Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 23:44:53

o Annales UMCS

% % Annales UMCS Informatica Al 1(2003) 81-87 Informatica

% o) 5 Lublin-Polonia
BLIN-AOY Sectio Al

http://www.annales.umcs.lublin.pl/

Fast solver for Toeplitz bidiagonal systems of linear equations

Przemystaw Stpiczynski’

Department of Computer Science, Marie Curie-Skiodowska University,
PI. M. Curie-Skfodowskigj 1, 20-031 Lublin, Poland

Abstract

We present a new efficient parallel algorithm for solving the first order linear recurrence sys-
tems with constant coefficients which is equivalent to the problem of solving Toeplitz bidiagonal
systems of linear equations. The algorithm is formulated in the terms of level 1 and 2 BLAS (Basic
Linear Algebra Subprograms) routines AXPY and GER. We a so discuss its platform-independent
implementation with OpenMP and finally present the results of experiments performed on a dual
processor Pentium 111 computer running under Linux operating system with Altas as an efficient
implementation of BLAS. The sequential version of the algorithm is up to 2.5 times faster than
asimple sequential algorithm.

1. Introduction

Let us consider the problem of solving the following system of linear
equations

&l 0bax, 60 a0
c. €, 5 ¢+
© O g M
¢ O O =iz
g0 -c 1%x; faj

The matrix of the system is a bidiagonal Toeplitz matrix wich means that entries
are constant along each diagonal. The problem of solving (1) is equivalent to the
problem of solving the following first order linear recurrence system with the
constant coefficients
i fork=1
= o @
ja tex,, fork=2,..,n
The problem (1) or aternatively (2) arises in several fields of scientific

computing [1-3]. For example, the well known Horner's scheme [4] can be
expressed in terms of (2). The equation (2) is also a critical part of some

X

" E-mail address: przem@hektor.umcs.lublin.pl

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 23:44:53

numerical algorithms [5-7]. Unfortunately, optimizing compilers are not able to
generate machine code which would fully utilize the underlying hardware, thus
due to the Amdahl's law [8], such part of an algorithm can cause that the overall
performance of a program will not be satisfactory. So it is very important to find
an efficient method for solving the problem.

Different algorithms for the solution of the problem (2) have been designed
for parallel [9-14] and vector [15-18] computers. However these algorithms like
cyclic reduction, Wang's method and recursive doubling [12] lead to a
substantial increase in the number of floating-point operations [8], what makes
them unattractive in a classical serid systems (just like Intel Pentium) or parallél
computers with alimited number of processors.

The aim of this paper is to present a new efficient algorithm for solving (1)
based on a recently developed efficient algorithm for solving m-th order linear
recurrence systems with constant coefficients [17, 19]. The agorithm is
formulated in terms of level 1 & 2 BLAS (Basic Linear Algebra Subprograms)
routines AXPY and GER [20, 8] and when an optimized version of BLAS is
used (for example Atlas [21], then the agorithm is up to 2.5 times faster than a
simple algorithm based on (2), even on one processor. Moreover, it can be easily
paralelized on shared-memory parallel computers using OpenMP [5].

2. Divide and conquer approach

First let us note that our problem (2) is a specia case of the more general
problem of solving mth order linear recurrence system with the constant
coefficients for n equations[13, 22,]

i0 fork£0

X = ©)

iak +é_ Ci X for 1EK£n,
[=

which can be efficiently solved on different parallel and vector computers using
the recently developed divide and conquer algorithm [14, 17, 19, 21]. Now let us
briefly describe the divide and conquer algorithm for solving the first order
linear recurrence systems with the constant coefficients (m=1). For the sake of
simplicity, let us assume that there exist integers r and s such that rs=n.
However, this assumption can be easily omitted: after we find x, we apply (2)

tofind X,,,.... X, .

The recurrence equation (2) can be rewritten as the following block system of
linear equations

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 23:44:53

a 0,0 &, 0
G R
(;;U +9X2+:ga2+ (4)

L
OO0 ¢Icis
U Ligx 5 %5

T T .
where X, :(><(j_l)s+1,...,xjs) , a :(a(j_l)s+l,...,ajs) | R® and the matrices are

given by
&l OQ
T S ©)
¢ O o = &0 a3
€0 ¢ 1}
The system (4) corresponds to the following recurrence system:
X =L

6
-'ij =L"a - L'Ux, forj=2,..,r. ©)

When we consider the structure of the matrix U =- cee] , where e, denotes
k-th unit vector of R®and set z, = L'"a, , then we get

Txl =z

I, - - ()
iX; =z, +a)y forj=2,..r,

where y; =L"e and a; =cx,, for j=2..r.

