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Abstract 

There are many techniques of loss image compression based on dyadic decomposition of im-
ages. In these decompositions always linear filters are used. In this paper it is proposed to use 
nonlinear weighted median filters in the place of linear ones and it is shown how median filters 
may be used in dyadic decomposition. This technique has been compared with the non-standard 
wavelet decomposition, in particular with the Haar wavelet filtering. The experiments made show 
that in the loss image compression case using median filters gave better visual quality of the 
reconstructed images.  
 

1. Introduction 
Dyadic image decomposition is frequently used in the image analysis, 

especially in loss and lossless image compression [1-4]. For example, the most 
promising standard of image compression – JPEG2000 [2] uses the wavelet 
decomposition as a main power. The dyadic wavelet decomposition is frequently 
used in image processing because of its speed, simplicity and good properties 
(catching changes of signal in both frequency and time) in still image 
compression. However, using linear filtering in image processing, although it is 
simple in computer implementation, does not often give satisfactory quality of 
images. It turns out that, from the image compression point of view, substituting 
the linear filters, as wavelet filters are, with nonlinear ones one can prove the 
quality of reconstructed images, preserving the same compression ratio.  

To get the possibility of properly using filters in still image compression these 
filters must fulfil, the so-called, perfect image reconstruction condition [4]. It 
means, in short, that these filters must be reversible. That is after forward 
filtering we get the spectrum image and from it we should have the possibility of 
getting back the original image without any distortions, applying for example the 
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inverse filters. It is not so difficult to get such linear filters (based for example 
on Haar, Daubechies and other wavelets [4]). But in the nonlinear case such 
process is not so simple. After forward non-linear filtering often we cannot get 
the original image back. Though, as will be shown in this paper, applying some 
improvements to the nonlinear filters – weighted median in this case, we can get 
the perfect image reconstruction condition, retaining the non-linearity of these 
filters. It will be also shown how such improved filters may be used in dyadic 
image decomposition in a similar way as the Haar wavelet filters.  

 
2. Non-standard dyadic wavelet decomposition 

The dyadic wavelet decomposition, especially in the Haar wavelet case, is the 
well-known theory [3, 4] and will not be presented here in detail. Only the main 
ideas will be presented for better understanding of further considerations and 
showing the similarities and analogies between this technique and the new-
presented one.  

Let us denote F as an image in the square matrix (of degree N=2n) form and 
define the filter operators used in dyadic decomposition of F. In the Haar 
wavelet case the operators are defined as follows  

 

1 1( ) (2 ) (2 1),
2 2
1 1( ) (2 ) (2 1),
2 2

i i i

i i i

= + +

= − +

L F F

H F F
 (1) 

where: 
( )iF  - vector of size N, containing row or column of matrix F, 2{0,1,..., 1}Ni∈ − ,  
( )iL  - vector of size N/2, containing approximation coefficients,  
( )iH  - vector of size N/2, containing detail coefficients.  

The L and H are the so-called low pass and high pass filters, respectively.  
To get non-standard wavelet dyadic decomposition on the first level of an 

image F – the spectrum matrix called S1 – we first apply the operators (1) to all 
columns of the matrix and then to all rows [5]. Then, to get the second level of 
non-standard decomposition – matrix S2 – one can apply similar analysis to the 
upper left sub-matrix of size 2 2

N N
×  of matrix S1, and so on, till n-th ( 2logn N= ) 

level of decomposition. 
Because filters (1) fulfil perfect image reconstruction condition [4], we can 

also define similarly the inverse operators  
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where F(i), L(i), H(i)  denote vectors as above in (1) and 2{0,1,..., 1}Ni∈ − . 
Applying these filters to the spectrum image allows us to get the original 

image back without any distortions.  
 

3. Weighted median dyadic decomposition 
Let us denote 1( ,  ...,  )nMedian x x  as the median of integer elements 

1,  ...,  nx x , n ∈¥ . Furthermore, the notation k x◊  denotes that element x occurs 
k times – k is the so-called weight, that is for example we can define the 
weighted median of four elements as  
 1 2 3 4 1 1 2 2 3 4(2 ,2 , , ) ( , , , , , )Median x x x x Median x x x x x x◊ ◊ = . 

Similar to the wavelet decomposition case, we can define nonlinear – 
weighted median filters, which may be used in dyadic decomposition of an 
image. The filter formulas are as follows  

( , ) (2 ,2 ),
( , ) (2 1,2 1) ( ( , ), ( , 1), ( 1, ), ( 1, 1)),
( , ) (2 ,2 1) (2 ( , ),2 ( , 1), ( , ), ( 1, )),
( , ) (2 1,2 ) (2 ( , ),2 ( 1, ), ( , ), ( ,

i j i j
i j i j Median i j i j i j i j
i j i j Median i j i j i j i j
i j i j Median i j i j i j i j

=
= + + − + + + +
= + − ◊ ◊ + −
= + − ◊ ◊ + −

A F
D F A A A A
H F A A D D
V F A A D D 1)),

(3) 

where: 
F – image in the matrix form of the size N N× ,  2, {0,1,..., 1},Ni j ∈ −   

A, V, H, D – matrices of size 2 2
N N× , containing the median coefficients.   

