: 
 0π ≥ ,   1eπ = ,  
where . ( )1,1,..., T=e

The equation (1) can be transformed to 0π π− =P  and farther to 
( ) 0π − =P I . Now we can denote  by Q (Q is called a transition rate 

matrix or an infinitesimal generator matrix) and we get a linear equation system 
with the constraints: 

−P I

 0π =Q ,   0π ≥ ,   1π =e . (2) 
The matrix Q is a square n×n matrix (usually a huge one – but we consider 

only finite state spaces), of the rank (n - 1) (in the cases interesting for us), with 
the dominant diagonal. It is singular and sparse, so we need appropriate 
approaches to the system (2). 

There are indirect methods, – like iterative and projection methods – that are 
widely used. However, we sometimes need a direct method (when we need the 
most accurate results, for example). The most popular of the direct methods are 
the LU factorization method and its relatives. In this article we want to present 
another direct method for solving (2), namely the WZ factorization method. 

Two approaches for solving (2) with the WZ factorization were presented in 
[1]. In those experiments, we applied a not-packed storage scheme for transition 
rate matrices, as for a case of dense matrices. The use of the BLAS libraries 
made a significant improvement in performance of those algorithms [2,3]. 

In this article there is presented an approach based on the WZ factorization 
(sections 2 and 3) and the inverse iteration (section 4). The Harwell-Boeing 
storage scheme and the BSLAS (Sparse BLAS) library (section 5) is used in 
experiments, numerical results are displayed (section 6). 

 
2. The WZ factorization 

In this section we present shortly the WZ factorization and the method for 
solving a linear system 
 =Ax b    were   n n×∈A R ,    n∈B R
with the WZ factorization.  
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The WZ factorization is described in [4-6]. A = WZ, where matrices W and 
Z are of the following forms (for the even size n of the matrix A): 
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Z , (4) 

where 
 ( )1 2m n= ⎢ − ⎥⎣ ⎦ ,   ( )1 2p n= ⎢ + ⎥⎣ ⎦ ,   ( )1 2q n= ⎡ + ⎤⎢ ⎥ . 

After factorization we can solve two linear systems: 

 
,

,
=
=

Wc b
Zx c

, (5) 

(where c is an auxiliary vector) instead of one (2). 
 

3. Sequential algorithm for WZ factorization 
The WZ method algorithm for solving linear systems (after [4,6]) consists of 

two parts: reduction of the matrix A (and the vector b) to the matrix Z (and the 
vector c) and next solving equation (5). 

The first part consists in partial zeroing of columns of the matrix A. In the 
first step, we zero the elements from the 2nd to n-1st in the 1st and nth columns. 
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Next, we update the matrix A and the vector b. After m + 1 such steps we get the 
matrix Z = A(m+1), (as defined in (4)) and the vector c = b(m+1). We get  
 ( ) ( )0...⋅ ⋅ ⋅ =mW W A Z  
so 

 ( ){ } ( ){ }1 10...m − −
= ⋅ ⋅ ⋅ =A W W Z WZ .  

The second part of the method is to solve a linear system (5).  This part 
consists in solving a linear system with two unknown quantities xp and xq and 
next updating the vector b.  

Formally we can write this with the use of a MATLAB-like notation: 
 

% part I: the elimination loop -- the reduction 
%         from the matrix A to the matrix Z 
for k=0:m 
   k2=n-k+1; 
   det=A(k,k)*A(k2,k2)-A(k2,k)*A(k,k2); 
% computing elements of the matrix W 
   for i=k+1:k2-1 
      wk1=(A(k2,k)*A(i,k2)-A(k2,k2)*A(i,k))/det; 
      wk2=(A(k,k2)*A(i,k)-A(k,k)*A(i,k2))/det; 
% updating the matrix A 
      for j=k+1:k2-1 
         A(i,j)=A(i,j)+wk1*A(k,j)+wk2*A(k2,j); 
% updating the vector b 
      b(i)=b(i)+wk1*b(k)+wk2*b(k2); 

 
% part II: computing the solution vector x 
for j=m:0 
% solving an auxiliary 2x2 system 
   j2=n-j+1; 
   det=A(j,j)*A(j2,j2)-A(j2,j)*A(j,j2); 
   x(j)=(b(j)*A(j2,j2)-b(j2)*A(j,j2))/det; 
   x(j2)=(b(j2)*A(j,j)-b(j)*A(j2,j))/det; 
% updating the vector b 
   for i=j-1:0 
      i2=n-i-1 
      b(i)=b(i)-x(j)*A(i,j)-x(j2)*A(i,j2); 
      b(i2)=b(i2)-x(j)*A(i2,j)-x(j2)*A(i2,j2); 
 

4. The inverse iteration 
As we noted above, we are interested in finding the vector π from (2). In our 

case we need to solve a homogenous linear system with n equations and n 
unknowns. Such a system has a non-zero solution if and only if the coefficient 
matrix is singular. The matrix Q has a zero eigenvalue [7], so it is singular. Let 
us assign  and transpose (2) to get: Tπ = x
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 0T =Q x ,   ,   0≥x 1T =e x . 
We want to present an approach to solve such a linear system. We assume 

that the Markov chain represented by Q is irreductible (so Q is of rank (n-1)). 
The inverse iteration was introduced in [8]. It is a method for finding 

eigenfunctions of linear operators. It is used here to find an eigenvector x  
of a matrix A: 
 λ=Ax x  
where A is a real or complex square matrix and λ is an eigenvalue. The inverse 
iteration is a method to compute an eigenvector associated with a known 
eigenvalue. Given an approximation µ of the eigenvalue λ and a starting vector 
x0, the inverse iteration generates a sequence of vectors (xk) being solutions of 
the systems: 
 ( ) 1k k ksµ −− =A I x x    for    1k ≥
where sk is responsible for normalization of xk – usually it is chosen to make 

1k =x with respect to a suitable norm. 
The sequence (xk) usually converges to the eigenvector associated with the 

eigenvalue λ, especialy when the λ is the eiganvalue closest to µ and when the 
vector x0 is a linear combination of the eigenvectors (what is almost sure). 

