

Annales UMCS Informatica AI 1 (2003) 191-199
Annales UMCS

Informatica
Lublin-Polonia

Sectio AI
http://www.annales.umcs.lublin.pl/

Shifting technique vs. pointer structures in unsymmetric sparse

linear equations systems solver

Marek Stabrowski∗

Department of Computer Science, Technical University of Lublin,
ul. Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract

The research reported in this paper presents a new idea of the storage structure of sparse matri-
ces. This structure is used in the multi-option solver of linear equation systems with unsymmetrical
sparse coefficient matrices. The new solver is compared comprehensively with the analogous
(identical numerical method used) solver of the classical type. The tests of new solver have been
performed on a quite broad spectrum of hardware platforms.

1. Introduction

This paper presents two basic approaches to development of sparse linear
equation solver (C++ language [1]) for unsymmetric systems. The software is
targeted at uniprocessor computers. Special attention has been paid to optimum
memory usage and flexible pivoting. The Gauss method, with the option of
partial or full pivoting [2], forms numerical basis of the solvers.

Storage structures of sparse matrices try to take into account both processing
flexibility and economy of storage space (disk area, operational memory).
Standard Harwell-Boeing storage format [3-4] will be presented in the next
chapter.

Pivoting methods are usually classified as partial methods (pivot search
limited to current leading column) and full ones (search in the whole submatrix
to be eliminated). In the case of partial pivoting physical rows interchange is
usually avoided and indirect row indexing is used. However, in the realm of
sparse linear equation systems this elegant approach is impossible due to fill-in
of nonzeros.

Pivoting methods are further divided into static and dynamic scheduling
types. In static pivot scheduling preliminary symbolic forward elimination
determines locations of fill-ins. Dynamic scheduling performs computations

∗ E-mail address: mmst@bravo.pol.lublin.pl

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 06:57:48

UM
CS

from the start of LU decomposition, determines and performs fill-ins on the fly.
Static scheduling performs less shifting work, but numerical stability is inferior
to the dynamic version. Dynamic pivot scheduling will be used in both solvers
presented in this paper.

2. Monolithic matrix vs. pointer array structure

Classical sparse solver, developed for the comparison purposes, with
monolithic coefficient matrix, uses the rowwise version of Harwell-Boeing
sparse matrix storage format. The idea of rowwise storage [3-5] can be
illustrated with an example of small unsymmetric 4x4 matrix which the in
conventional mathematical notation has the form:



















−
−

−−

.40.20

.1.30.3

.40.20
.30.2.1

. (1)

In the rowwise variant of Harwell-Boeing format this matrix is described with
three arrays:

- rowptr with the pointers to row starts in the following two arrays;
- colind with the indices of columns with nonzero elements in the

individual rows;
- values with numerical values of nonzero elements.
The contents of these three arrays for sample matrix (1) is given below in

Table 1.

Table 1. The contents of Harwell-Boeing arrays for sample matrix (1).
rowptr 1 4 6 9 11
colind 1 2 4 2 4 1 3 4 2 4
values 1. -2. -3. -2. 4. 3. -3. 1. 2. 4.

This format is quite compact but fill-in during LU decomposition results in

large overhead due to massive shifts of data in operational memory. It is quite
easy to observe that fill-in in any row results in shifting the rest of colind and
values arrays (Fig. 1). In the later course this type of solver will be called
shifting type one.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 06:57:48

UM
CS

.

array of pointers
lines of coefficients and

column indexes

Fig. 1. New storage structure of sparse matrix using the array of pointers and dynamic lines

In has been decided to divide sparse matrix more strictly into separate rows in

order to reduce the number of shifting operations. Gaussian elimination of a
specific row affects only small part of matrix due to its sparsity. Therefore the
shifts will occur only in the arrays corresponding to the rows with actual fill-in.
Implementation of this idea makes use of the advanced data structures, replacing
compressed and compacted coefficient matrix with the loser structure based on
the pointer array (Fig. 2).

pointer array
new nonzero

coefficient rows

Fig. 2. Fill-in in pointer type solver affects only single row

The pointers are used in dynamic allocation of memory for individual sparse

matrix rows. The pointer nodes (Fig. 2) contain information on dynamically
allocated space for column indexes and on coefficients values located in the
single matrix row. Moreover, the pointer node contains also the information on
matrix row length, i.e. on the number of nonzeros. The solver using such data
structure will be called pointer solver in the further course.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 06:57:48

UM
CS

Row interchange may be handled locally due to the pointer array
introduction. In this case mere interchange of pointer nodes contents is
sufficient. Appropriate C++ code, shown below, is very concise and elegant:

ONEROW TempStruct;
TempStruct = *(AllRows + irow1);
*(AllRows +irow1) = *(AllRows + irow2);
*(AllRows + irow2) = TempStruct;
The pointer AllRows points to dynamic array of all ONEROW pointer nodes.

The variables irow1 and irow2, quite self-explanatory, are the indices of the
rows to be swapped.