Note, that of all four filters only the A filter is linear (but note, that this filter 
applied alone is not reversible). As a result of its filtering we get the decimated 
copy of the original image. The filters V, H, D are non-linear and as a result of 
their filtering we get differences between the appropriate original pixels and 
their median approximations. Note, that the median approximations in this case 
mean zooming 200% of the original image decimated earlier.  

Similar to the Haar wavelet decomposition case, presented in the previous 
section, we can apply filters (3) to an image to get the first level of dyadic 
decomposition. More precisely this process looks as follows. Consider the 
sample fragment of the original image depicted in the matrix form as shown in 
Fig. 1A. Let us denote, for simplicity, the original image pixels as a (they form 
only the mask, not the real values of the pixels). First we remove every other 
pixel in horizontal and vertical directions – see Fig. 1B. Next, using the median 
filter, we approximate the pixels denoted as d in the figure (step 2) using four 
corner pixels a. Because all four corner pixels a are original – they are equally 
trustworthy, so all have weights equal to 1 in the median definition (3). Next, 
having all pixels a and d, we approximate the pixels h and v (step 3). But, this 
time we approximate them using also pixels d, which are not original image 
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pixels. So the pixels a, as more trustworthy, have larger weights in the median 
definition – equal to 2. Next, having approximated all image pixels, we compute 
the difference between the original image and the approximated one, but only on 
d, h and v pixels, remaining pixels a without change (see Fig. 1E). And finally, 
we get the spectrum image by setting special order of the pixels as shown in 
Fig. 1F. Thereby we get the image containing four sub-images A, D, H and V 
containing respectively: original image pixels (but decimated in horizontal and 
vertical directions), diagonal approximations, horizontal and vertical weighted 
approximations. Thus we get the image on the first level of decomposition, 
which has similar properties to the Haar wavelet one. To get the decomposition 
on the next levels, we proceed similarly to the wavelet case – apply this analysis 
successively to the upper left corner of the matrix, till n-th ( 2logn N= ) level of 
decomposition. 
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Fig. 1. The scheme of dyadic median decomposition 

 
Note, that such defined filters, even though they are non-linear, fulfil the 

perfect image reconstruction condition. Indeed, applying inverse filters (4) to the 
spectrum allows us to get back the original image. The inverse filters are defined 
as follows  

(2 ,2 ) ( , ),
(2 1,2 1) ( , ) ( ( , ), ( , 1), ( 1, ), ( 1, 1)),
(2 ,2 1) ( , ) (2 ( , ),2 ( , 1), ( , ), ( 1, )),
(2 1,2 ) ( , ) (2 ( , ),2 ( 1, ), ( , ), ( ,
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 (4) 
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where F, A, D, H denote matrices as above in (3) and 2, {0,1,..., 1}Ni j ∈ − . 
These filters work similarly to the forward (3) ones. First, from the upper left 

sub-image of the spectrum (Fig. 1F) we construct – expand image as shown in 
Fig. 1B. Next we repeat steps in turn 2, 3 and 4 but substituting subtraction of 
matrices 1A and 1D from step 4 by the addition of matrices 1D and 1E. As a 
result of these operations we get the original image (Fig. 1A) without any 
distortions.  
 

4. Experimental results 
In short, to loss compress an image using dyadic decomposition we must first 

apply some filters to the original image to get the spectrum. Next we set some 
elements (very often those low in magnitude) of the spectrum to zero. There are 
many techniques to set these elements to zero [6]. Finally, we compress such 
spectrum image lossless using some coding (for example Huffman coding [4]). 
To decompress the image we first decode the data to get the spectrum with zero 
entries and apply the inverse filters to it to reconstruct the image. The 
reconstructed image has some distortions because of setting some elements of 
the spectrum to zero. Thus, which and how many elements we set to zero is of 
enormous significance.  

Experiments presented in this paper were concentrated only on applying 
filters (forward and inverse) to an image or spectrum and setting some elements 
of spectrum to zero to worsen the quality of further reconstructed images. The 
problem of lossless spectrum image coding is well known [1, 4] so it will be 
skipped here.  

The experiments were performed on a number of well known images. In this 
paper only simple examples will be presented. In Fig. 2 there is presented 
“collie” – one of the tested images.  
 

