

Annales UMCS Informatica AI 1 (2003) 73-79
Annales UMCS

Informatica
Lublin-Polonia

Sectio AI
http://www.annales.umcs.lublin.pl/

Ada as a language for programming clusters of SMPs

Przemysław Stpiczyński∗

Department of Computer Science, Maria Curie-Skłodowska University

Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland

Abstract
This paper presents a new idea of developing parallel programs for clusters of SMP nodes us-

ing the Ada programming language. We show how to implement OpenMP in Ada and simplify
programming of distributed memory applications using remote subprograms calls instead of
complicated message passing.

1. Introduction
While the largest computers in the world are still built for the highest

performance, they still cost tens of millions of dollars. Clusters made high
performance parallel computing available to institutions with much smaller
budgets. Now it is possible to use several workstations (for example PC's)
connected by Fast Ethernet, Gigabit or Myrinet, as a single powerful
computational resource. The Parallel Virtual Machine (PVM) system helps to
develop parallel programs for such distributed memory architecture [1]. In 1993
Message Passing Interface (MPI) has been developed by researchers from
Argonne National Laboratory and became a de-facto standard for message
passing parallel computing. MPI provides a large set of communication
subroutines including point-to-point communication, broadcasting and collective
communication [2].

Often, nodes of such clusters are SMP (symmetric multiprocessing)
machines, which means that their architecture is based on tightly-coupled
identical processors with access to a shared memory. The parallel nature of such
machines is hidden from the user: an operating system is responsible for
allocation of processor time to the programs when scheduling them to run.
Moreover, such a kind of parallel architectures is easy to program. Until quite
recently each vendor has provided its own set of commands to support writing
parallel programs. All these approaches were quite similar with directives for

∗ E-mail address: przem@hektor.umcs.lublin.pl

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 06:57:43

UM
CS

managing parallel code execution; e.g. loop parallelizing directives, locks,
barriers and other synchronization primitives inserted into codes written in
Fortran or C. Recently OpenMP [3] emerged as a standard for code
parallelization for shared memory parallel computers.

Unfortunately, people who want to utilize fully clusters of SMPs have to
combine two different standards: OpenMP for shared memory and MPI for
distributed memory, which makes programs complicated. In this paper we show
how to simplify developing programs for the clusters of SMPs using the Ada 95
programming language [4] with the Distributed System Annex [4, 5] and
GLADE [6].

2. Ada and OpenMP

“The language Ada was primarily designed for the production of large
portions of readable, modular, portable, and maintainable software for real-time
applications” [7], so why not use it for developing parallel programs? The
answer is quite simple: when Ada was being designed [4, 8], the parallel
computing was not popular and this explains why Ada does not provide
constructs which would simplify parallel programming [9, 10]. However, Ada
provides a very powerful mechanism for concurrent programming (tasks and
rendezvous for synchronization) which can also be used for developing
programs for parallel shared memory computers. Unfortunately, the use of tasks
is rather complicated in comparison with simple extensions to Fortran and C
provided by vendors producing parallel computers.

OpenMP provides support for three basic aspects of parallel computing:
specification of parallel execution, communicating between multiple threads,
expressing synchronization between threads. In Fortran, OpenMP directives
satisfy the following format:

!$omp directive name optional clauses

Such an approach allows to write the same code for both single-processor and

multiprocessor platforms. Simply, compilers which do not support OpenMP
directives or that are working in a single-processor mode treat them as
comments.