3. Comparison of shifting and pointer type solvers

Replacing of massive data shifting with local data manipulation in the pointer
solver should lead to CPU time consumption reduction. As a test basis several
standard unsymmetrical sparse matrices from the Harwell-Boeing and
University of Florida collections [3, 5] have been used. The matrices have been
used in the original uncompressed form and in the compressed one. Matrix
compression in the case of sparse matrices concentrates more tightly the
nonzeros around the main diagonal. It is frequently asserted that compression
reduces LU decomposition time. Both these theses have been tested
experimentally.

WATT1 WATT2 LHR01 LHR02 LHR04C LHR07C

1
2

3
4

0,00

5,00

10,00

15,00

20,00

25,00

Fig. 3. Relative LU decomposition time: pointer solver 1) matrix compressed, 2) matrix

uncompressed, shifting solver 3) matrix compressed, 4) matrix uncompressed

In two test series the size of matrices ranged from 1000 to more than 13000

and timing of pointer solver (full pivoting) operating on compressed matrices
has been used as the reference. Most spectacular is the performance difference of
pointer and shifting solver. For the first set of matrices (Fig. 3) the time ratio is 5

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 06:57:48

UM
CS

to about 30 in favor of pointer solver. Similar observation can be made for the
second set of examples (Fig. 4) encompassing extremely unsymmetric and
sparse matrices. Timing ratio is a bit lower than for the first series but the
difference is most spectacular for the largest Gru35 matrix.

Gru30 Gru31 Gru32 Gru33 Gru34 Gru35

1
2

3
4

0,00

2,00

4,00

6,00

8,00

10,00

Fig. 4. Relative LU decomposition time: pointer solver 1) matrix compressed, 2) matrix

uncompressed, shifting solver 3) matrix compressed, 4) matrix uncompressed

Matrix compression (first and third row in the plots) influences the timing of

LU decomposition. For pointer solver matrix compression speeds up this process
but the difference is far from spectacular. Moreover there is one evident
exception of LHR02C matrix with compression slowing the LU decomposition.
For the conventional shifting type solver the situation is far from clear. The only
conclusion making sense is that compression benefits depend on the problem at
hand.

4. Full and partial pivoting in sparse matrices
The pivoting in the pointer solver has been implemented in both partial and

full versions with dynamic scheduling. It is quite obvious that partial pivoting
incurs less overhead during both search of pivot (only current column is scanned
and not whole not fully processed submatrix) and row interchange (no column
interchange is performed).

This observation is confirmed by numerical experiment including also
investigation of compression influence (Fig. 5). As with the results already
reported the LU decomposition times are related to the partial pivoting solver
operating on the compressed matrix (reference time = 1.0).

Numerical experiment confirms the thesis that partial pivoting is less time-
consuming than full pivoting. The timing difference depends on the matrix

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 06:57:48

UM
CS

processed but generally it grows with the matrix size. Matrix compression
speeds-up LU decomposition in the case of partial pivoting except WATT2
matrix. Speed-up is larger for larger matrices. Situation is different from that
already mentioned, for full pivoting.

WATT1WATT2LHR01 LHR02LHR04CLHR07CLHR10C

1
2

3
4

0,00
1,00
2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

Fig. 5. Relative LU decomposition time by the pointer solver: partial pivoting:

1) matrix compressed, 2) matrix uncompressed, full pivoting:
3) matrix compressed, 4) matrix uncompressed

5. Dense solver vs. new pointer structures solver

A stranger new to the field of sparse matrices may be deterred by the
structures used in this field, by special preparation and assembly of input data
and at least by proprietary character of some part of the software. Moreover,
dropping prices of the hardware may encourage resorting to brute force
approach. Such an approach relies on simple application of classical dense
solvers on new computer with larger operational memory and faster processor. It
works almost satisfactorily in the case of small matrices - perhaps the limit is at
1000 rows/columns. With a rising size of the matrix the performance of dense
solver spectacularly deteriorates and finally it fails to do the job.

These theses have been verified experimentally with the dense solver derived
from the classical academic source [6]. The dense solver uses partial pivoting
and therefore it has been compared primarily with the pointer solver in the
partial pivoting version. However, the data on the full pivoting pointer solver
have been also included in Tab. 2.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 06:57:48

UM
CS

The data on processing time in Tab. 2 show that the pointer solver in the
partial pivoting version is typically 2 to 3 times faster than the dense counterpart.
Even the full pivoting pointer solver outperforms (timing) in most cases the
dense solver.

Table 2. Comparison of the dense solver [6] and the sparse pointer solver (partial and full pivoting)

with respect to operational memory usage and processing time

matrix largest array size CPU time in sec

 size
n

initial
nonzeros

dense sol
ver = n2

nonzeros
part.piv.

nonzeros
full piv.

dense
solver

point s.
part.piv.

point s.
full piv.

