Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 00:17:16

Annales UMCS

RCILTN

o)

% % AnnalesUMCS InformaticaAl 1(2003) 115125 Informatica
RSN Lublin-Polonia
Sectio Al

http://www.annales.umcs.lublin.pl/

Evolutionary algorithms for timetable problems

Pawel Myszkowski”, Maciej Norberciak

Faculty Division of Computer Science, Wrocfaw University of Technology,
Wyb. Wyspiariskiego 27, 50-370 Wroctaw, Poland

Abstract

The university course timetabling problem is hard and time-consuming to solve. Profits from
full automatisation of this process can be invaluable. This paper describes architecture and
operation of two automatic timetabling systems. Both are based on evolutionary algorithms, with
specialised genetic operators and penalty-based evaluation function. The paper covers two
problem variations (theorethical and real-world), with different sets of constraints and different
representations. Moreover, specification of both solutions and a proposal of hybrid system
architecture is included.

1. Introduction

Timetabling problems arouse interest of many scientists. The most popular
methods of solving them are based on heuristics, local search techniques (mostly
tabu search), evolutionary algorithms and reduction to graph coloring, Recently,
the systems based on expert systems and constraint programming have become
popular. Publications concerning heuristic methods are [1-2]. Description of
solutions based on local search techniquesis located in [3-5] (where tabu search-
based methods are described) and in [6-7] (simulated annealing). Authors of [4,
8-13] applied evolutionary algorithms, and proposals of solutions based on graph
coloring, and also models and heuristics applicable to this approach can be found
in [14-21]. Description of approaches based on expert systems are located in
[22-24]. Many of the methods mentioned are described in surveyslike [12, 25].

We present some approaches to solve large, highly constrained timetabling
problems, based on evolutionary agorithms. In chapter 2 we describe two
variations of the problem and constraints connected with them. The third chapter
includes the description of specimen representation, evaluation function,
initialization of population and approaches to solution in detail. The proposa of

" Corresponding author: e-mail address: pawel.myszkowski @ci.pwr.wroc.pl

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 00:17:16

hybrid system architecture is aso included in that chapter. The last chapter
points to directions of future work.

2. Problem description

The typica timetabling problem consists in assigning a set of events (e.g.
classes) to a set of resources (e.g. rooms) and timeslots, satisfying a set of
constraints of various types. Constraints stem from both nature of timetabling
problems (e.g. two events with the same resources involved cannot be planned at
the same time) and specificity of the institution involved.

The problem we consider is a typical university course timetabling problem.
It consists of set of events (classes), to be scheduled in a certain number of
timeslots, and a set of rooms with certain features and size, in which events can
take place. We've been working on two variations of this problem — the first
variation has a defined set of students attending each event, but no constraints
are related to teachers. In this variation the number of timeslots is 45 (5 days, 9
timeslots each). Test sets for this variation come from the Internationa
Timetabling Competition. The second variation has some constraints related to
teachers’ availability (each event has a teacher assigned and each teacher has a
defined set of forbidden timeslots), but set of students attending each event is
undefined (only a number of students and faculty they attend is known) and has
to be concluded from other data. In this variation the number of timedotsis 35
(5 days, 7 timeslots each) and each class has a defined course (the class is a part
of particular university course). Test sets for this variation come from the
Faculty of Computer Science and Management of Wroclaw University of
Technology. The timetable in this case consists of amost 1000 events conducted
by almost 200 teachersin about 40 rooms.

A feasible timetable is one in which all the events have been assigned a
timeslot and aroom, and the following hard constraints are satisfied:

- only one event is scheduled in each room at any timeslot (both variations),

- the room is big enough for all the attending students and satisfies al the

features required by the event,

- no student attends more than one class a the same time (first variation),

- no teacher carries on more than one class at the same time (second

variation),
- no teacher carries on any class in timesot which is forbidden for him
(second variation),

- if particular course has only one class assigned, no class with students
from the same faculty is scheduled at the same timeslot with this course
(second variation).

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 00:17:16

In first variation there are also three soft constraints defined; they are broken
if:

- astudent hasaclassin thelast slot of the day (S1),

- astudent has more than two classesin arow (S2),

- astudent has asingle class on a day (S3).