Example 1 Let us consider the following code for numerical integration:

 1 1

() ()() ~ () ... ()
2 2

b
o n

n
a

f x f xf x dx h f x f x −

 ≈ + + + + 
 ∫ ,

where
b ah

n
−

= and , 0,..., .ix a ih i n= + = An OpenMP code will look like this:

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 06:57:43

UM
CS

 h=(b-a)/n
 !$omp parallel do private(x) reduction(+:sum)
 do j=1,n-1
 x=a+j*h
 sum=sum+f(x)
 end do
 sum=h*(sum+0.5*(f(a)+f(b)))

In this example the reduction(+:sum) clause is used. It instructs the
compiler that the variable sum is the target of a sum reduction operation. The
OpenMP uses the fork-join model of parallel execution. A program starts
execution as a single process, called the master thread of execution, and
executes sequentially until the first parallel construct is encountered. Then the
master thread spawns a specified number of threads and becomes a “master” of
the team. All statements enclosed by the parallel construct are executed in
parallel by each member of the team.

It is clear that OpenMP standard can be easily adopted to Ada and it should
support the same functionality as OpenMP in Fortran and C. Thus, our proposal
is to use the following format for OpenMP directives in Ada:

pragma omp; -- directive name optional clauses

Now let us consider a few examples of OpenMP-Ada constructs. Note that other
“non loop-based” OpenMP constructs like sections and explicit synchronization
can be easily translated into Ada 95.

Example 2 The parallel constructs instructs a compiler to create a parallel
region to execute lines between begin and end in parallel:

 pragma omp; -- parallel
 begin
 -- lines of code to be executed in parallel
 --
 end;

Example 3 The parallel for construct instructs a compiler to parallelize
the execution of a for loop:

 h:=(b-a)/float(n);
 pragma omp; -- parallel for private(x) reduction(+:sum)
 for j in 1..n-1 do loop
 x:=a+float(j)*h;
 sum:=sum+f(x);

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 06:57:43

UM
CS

 end loop;
 sum:=h*(sum+0.5*(f(a)+f(b)));
Analogously we can adopt all OpenMP constructs. It should be pointed out that
our proposal for OpenMP-Ada (just like official OpenMP for Fortran and C)
defines only a “potential” parallelism. The above examples can be complied
with a standard Ada compiler and it produces no errors. We only get warnings
that the pragma omp is unknown. Now let us observe that each OpenMP-Ada
construct can be translated into well known pure Ada constructs which support
concurrent programming (just like tasks synchronized by rendezvous).

Example 4 The parallel region construct from Example 2 should be translated
into the following code:

declare
 task type ompT1 is -- define a local task type
 entry Init(nr:in integer); -- which accepts rendezvous
 end ompT1;
 task body ompT1 is -- body of the task
 myid : integer;
 begin
 accept Init(nr:in integer) do -- get the number
 myid:=nr;
 end Init;
 -- lines of code to be executed in parallel
 --
 end ompT1;
 type refompT1 is access ompT1;
 tref : refompT1;
begin
 for i in 0..AdaOpenMP.NPROCS-1 loop
 tref:=new ompT1; -- create a new task
 tref.all.Init(i); -- give the number to the task
 end loop;
end;

In the above example we define a local task type and use it to create a number
of tasks (in the for loop). Each task gets its unique number and then starts to
execute the code intended to be executed in parallel. It is clear that the OpenMP-
Ada construct is much simpler.

3. Distributed computing with DSA
As it was mentioned above, if we want to develop programs for clusters we

have a choice: PVM or MPI. Both of the systems are based on the message
passing. They are rather complicated and cannot be used together with Ada. On

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 06:57:43

UM
CS

the other hand, Ada 95 offers much simpler way of writing distributed programs
called remote subprogram calls defined in the Distributed System Annex (DSA)
which is a part of the language definition [4]. A typical distributed application in
Ada consists of several partitions executed on remote hosts. Each partition
comprises a number of Ada packages categorized with simple Ada constructs.
Such packages define “services” provided by remote hosts [5, 6]. From a
programmer's point of view, calls to “remote subprograms” are quite similar to
simple subprogram calls. It should be pointed out that DSA provides several
interesting mechanisms just like distributed shared memory [6, 11].

