Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 18/01/2026 03:48:43

o Annales UMCS
% % Annales UMCS Informatica Al 1(2003) 61-72 Informatica
% o) 5 Lublin-Polonia
BLIN-AO* Sectio Al

http://www.annales.umcs.lublin.pl/

Efficient modification of LZSS compression algorithm

Pawel Pylak”

Faculty of Mathematics and Science, Catholic University of Lublin,
Al. Racfawickie 14, 20-950 Lublin, Poland

Abstract
This paper presents a new method of lossless data compression called LZPP, being an ad-
vanced modification of the well-known algorithm LZSS [1]. It introduces improvements of the LZ
family algorithms [2, 3], such as the use of a special coding of two and three byte matches, use of
an auxiliary entropy coder and new criteria of symbol exclusions. Minimization of the data
compression ratio (bpc) has been chosen as the primary goal of the proposed modifications of
LZSS agorithm.

1. Analysisof LZSS algorithm and proposed modifications
1.1. Index coding

The first thing which should be considered, when one wants to improve the
quality of compression, are indexes generated by every LZ method.

Indexes can be coded with one of the datigtical adaptive compression
methods, like the arithmetic or the Huffman coding. Confirmation of thisis the
sample probability distribution of indexes (calculated as the distance from the
end of the window) shown in Figure 1, which LZSS method generates during
compression of the “xplik” file (merged al files from Calgary Corpus).

Graphs for the most of the files for which experiments were conducted had
similar shapes. Therefore it can be assumed that generaly indexes have such
digtribution. Moreover, symbols having such distribution should be compressed
well with a statistical coder, because the entropy (see [4]) equals H(S) = 8,954
bits in this case. This means that the maximal static entropy coding would
reduce the number of bits necessary to store indexes even by 44%.

Using this fact in the LZPP method, the fast variant of arithmetic coding
(RangeCoder [5]) was applied for index coding. The range coder was
additionally equipped with a rotating buffer, handling of the escape marker and
the exclusions mechanism. Additionally, an independent coding of index bytes

" E-mail address: ppprezes@wp.pl

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 18/01/2026 03:48:43

was used for the index processing. This enabled the use of a very large window

(even up to 16MB).
0,06 -
0,05
>
= 004
= i
<003
2002 1
o
001
0\\“;\\\\\\\\\\\\\\\
O 0 O© I~ N O 00O © N O 00 © < N O ©
O M O~ < O < 1 00 < 1 00 1O N oo
Y OO OO O 00 0O M~ M~ © © O 1 1 U <
M M~ 4 1O O MM~ 410 O M M~ d 1! o0 m
I 1 4 AN N MO MmO DN O
Index

Fig. 1. Probability distribution of indexes generated by LZSS method during compression
of file “xplik”

1.2. Lengths of matches coding

While looking at Figure 2 showing the numbers of the matches occurrences
for lengths from 3 to 20 in the file “obj”, one can easily state, that it is worth to
code lengths using an entropy coding such as the Huffman or the arithmetic
coding. It can reduce the average number of bits necessary for storing lengths

even by 75%.
«» 1200
2 03
§ 1000 1034
©
c 800
S 600
@ 400 =416
o
£ 200 196 157
=
4 0 B _* 68e 44e 42e 23e 30e 17e 1g¢ 20e Dge 3de D4e 204 g 410
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Length of amatch [bytes]

Fig. 2. Distribution of lengths of matches (3-20) in file "obj1"

In LZPP method, similarly to the case of indexes, RangeCoder was used to
code lengths of matches, aso with an independent coding of bytes. This allowed
to use easily lengths up to 64KB.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 18/01/2026 03:48:43

1.3. Flag coding

Flags used for controlling the decompression process can be also specialy
coded to remove redundancy.

In LZSS method the flag responsible for distinguishing between coding of
symbols (0) and substrings (1) usually has probability distribution different from
uniform (p(0)* 1/2 and p(1)* 3/2). An example of changes of the probability
digtribution of that flag are shown in Figure 3.

o
1
(o))
©
..—_0,8\\
—
© 06
>l \
=
= 04
%l x
o 02 ——
o
EO T °rr 1+ T*T ‘T "1 """’ "’/ T 71T /7
O 0 O ¥ N O 00 O < N O 0o O <
© M O N ¥ O~ ¥ +d 0o g d ©
D O O W W O N~ M~ N~ © O © 1
®E 0822288488953

Position in the file

Fig. 3. Changes of probability distribution of symbol coding flag for file "paperl”

It can be easily seen, that the amount of redundant information in this case is
considerable. Further studies have shown that the use of RangeCoder can
improve the compression quality by up to 2%.

1.4. Non-compressed symbols

The following possible improvement is coding (with any entropy coder) all
the symbols, which were not compressed by LZSS and were sent to the output
unchanged. Using the Huffman coding one can reduce, by approximately half,
the number of bits used to store these symbols.

In LZPP method RangeCoder was used for the compression of these symbols.
Certainly, it has better properties than Huffman coder.