3. Approachestested

All approaches we describe are based on evolutionary algorithms, which turn
out to be useful as a genera-purpose optimization tool, due to their high
flexibility accompanied by conceptual simplicity. In this part of the paper we
describe three conceptions with the results of their application to the problems
illustrated earlier. In all approaches the evaluation function is based on penalty
for breaking constraints. In the first variation we decided to represent the
specimen (genotype) as a matrix where each row corresponds to a room and
each column to a timeslot. Each element of the matrix (gene) may contain an
event (no more than one — this allows us to eliminate the first hard constraint —
only one event is scheduled in each room at any timeslot). In the second
variation representation is direct — each gene was represented by atriple <event,
room, timeslot> (where event represents teacher and a class). Timeslots can be
odd and even (some classes are conducted once a fortnight). Genes are organized
in chromosomes, and every chromosome represents one faculty. All faculties
together form a genotype. In both approaches each genotype represents
particular solution (timetable). Initial population can be generated randomly,
heuristically or peckish (peckish initiaization strategies are described in [2] —
this strategy is used only in the second variation). Random generation strategy
chooses events to be scheduled, rooms and timeslots at random; the next uses
heuristic event sequencing strategies to create better (in terms of the evaluation
function) initial solutions. The third strategy chooses k genes at random and
inserts into timetable one that breaks least constraints (induces least conflicts). K
= 1 corresponds to random initialization, while in the limit as k gets large this
becomes equivalent to greedy initialization. Creation of population in
subsequent generations is archived by means of classical genetic roulette, as
described in [26].

3.1. Random mutation

In “classic” evolutionary algorithm in each iteration after selection some
specimens are exposed to genetic operators — mutation and crossover. The
contents of operator set and their operation depend strongly on both specifics of
problem being solved and approach chosen. In our solution only mutation
operators are used — it's combined with high computational and conceptua
complexity of recombination operator. Only places, events and timeslots can be

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 00:17:16

mutated — it gives us a set of three different mutation operators. We conducted
experiments with this approach on both problem variations — test setsfor the first
variation had about four hundred events to schedule in a dozen or so rooms, the
second variation involved about seven hundred to one thousand events, with ca.
two hundred teachers involved, to schedule in about thirty rooms. Every iteration
of each specimen is mutated once and operator is chosen randomly. For both
problem variations the solution wasn't found in reasonable time — the agorithm
got stuck in local minimum pretty soon and was not able to escape from it. There
are many reasons for this phenomenon. “Blind” mutation is not only able to
improve, but also spoil the plan being mutated. The changes made may not be
reflected in the value of evaluation function — e.g. mutation can liquidate a
conflict (broken constraint) introducing new conflict at the same time, not
changing the objective function value as a result of this operation. Additionally,
selective pressure in population, where there are many conflicts in specimens,
may be too weak, for the sake of very small differences between specimens in
terms of evaluation function. These factors disgualify “blind” mutation as a
solving tool for complex constraint satisfaction problems and point to more
complex, heuristics-based methods.

3.2. Directed mutation

Despite their unquestionable assets, evolutionary algorithms don’'t copy
directly human way of thinking. Human timetabling process is an application of
direct heuristics, based on successive augmentation — the events are inserted into
timetable one by one, until al have been scheduled. The most constrained events
are scheduled (and during improvement of the timetable rescheduled) first.
Analysis of this approach alowed us to create an algorithm, which solves the
second variation of the problem effectively.

In this approach we use mutation operators directed by broken constraints.
The place in genotype (triple <event, room, timeslot>), which breaks the most
constraints (so it is most difficult to schedule) is selected to mutate. The set of
operators was enlarged by special operator, which is able to “clean” a timeslot
for the course, which has only one class assigned. The operators try to
reschedule event in such a way, that they would eliminate one particular type of
conflict, caused by this event — a dozen or so (this number was established
arbitrary) possible variants are examined, and the one, that breaks the least
constraints of particular type is chosen. This is an extension of the peckish
initialization paradigm on genetic operators. The order of eiminating the
conflicts is established after random generation of the initial population, before
the first iteration of the algorithm — often a particular type of conflict appearsin
the initial population, the sooner algorithm tries to eliminate it. Application of
any operator can spoil timetable in terms of both evaluation function and number

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 00:17:16

of constraints broken, but allows the agorithm to escape the local optima
efficiently. During the tests on data sets described previoudly a feasible solution
is found after about one thousand iterations — this number depends weakly on the
population size. This phenomenon is caused by significant determinism of this
approach and weak selective pressure, described earlier. The experimental
results are shown in table 1.

Table 1. Experimental results (second problem variation)

Population Generation in which feasible solution is found
size Highest Lowest Average (10 runs)
1 1895 423 1101
10 1756 453 1130
50 1788 413 1099
100 1770 397 1084
500 1774 330 1054

The following set of operators has been proposed to solve the first problem

variation with the matrix representation of the specimen:

- MOVE - chooses an event at random and moves it to random room and/or
timeslot; probability of drawing the event is directly proportiona to a
number of constraints broken by this event;

- ORDER —tries to sort events in timeslot chosen at random, so constraints
concerning room features and size are satisfied;

- REPLACE - chooses two columns (timeslots) at random and swaps them,
this operator affects soft constraints.