Example 5 The categorized package Host_Pkg provides the function
Integral. In the evaluation part of the package body one calls the routine
Register from the package Main_Pkg} which is a part of the main partition.

 with funct;
 package Host_Pkg is
 pragma Remote_Types;
 type Host_handler is tagged limited private;
 type RefToHandler is access all Host_handler'Class;
 function Integral(h:Host_handler;a,b:in float;
 n: in integer; f: funct.RefToFunct) return Float;
 private
 type Host_handler is tagged limited
 record
 myid:integer;
 end record;
 end Host_Pkg;

The main partition contains the following package:

 with Host_Pkg;
 package Main_Pkg is
 pragma Remote_Call_Interface;
 procedure Register(h:access Host_Pkg.RefToHandler);
 -- other serveces
 end Main_Pkg;

The routine Integral can be called as follows:

 with Host_Pkg; with Main_Pkg;
 procedure Simple is
 begin

 value:= Host_Pkg.Integral(handler,a,b,n,f);

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 06:57:43

UM
CS

 end Simple;

In the above example, a distributed application starts with the main partition
which contains the package Main_Pkg. Each remote partition “registers” its
services to the main partition by providing a remote reference to its local data of
the type Host_handler. When the main partition calls to the routine
Integral, the request is dispatched to the partition which contains handler,
where the routine is called. Then the result goes back to the main partition.

Now let us consider the situation when a distributed application consists of
several partitions with the package Host_Pkg}. Thus each partition can be
responsible for computing the integral on a subinterval. Calls to remote copies of
the subprogram Integral should be parallelized. Thus we can simply mix the
proposed OpenMP-Ada with DSA.

Example 6 In this example we show how combine the proposed OpenMP-Ada
with the mechanism of remote subprograms calls.

 h:=(b-a)/float(AdaOpenMP.NHOSTS);
 pragma omp; -- parallel for shared(h)
 pragma omp; -- private(xa,xb) reduction(+:sum)
 for j in 0..AdaOpenMP.NHOSTS-1 do loop
 xa:=a+float(j)*h;
 xb:=xa+h;
 sum:=sum+Host_Pkg.Integral(handler(j),xa,xb,n,f);
 end loop;

4. Conclusions and future work
We have presented a new idea of developing parallel programs for clusters of

SMP nodes using the Ada programming language. We have shown how to
implement OpenMP in the pure Ada and simplify programming of distributed
memory application using remote subprogram calls instead of complicated
message passing. As the future work, we are planning to write OpenMP-Ada
compiler using Aflex and Ayacc, which are Ada versions of well known tools lex
and yacc.

References

[1] Dongarra, J., et~al., PVM: A User's Guide and Tutorial for Networked Parallel Computing,
MIT Press, Cambridge, (1994).

[2] Pacheco, P., Parallel Programming with MPI, Morgan Kaufmann, San Francisco, (1996).
[3] Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Menon, R., Parallel

Programming in OpenMP, Morgan Kaufmann Publishers, San Francisco, (2001).
[4] Ada 95 Reference Manual, Intermetrics, (1995).

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 06:57:43

UM
CS

[5] Pautet, L., Tardieu, S., What future for the distributed systems annex?, ACM SIGADA Ada
Letters, 19 (1999) 77.

[6] Pautet, L., Tardieu, S., GLADE User's Guide, Free Soft Foundation (2001).
[7] Kok, J., Parallel programming with Ada, Int. J. of Supercomp. Applic., 2 (1988) 100.
[8] Ada Reference Manual, Intermetrics, (1983).
[9] Paprzycki, M., Zalewski, J., Ada in distributed systems: An overview, Ada Letters, 17 (1997)

55.
[10] Paprzycki, M., Zalewski, J., Parallel computing in Ada: An overview and critique, Ada

Letters, 17 (1997) 62.
[11] Kermarrec, Y., Pautet, L., A distributed shared virtual memory for Ada 83 and Ada 9X

applications, In Engle, Jr., C.B., ed.: Proceedings of the Conference on TRI-Ada, Seattle,
WA, USA, ACM Press, (1993) 242.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 17/01/2026 06:57:43

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