Let . Now T=A Q 0λ =  is an eigenvalue of A so we can write (with sk = 1): 
 ( ) 10T

k k−− =Q I x x  

and then: 
 1

T
k k−=Q x x . 

For k = 1 we get: 
 1

T
0=Q x x .  

As a starting vector we can choose 0 p=x e  and we are to solve a system 

 what we can do by the WZ factorization. Let , so we get 
 and then we are to solve 

1
T

p=Q x e T =Q WZ

1 p=WZx e

 
1

,
.

p=⎧
⎨ =⎩

Wy e
Zx y

 

It is obvious (see (3)) that the solution of the equation p=Wy e  is , so we 
are only to solve  

p=y e

 1 p=Zx e . (6) 
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First, let us consider an even n. The equation (6) takes the form: 
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The determinant zppzqq - zpqzqp = 0 (because QT was singular and diagonal 
dominant), so the linear system is contradictory. We can try to solve a system 
very similar to (7): with zppzqq - zpqzqp equal to the minimal positive real number 
on the given machine. Such an approach gives very accurate results which was 
explained in [9] and which is shown in the numerical experiments described in 
this paper. 

For an odd n we have: 
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and zpp = 0. Here we solve the system with zpp replaced with the minimal positive 
real number. 

For both cases we compute only x1 because next approximations do not give 
better results [7,9]. In the end we normalize the solution to satisfy the equation 
eTx = 1. 
 

5. Harwell-Boeing storage scheme and SBLAS library 
In the Harwell-Boeing storage scheme [10] a sparse matrix is stored in three 

one-dimensional arrays. The first one consists of values of non-zero matrix 
elements by rows, the second one consists of column indices of those elements 
and the third one consists of starting points of matrix rows. 

SBLAS (Sparse BLAS) is a library written in Fortran 77 as a BLAS (Basic 
Linear Algebra Subprograms) library improvement for sparse vectors and 
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matrices. In this library a sparse vector is represented by a triple (NZ, X, 

INDX), where 

– NZ – an integer, the number of non-zero elements; 

– X – a one-dimentional array of values of non-zero elements; 

– INDX – a one-dimentional array of integer indices of non-zero elements. 
For some BLAS operations there is no need for a new sparse variant, for 

example: 
– _NRM2 – the Euklid norm 

2
x ; 

– _ASUM – the 1-norm 
1

x ; 

– _SCAL – the vector scaling αx. 
Some operations have to be treated differently, for example: 
– _DOT+ – the dot product of a sparse vector and a dense vector; 
– _AXPYI – updating a dense vector y with a sparse vector ( )α← +x y y x . 
In procedure/function names above, the symbol _+ is used for one of the 

letters S, D, C, Z which denote vector elements type (single precision real, 
double precision real, single precision complex double precision complex, 
respectively). 

In the our algorithm the SBLAS library was used in the WZ factorization. 
When the vector b is updated, four auxiliary sparse vectors are created which 
consist non-zero elements of the matrix A, namely A(i,j), A(i,j2), A(i2,j), 

A(i2,j2). Next the vector b is updated with the DAXPYI subroutine. Such a 
modified WZ factorization algorithm will be called SWZ. 
 

6. The numerical experiment and its results 
The algorithms described above were implemented with the use of the 

language C for computations with double precision real numbers (however, the 
input data were given in single precision). For the SBLAS version the SBLAS 
routines were imported. For the minimal positive real number, we used 
FLT_MIN from <float.h>. The programs were compiled with the gcc 

compiler with the compiler option -O3 on. Algorithms were tested for the 
matrices generated for a leaky bucket model with tokens [11] (with various 
parameters). The model described in [11] uses a DTMC. 

The performance times of the algorithms are presented in Table 1 and the 
accuracy – in Table 2. 
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Table 1. The performance times (in seconds) of the inverse iteration algorithm  
with the WZ factorization with the use of the gcc compiler 

 Pentium IV 2.8 GHz Pentium III 733 MHz 
Matrix size WZ SWZ WZ SWZ 

1166 123 119 788 477 
2101 1211 1160 4824 4782 
2850 3437 3233 19415 15153 
4049 10462 10135 54213 50843 
5225 24992 24170 118082 117592 

 
Table 2. The Euclid norm of the results of the described algorithms  

with the use of the gcc compiler 

 Pentium IV 2.8 GHz Pentium III 733 MHz 
Matrix size WZ SWZ WZ SWZ 

1166 2.84305e-08 2.84305e-08 2.84305e-08 2.84305e-08 
2101 3.43647e-08 3.43647e-08 3.43647e-08 3.43647e-08 
2850 4.77358e-08 4.77358e-08 4.77358e-08 4.77358e-08 
4049 4.66344e-08 4.66344e-08 4.66344e-08 4.66344e-08 
5225 5.48455e-08 5.48455e-08 5.48455e-08 5.48455e-08 

 
7. Conclusion 

The approach presented above is the alternative to the traditional LU 
factorization and to the iteration and projection methods. We showed that the 
inverse iteration with the WZ factorization is applicable to the Markovian 
modelling. The numerical experiment showed that the use of the SBLAS library 
speeds up the performance without changing the accuracy (which goes down 
with the rise of the matrix size). 
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