These operators alow the algorithm to leave local minima and optimize both
soft and hard constraints. This gives the algorithm the ability to improve the
value of the objective function constantly. We found feasible solutions for al the
test problems. Features of datasets used are shown in table 2 and the
experimental results in table 3. Algorithm stops when feasible solution is found.
Table 3 shows how many soft constraints of each type have been broken on
average in the feasible solution.

Table 2. Datasets description (first problem variation)

Problem type Small Medium
Num events 100 400
Num rooms 5 10
Num features 5 5
Approx features per room 3 3
Percent feature use 70 80
Num students 80 200
Max events per student 20 20
Max students per event 20 50

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 00:17:16

Table 3. Experimental results (first problem variation)

S1 | 82 | S3
Smalll 8 71 | 14
Small2 13 | 88 | 30
Small3 2 58 | 14
Small4 5 67 2
Small5 1 36 | 38

Mediuml | 232 | 105 | 2

3.3. Non-Darwinian evolutionary computation

The disadvantages of ‘classic’ genetic algorithms, such as tendency to get
stuck in the local optima have inclined the extension of the GA paradigm.
Hybrid systems, which can be a mix of different methods, with changes in
specimen representation or adaptation of genetic operators [26] can solve
problems from different classes — classification [27], approximation or
combinatory problems (e.g. travelling salesman problem), but they still operate
on genotypes within the confines of the Darwinian evolution. Such evolution
looks more like blind search than the sequence of reasonable acts [27]. The
hybrid method which uses GA with the addition of machine learning (ML)
module was proposed in [28]. In LEM (Learnable Evolution Model [27, 28]) GA
produces a solution, which is evaluated and anayzed by ML module, to be
consequently evolved by GA. The LEMMATA (LEM meant for Timetabling)
hybrid we propose is based on LEM concept — picture 1 shows the information
flow between GA and ML modules. After generation of initial population all
solutions are evaluated. Then we check the stop condition of GA and anayze the
parameters, which decide whether the data should be sent to GA or ML modules.
GA module creates the next generation by means of selection and genetic
operators. This cycle is repeated until the parameters dependent on solution
quality decide to start up the ML module. It analyzes solutions and chooses,
which are “good”, and describes them with a set of rules. The rules are used to
create new population, which takes part in the next iteration of the algorithm.

That model alows the algorithm to improve its speed, because only “good”
timetables are chosen to generate new generation in the exit point of ML
module. Quality of solutions also improves, thanks to the rule-based generation
of descendant population. LEMMATA have been implemented already — the
experimental results with this model can be found in [29].

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 00:17:16

INITIALIZE
POPULATION

FITNESS

CHECK
PARAMETERS

SELECT BEST SELECTION
INDIVIDUALS

CROSSOVER
MUTATION

CREATE
RULES

)

GENERATE
INDIVIDUALS

v

NEW
GENERATION

Fig. 1. LEMMATA operation schema

That model allows the algorithm to improve its speed, because only *good”
timetables are chosen to generate new generation in the exit point of ML
module. Quality of solutions also improves, thanks to the rule-based generation
of descendant population. LEMMATA have been implemented aready — the
experimental results with this model can be found in [29].

4, Conclusions and futurework

GA-based systems are good aternative for solutions of university course
timetabling problems based on heuristics or loca search techniques. Solving
large, highly constrained problems using only the “blind” mutation operator
seems rather impossible, but taking advantage of specialized genetic operators,
adjusted to specificity of the problems allows finding feasible solution relatively
fast. Future work on that field will concern hybrid systems, such asLEMMATA,
described in this paper.

References

[1] Burke E.K., Newal J.P., Weare R.F., A Smple Heuristically Guided Search for the Timetable
Problem, Proceedings of the International ICSC Symposium on Engineering of Intelligent
Systems. ICSC Academic Press, Nottingham, (1998).

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 00:17:16

[2] Corne D., Ross P., Peckish Initialisation Strategies for Evolutionary Timetabling,
Proceedings of the First International Conference on the Theory and Practice of Automated
Timetabling, Napier University, Edinburgh, (1995).

[3] Alvarez-Vades R., Crespo E., Tamarit JM., Design and implementation of a course
scheduling system using Tabu Search, European Journal of Operational Research, 137 (2001).

[4] Ross P., Corne D., Hsiao-Lan Fang, Successful Lecture Timetabling with Evolutionary
Algorithms, Workshop Notes, ECAI'94 Workshop, (1994).

[5] Schaerf A., Tabu Search Techniques for Large School Timetabling Problems, Tech. rep. CS-
R9611, CWI, Amsterdam, (1996).

[6] Newal JP., Hybrid Methods for Automated Timetabling, PhD Thesis, Department of
Computer Science, University of Nottingham, (1999).