WATT1 1856 11360 3444736 135518 546862 59 19 69

WATT2 1856 11550 3444736 145045 548594 60 19 70

Gru30 3268 27836 10679824 913763 253388 337 165 54

Gru31 3008 27576 9048064 803459 547028 279 137 128

Gru32 3268 27836 10679824 849531 264078 335 150 58

Gru33 3008 27576 9048064 762225 408260 280 134 102

Gru34 3083 21216 9504889 396076 521168 275 64 119

LHR01 1477 18592 2181529 217295 338874 38 17 40

LHR02 2954 37206 8726116 541529 1300180 249 73 297

LHR04C 4101 82682 16818201 1066297 2350628 793 239 781

More decisive is the operational memory usage. For the dense solver, the

largest array size is simply equal to n2, where n is the rows/columns number. If
such a array should be located in operational memory only, then for double
precision and memory size of 256 MB, the limit of n is approximately 5500. The
matrix LHR04C (tab. 2 – last row) occupies in the dense version about 134 MB.
The sparse solver stores only nonzeros and it follows from tab. 2 that that
memory consumption, even after inevitable fill-in, is still lower by one order of
magnitude than in the case of dense solver. In the case of matrix Gru32 this ratio
reaches even 40 in favor of sparse solver with full pivoting. even with no
pivoting, the situation is different due to inevitable fill-in. The matrix LHR04C
in the sparse solver, after expansion due to fill-in occupies only 12 MB of
memory – not 134 MB. One may argue that the virtual memory technique
enables dense processing of large matrices but timing overhead is prohibitive.

As a final conclusion it should be stated that the sparse solver offers distinct
timing advantages over the dense one. For larger equation systems, the sparse
technique is the only reasonable solution, if the penalty of virtual memory
should be avoided.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 06:57:48

UM
CS

6. Hardware dependence of pointer solver performance
The tests of the software developed in the course of present research have

been performed on the assorted Unix-type platforms. The hardware
encompassed 32-bit Pentium processor and several 64-bit processors (older and
modern SUN products, new Itanium of Intel).

Table 3. Hardware dependence of LU decomposition time

for the assorted sparse matrices – time in seconds
computer & operating system compiler LHR01 LHR02 LHR04C LHR07C

Pentium 800MHz + Linux gcc 42 303 789 4263
Itanium 900 MHz + HP UX HP 19 143 438 2072
Ultra10 300 MHz + Solaris8 gcc 135 1000 2958 14556
Ultra10 300 MHz + Solaris8 SUN 132 641 2779 14945

Blade100 500 MHz + Solaris8 gcc 61 450 1291 6060

The best results in the sense of CPU time have been achieved on Pentium and

Itanium platforms. For approximately the same clock frequency Itanium times
are roughly one half of Pentium times. It coincides inversely with the length of
the processor word. One may expect reduction of Pentium times for higher clock
frequency. It is reasonable to suppose that quadrupling of clock will result in
outperforming of Itanium.

The tests on SUN’s Ultra platform have shown that GNU gcc compiler is
practically equivalent to the hardware vendor compiler. Modern and most
expensive, among computers tested, Blade100 is slower than the old and cheap
Pentium.

7. Conclusions

Detailed observations and conclusions have been already presented in the
preceding chapters. Summing up, two major facts should be considered.

First of all, the tests using assorted matrices have proved that spectacular
benefits are gained through introduction of advanced pointer type structures.

The second major observation is related to the compression of sparse
matrices. It follows from numerical experiments that reduction of LU
decomposition time depends on the matrix structure and quite frequently matrix
compression affects adversely this time.

Seemingly naïve, but pragmatically sound, question of the advantages of
sparse approach vs. dense one, has been resolved in favor of sparse solver.
Sparse solver in the partial pivoting version offers distinct processing time
reduction. But more convincing is the capability to process far larger equation
systems – by at least one order of magnitude. No resorting to virtual memory
usage is necessary and no accompanying processing time expansion occurs.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 06:57:48

UM
CS

Optimum hardware selection for this class of problems depends on the
problems size and price considerations. If 64-bit addressing capability is
required, the best choice with respect to performance (and price) is the Itanium
processor. In other cases modern and relatively cheap Pentium is an evident
winner.

References
[1] Gajewski R. R., Lompies P., Object-oriented approach to the reduction of matrix bandwidth,

profile and wavefront, Advances in Engineering Software, 30 (1999) 783.
[2] Demmel J.W., Applied Numerical Linear Algebra, SIAM, Philadelphia, (1997).
[3] Duff I.S., Grimes R.G., Lewis J.G., Sparse matrix test problems, ACM Trans. Math.

Software, 15 (1989) 1.
[4] Engeln-Muellges G., Uhlig F., Numerical Algorithms with C, Springer Verlag, Berlin (1996).
[5] Zitney S.E., Mallya J.U., Davis T.A., Stadherr M.A., Multifrontal vs. frontal techniques for

chemical process simulation on supercomputers, Computers in Chemical Engineering, 20
(1996) 614.

[6] Forsythe G., Malcolm M.A., Moler C.B., Computer Methods for Mathematical Computations,
Prentice Hall, Englewood Cliffs, (1977).

[7] Pandit S., Soman s. A., Khaparde S. A., Design of generic direct sparse Linear System Solver
in C++ for power system analysis, IEEE Transactions on Power Systems, 16 (2001) 647.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 06:57:48

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