The divide and conquer agorithm [13, 14] proceeds as follows. First we find
(in paralel) al vectors z, and y, then we find (sequentially) all coefficients a
and numbers X(j-1s j=2,...,r . Finally (againin paralldl) we calculate s- 1 first
entriesof x;, j=2,...,r. Experimental results show that the algorithm achieves

reasonabl e performance for a bigger number of processors[23].

3. BLAS-based algorithm

In our earlier work [17] we have shown that the first step of the algorithm
reduces to the problem of solving the following system of linear equations
LZ=F,)
where L is given by (5) and

4 :(zl,...,zr,y)T, F =(av---,aT,el)TT RS (+D)

The solution Z can be found row by row using the following vector-recurrence
formula

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 23:44:53

1F. fork=1
TIe vz fork= €)
T P w1 TOrk=2,..s
where Z,, and F, . $ denote the k-th row of Z and F respectively. Thus each row

of Z can be computed using one call to the level 1 BLAS operation AXPY of the
form x = x+ay. Anaogously, the last step of the algorithm can be expressed in
terms of AXPY, which gives us avery fast algorithm for vector computers [17].
Unfortunately, in the case of scalar processors (just like Pentium I1lI), the
performance of the agorithm is comparable with the performance of a smple
algorithm based on (2).

The main idea of our new agorithm is to speed up the last step of the
algorithm by using the routine GER from the level 2 BLAS. This routine is
pretty much faster than the corresponding sequence of calls to the routine AXPY
because it reduces the number of memory references in comparison with the
number of arithmetic operations [8]. During the second step we collect the
computed values of all coefficients a; and compose the vector

Zk

TA

u=(a,,..a,) 1 R™ (10)

In the third (final) step, we compute the remaining s- 1 entries of al vectors
X;,] =2,..,r. It can be done by one call to the level 2 BLAS routine GER of

the foom A- A+xy'. Let X;, z; and y, denote s- 1 first entries of vectors
X;, z; and y respectively. Then from (7) we get
X;=z+ay.
Now using (10) we conclude that the matrix (X'Z,...,X'r)T RED (D stisfies the
following
(X'z,...,x;)=(2'2,...,z;)+y'uT. (12)
This algorithm can be easily paraldized on shared-memory machines.

Namely, if we partition the matrices Z and F into blocks of columns, then (8) can
be rewritten in the following form

L(ZynZ,) = (R F,) (12)
and each block Z; can by calculated using (9). Thus, when p processors are
available, each processor will be responsible for computing one block Z,.
Similarly we can paralelize (11).

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 23:44:53

4, Performance analysis and results of experiments

Now let us study some basic facts on the complexity of the considered
agorithms. It is clear that the simple agorithm based on (2) required 2n- 2
floating point operations (“flops”).

Proposition 1 The number of floating-point operations required by the
sequential BLAS-based agorithmis

TBLAs,l(n,r,S)=2rs- 2r +2s- 4+2n. (13)
3
predicted optimum
2,5 \
2 |
o
=]
T 15
[}
<3
[72]
1
0,5
0 ‘ : ‘ ‘ ‘
0 50 100 150 200 250 300
values of s

Fig. 1. Performance (in MFlops) od the sequential BLAS-based algorithm
for various s and n=42500

Proof. After we choose the integers r and s, we perform a sequence of s- 1
cals to the operation AXPY. In the second step we find last entries of r-1

VECtOrS X,,...,X, . Thethird step consistsof 2(r - 1)r flops. Finally we find the
numbers X,,,...,X, using (2). Thus
Tonsa(nr,8) =2(r +1)(s- 1) +2(r - 1) +2(s- 1)r +2(n- rs).

BLAS,1

u
The method has been implemented in FORTRAN 77 and OpenMP [24] and

tested on a dual processor Pentium 111 866MHz computer running under Linux
operating system. We have used Atlas [21] as the optimized version of BLAS
and Omni OpenMP compiler to express the paralel execution of (12). The
algorithm has been tested varying the problem sizes n and values of the
parameter s. To discover an asymptotic behavior of the algorithm we have

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 23:44:53

decided to run our program not only for small degree systems but also for very
large degree. The wall clock time has been measured using the routine
omp_get_wtime(). Results of the experiments can be summarized as follows.

1. The BLASbased algorithm is faster than the simple algorithm based on
(2) for n>500. However, the algorithm could be much faster on computer
systems where the performance of AXPY and GER isrelatively high.

2. The BLAS-based algorithms (both sequential and parallel) achieve the best

performance for the value of the parameter s» ,/n/2.

3. The sequential BLAS-based algorithm is up to 2.5 times faster than the
simple algorithm based (Figure 2). The use of the parallel BLAS-based
agorithm is profitable for great problem sizes (n>40000).