[71 Thompson JM., Dowsland K.A., A Robust Smulated Annealing Based Examination
Timetabling System, Computers Ops Research, 7/8 (1998) 25.

[8] Colorni A., Dorigo M., Maniezzo V., Genetic Algorithms and Highly Constrained Problems:
the Time-Table Case, Proceedings of the First International Workshop on Parallel Problem
Solving from Nature, Lecture Notesin Computer Science (1990) 496.

[9] Colorni A., Dorigo M., Maniezzo V., Genetic Algorithms: a New Approach to the Time-Table
Problem, Lecture Notes in Computer Science — NATO ASI Series, F82, Combinatorial
Optimalization, (1990).

[10] Colorni A., Dorigo M., Maniezzo V., A Genetic Algorithm to Solve the Timetable Problem,
Tech. rep. 90-060, Politecnico di Milano, (1992).

[11] Norberciak M., Algorytm ewolucyjny w rozwigzywaniu silnie ograniczonego, rozeglego
problemu planowania, Materialy V Konferencji Naukowe ,Sztuczna inteligencja’,
Wydawnictwo Akademii Podlaskigj, Siedlce, (2002), in Polish.

[12] Norberciak M., Przeglqd metod automatycznego planowania — przyklad wykorzystania
algorytmu genetycznego w rozwigzaniu prostego problemu planowania, Prace Naukowe
Wydziatowego Zaktadu Informatyki Politechniki Wroctawskigj, Sztuczna Inteligencja nr 1,
Oficyna Wydawnicza Politechniki Wroctawskigj, Wroctaw, (2002), in Polish.

[13] Ross P., Corne D., Comparing Genetic Algorithms, Smulated Annealing, and Sochastic
Hillclimbing on Timetabling Problems. Evolutionary Computing, AISB Workshop, Sheffield
1995, Selected Papers, T. Fogarty, Springer-Verlag Lecture Notes in Computer Science, 993
(1995).

[14] Burke E.K., Elliman D.G., Weare R.F., A University Timetabling System based on Graph
Colouring and Constraint Manipulation, Journal of Research on Computing in Education, 27
(1994) 1.

[15] Cangalovié M., Kovasevié-Vuj&i¢ V., Ivanovié L., DraZi¢ M., Modeling and solving a real-
life assignment problem at universities, European Journal of Operationa Research, 110
(1998).

[16] Hilton AJW., Slivnik T., Stirling D.S.G., Aspects of edge list-colourings, Discrete
Mathematics, 231 (2001).

[17] de Werra D., Extensions of coloring models for scheduling purposes. European Journal of
Operational Research, 92 (1996).

[18] de Werra D., The combinatorics of timetabling, European Journal of Operational Research, 96
(1997).

[19] de Werra D., Restricted coloring models for timetabling, Discrete Mathematics, 165/166
(1997).

[20] de Werra D., On a multiconstrained model for chromatic scheduling, Discrete Applied
Mathematics, 94 (1999).

[21] de Werra D., Mahadev N.V.R., Preassignment requirements in chromatic scheduling,
Discrete Applied Mathematics, 76 (1997).

[22] Burke E.K., MacCarthy B., Petrovic S., Qu R., Sructured cases in case-based reasoning-
-reusing and adapting cases for time-tabling problems, Knowledge-Based Systems, 13
(2000).

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 00:17:16

[23] Foulds L.R., Johnson D.G., SotManager: a microcomputer-based decision support system for
university timetabling, Decision Support Systems, 27 (2000).

[24] Shie-Jue Lee, Chih-Hung Wu, CLXPERT: A Rule-Based Scheduling System. Expert Systems
With Applications, 9(2) (1995).

[25] Schaerf A., A Survey of Automated Timetabling, Tech. rep. CS-R9567, CWI, Amsterdam,
(1995).

[26] Michalewicz Z., Algorytmu genetyczne + struktury danych = programy ewolucyjne
Wydawnictwa Naukowo-Techniczne, Warszawa, (1999), in Polish.

[27] Michalski R., Learnable Evolution Model: Evolutionary Processes Guided by Machine
Learning, Machine Learning, 38 (2000), in Polish.

[28] Michadski R., Learning and Evolution: An Introduction to Non-Darwinian Evolutionary
Computation, Invited paper, Twelfth International Symposium on Methodologies for
Intelligent Systems, Charlotte, NC, (2000).

[29] Myszkowski P.B., Niedarwinowska ewolucja w rozwigzywaniu probleméw planowania, XI
Konferencja ,Pozyskiwanie wiedzy i jg zarzadzani€”, Turawa, 16-18 mga 2003. Prace
Naukowe Akademi Ekonomicznej we Wroctawiu nr 975, Wroctaw, (2003), in Polish.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.tcpdf.org