 
Fig. 2. One of the tested images – “collie” 

 

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 08:31:03

UM
CS



In Fig. 3 there are presented the well-known wavelet and the new – median 
decomposed images respectively on the first and last levels of decomposition.  
 

    
   a)                               b)                              c)                            d)     

Fig. 3. Decomposed image: a) wavelet – first level; b) wavelet – last (8-th) level;  
c) median – first level; d) median – last (8-th) level 

 
Note, that horizontal and vertical coefficients in the median decomposed image 
have larger magnitude than in the wavelet one. It comes from the fact, that these 
coefficients were approximated using not only original but also approximated 
earlier diagonal coefficients. However, removing them from the spectrum (that 
is setting them to zero) does not distort the reconstructed image more than in the 
wavelet case. Indeed, it is the well-known fact [7], that non-linear filtering gives 
better visual results than the linear one. Look for example at Fig. 4. In that figure 
there are fragments of the original (fragment of the dog’s jaw) and reconstructed 
sample images all zoomed 500% to see some differences better. In both spectra 
of this original image the same amount of coefficients (exactly the half – all 
horizontal and vertical coefficients) has been removed. As seen in the pictures, 
the median-reconstructed image looks slightly better – the wavelet-reconstructed 
image loses some details, moreover one can notice clear decrease of its 
resolution.  
 

     
      a)                                         b)                                          c) 

Fig. 4. The fragments of images: a) original; b) wavelet-reconstructed; c) median-reconstructed 
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Table 1. Quality of reconstructed images 

PSNR MSE               Quality 
    Image Wavelet Median Wavelet Median 

Collie (50%) 31.827 33.037 42.696 32.311 
Lena (25%) 29.961 30.559 65.617 57.167 
Cat (75%) 31.567 31.935 45.332 41.643 

 
In Tab. 1 there are a few sample results concerning the experiments. Beside 

the names of images the percent values denote the amount of removed spectral 
coefficients. From the spectra – wavelet and median the spectral coefficients 
situated in appropriate sites have been removed. Moreover, note that because we 
removed the same amount of coefficients we can get a similar compression ratio. 
As follows from that table the median-reconstructed images have better quality 
than the wavelet-reconstructed ones. That is, they have larger PSNR and smaller 
Mean Square Error. 
 

5. Conclusions 
The experiments showed that replacing linear filters (wavelet in this case) 

with nonlinear ones (median), allows to get better visual quality of reconstructed 
images in the loss compression case. Moreover, note that median filtering has 
some advantages. For example, in the median decomposed image on the first 
level of decomposition, there are two similar images, similar to the case of 
wavelet one. This similarity may be used to optimize the process of loss or even 
lossless image compression. Furthermore, significant similarity, different in 
scale, between proper images on different levels of decomposition also may be 
used to optimize the process – for example we can try to use loss fractal 
compression techniques [2, 8].  

The Haar wavelet filters described in this paper have been chosen in our 
analysis because nowadays they are the most common ones of all linear filters 
due to their effectiveness. However the nonlinear weighted median filters used 
in the paper were selected since they are very promising techniques of image 
processing. Currently they are considered to give very good results in image 
zooming [7] (which has been exactly used in the paper in dyadic 
decomposition). Such combination of dyadic decomposition of images with 
median filtering seems to give best results if we want to join the best image 
quality with the large compression ratio.  
 

References 
[1] Christopoulos C., Skodras A., Ebrahimi T., The JPEG2000 Still Image Coding System: an 

Overview, IEEE Transactions on Consumer Electronics, 46 (2000) 1103. 
[2] Krupnik H., Malah D., Karnin E., Fractal Representation of Images via the Discrete Wavelet 

Transform, IEEE 18th Conv. of EE in Israel, Tel-Aviv, 7-8 March, (1995). 

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 08:31:03

UM
CS



[3] Mallat S., A Theory for Multiresolution Signal Decomposition: The Wavelet Representation, 
IEEE Trans. Pattern Analysis and Machine Intelligence, 11(7) (1989) 674.  

[4] Sayood K., Introduction to data compression, Morgan Kaufmann, San Francisco, (2000). 
[5] Stollnitz E. J., DeRose T. D., Salesin D. H., Wavelets for Computer Graphics: a Primer, Part 

1, IEEE Computer Graphics and Applications, (1995) 76. 
[6] Walker J. S., Fourier Analysis and Wavelet Analysis, Notices of the American Mathematical 

Society, 44 (1997) 658. 
[7] Mitra S. K., Sicuranza G. L., Nonlinear Image Processing, Academic Press, San Diego, 

(2001). 
[8] Lu N., Fractal Imaging, Academic Press, San Diego, (1997). 
 

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 08:31:03

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