4. For smaller values of n, the whole coefficient vector can be stored in the
processor cache (Pentium Il has 256KB cache). For n>45000 the
performance of all agorithms rapidly decreases. This is caused by cache
M SSes.

2,5 1

I

o
5 .
15 ///
Q
&
1 i
1-proc
0,5 4 P
= 2-proc
0 T T 0 U U
0 40000 80000 12000 0 40000 80000 120000
n n

Fig. 2. Performance (in MFlops) of the BLAS-based algorithm for various n

References

[1] LiL., HuJ, Nakamura T., A simple parallel algorithm for polynomial evaluation, SIAM J.
Sci. Comput., 17 (1996) 260.

[2] Munro I., Paterson M., Optimal algorithms for parallel polynomial evaluation, J. Comput.
System Sci., 7 (1973) 189.

[3] Swann H., On solenoidal high-degree polynomial approximations to solutions of the
stationary Stokes equations, Numer. Methods Partial Differ. Equations, 16 (2000) 480.

[4] Stoer J., Bulirsh R., Introduction to Numerical Analysis, Springer, New Y ork, (1993).

[5] Abu-Shumays I., Comparison of methods and algorithms for tridiagonal systems and for
vectorization of diffusion computations, In: Numrich, R., ed., Supercomputer Applications,
New Y ork, Plenum Press, (1985).

[6] Guitart J., Ruiz-Moreno S., Strict calculation of the light statistics at the output of a travelling
wave optical amplifier, Elecronics Letters, 29 (1993) 1589.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 08/02/2026 23:44:53

[7] Larriba-Pey J.L., Navarro J.J., Jorba A., Vectorized algorithms for natural cubic spline and B-
spline curve fitting, In: Proceedings of PDP'96 Braga., (1996), 385.

[8] Dongarra J., Duff I., Sorensen D., Van der Vorst H., Solving Linear Systems on Vector and
Shared Memory Computers, SIAM, Philadelphia, (1991).

[9] Carlson D.A., Solving linear recurrence systems on mesh-connected computers with multiple
global buses, Journal on Parallel and Distributed Computing, 8 (1990) 89.

[10] Gajski D., Processor array for computing linear recurrence systems In: Preceeding of the
International Conference on Parallel Processing., (1978) 246.

[11] Greenberg A., R.E.Lander, Paterson M., Galil Z., Efficient parallel algorithms for linear
recurrence computation, Inf. Proc. Letters, 15 (1982) 31.

[12] Larriba-Pey J.L., Navarro J.J., Jorba A., Roig, O., Review of general and Toeplitz vector
bidiagonal solvers, Parallel Computing, 22 (1996) 1091.

[13] Paprzycki M., Stpiczynski P., Parallel solution of linear recurrence systems, Z. Angew.
Math. Mech., 76 (1996) 5.

[14] Stpiczynski P., Parallel algorithms for solving linear recurrence systems, Lecture Notes in
Computer Science, 634 (1992) 343.

[15] Axelsson O., Eijkhout V., A note on the vectorization of scalar recursions, Paralle
Computing, 3 (1986) 73.

[16] Hafner H., Shonauer W., Investigation of different algorithms for the first order recurrence,
Supercomputer, 40 (1990) 34.

[17] Stpiczynski P., Paprzycki M., Fully vectorized solver for linear recurrence systems with
constant coefficients, In: Proceedings of VECPAR 2000-4th International Meeting on V ector
and Parallel Processing, Porto, June 2000, Facultade de Engerharia do Universidade do Porto,
(2000) 541.

[18] Van Der Vorst H.A., Dekker K., Vectorization of linear recurrence relations, SIAM J. Sci.
Stat. Compuit., 16 (1989) 27.

[19] A new message passing algorithm for solving linear recurrence systems Lecture Notes in
Computer Science, 2328 (2002) 466.

[20] Anderson E., Bai Z., Bischof C., Demmel J.,, Dongarra J., Du Croz J.,, Greenbaum A.,
Hammarling S., McKenney A., Ostruchov S., Sorensen D., LAPACK User's Guide, SIAM,
Philadelphia, (1992).

[21] Whaley R.C., Petitet A., Dongarra J.J., Automated empirical optimizations of software and the
ATLAS project, Parallel Computing, 27 (2001) 3.

[22] Modi, J., Parallel Algorithms and Matrix Computation, Oxford University Press, Oxford,
(1988).

[23] Paprzycki M., Stpiczynski P., Solving linear recurrence systems on the Cray Y-MP, Lecture
Notes in Computer Science, 879 (1994) 416.

[24] ChandraR., Dagum L., Kohr D., Maydan D., McDonald J., Menon R., Parallel Programming
in OpenMP, Morgan Kaufmann Publishers, San Francisco, (2001).

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.tcpdf.org