1.5. Special coding of three-byte sequences

Another redundancy present in LZSS algorithm is caused by not considering
the frequency of occurrences of particular sequences. In other words, when in
the last n symbols (there n is the size of the window) the string ‘abc’ was present
5 times and the string ‘def’ only once, it is natural to expect, that in the data to
come the string ‘abc’ will appear more frequently than ‘def’. Standard LZSS

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 18/01/2026 03:48:43

does not consider these probabilities and returns only the index of a given string.
Observe, that even if an entropy coding is used for indexes (as described in
section 1.1), the coder does not take into account the content of a match, but
only its index. For such a coder al occurrences of the string ‘abc’ are distinct.
Moreover, if the string ‘def’ occurred later than the last *abc’, the probability of
‘def’ is greater for such coder, because it has smaller index (see Figure 1 in
section 1.1).

Although the above problem concerns sequences of any length, due to the
implementation issues and the compression speed, it is reasonable to consider it
only for short ones. In LZPP, a special mechanism for coding three-byte
sequences was implemented. Three bytes were selected, because such sequences
are statistically most often found in input data.

For this purpose, a special structure was created. It holds information about a
fixed number of the last three-byte sequences together with the number of
occurrences of each one. So, in the case of the three-byte sequence, LZPP
generates a specialy coded (entropy) tuple (2,index 3) in place of the usual
triple (1,length,index). There index_3 is the index of the three-byte sequence in
the aforementioned data structure. The occurrence counter of that sequence is
used to code its index.

1.6. Symbol exclusions based on the substring criterion

The next step in the elimination of redundancy in LZSS is based on the
observation, that after coding two symbols, additional information about the next
symbol can be obtained. This symbol cannot be any of the symbols, which, with
preceding two, would create one of the three-byte sequences. It is hot necessary
to consider sequences longer than three, because three-byte sequences are
subsequences of the longer ones.

The exclusions mechanism of LZPP uses this fact.

1.7. Symbol exclusions based on the criterion of sequence continuity

Another property of LZSS, which can be exploited for optimisation, is the
fact that the symbol following the just-coded match in the window cannot appear
as the next symbol in the incoming data. Of course, the case when the given
match reached the maximal length is an exception from that rule.

Example:

The content of the window is: xxxabcdyyxxz. Let the next data be: abcdxx. Of
course LZPP will encode the symbols abcd as a 4-element match. We know that
next symbol certainly will not be y, because if it were y, the encoded match
would have length 5.

Similarly to the previoudly described optimisation, the exclusions mechanism
was used.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 18/01/2026 03:48:43

1.8. Restrictions on the indexes of matches of length 4 and 5

It appears, that when processed matches are short (4 or 5 bytes), the use of
large indexes isinefficient. Thusin LZSS algorithm indexes of 4 byte sequences
are restricted to 255 and 5 byte to 65535. It allowed encoding of only one least
significant byte in the first case and two least significant bytes in the second. If
given match does not satisfy a proper criterion (e.g. it is four byte long and has
an index greater than 255) it isignored by the algorithm.

1.9. Contexts of order 1

The already described operations on sequences considered only sequences
longer than two bytes. In practice, some relations between the pairs of bytes can
also be used for a better compression. Following that observation, a mechanism
of contexts of order one, similar to that used in PPM [6], was implemented in
LZPP. Also here the context of order one of given symbol (byte) means one byte
that precedes the considered one.

This optimisation was conducted in the following way. An array indexed by
al contexts was created. It contains objects storing information about the
digtributions of symbols within the confines of the given context. A new value of
flags (3) was added. It denotes encoding of an element in the context of order
one. Encoding of one symbol used so far, when no matching substring was
found, was preceded by verification of the possibility of encoding given symbol
in a context of order 1. This verification is based on checking if the analysed
symbol has a nonzero probability of appearing in that context. If it is so, flag 3is
sent and the current symbol is encoded using the distribution specific for the
given context. Otherwise, LZPP encodes the current symbol in the standard way,
sending flag 0 and the symbol itself. Finally, the probability of a given symbol in
the current context of order 1 is updated.

2. Detailed description of LZPP algorithm
2.1. Basic notions and constants
“Escape” flag
A few arithmetic coders used in LZPP were enriched with the mechanism of
the “escape” flag. The input alphabet is extended with an additional symbol
“escape”’. This symbol is used for coding symbols whose main frequency
counters are equal to zero. Note that the value of the “escape” flag's counter is
aways greater than zero. When processing a symbol with the frequency counter
equal to zero, the “escape’ flag is coded first. After that, the symbol itsdf is
coded, also by the arithmetic coder. Before the last coding all the symbols with
frequency counters different from zero are removed from the alphabet (the
mechanism of exclusions). Only the symbols with main frequency counters

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 18/01/2026 03:48:43

equal to zero are considered. Therefore an additional counter is held for each
symbol. It stores the number of codings of a given symbol by the , escape” flag,
increased by one. Only last 4096 symbols encoded by the ,,escape’ flag are used
to determine the value of this counter.

Settings of codersresponsiblefor coding of indexes, lengths, flags,
symbols and three-byte sequences

In the LZPP method, individual bytes of indexes (2 complete and 5 bits of the
third — 21 bits atogether) are coded independently. Because of that, also the
tables of the symbol counters for individua bytes of indexes are stored
independently. Each of these counters is computed according to the formula
Cow:=2+ Fy, where R, is the number of occurrences of agiven value win the
corresponding byte b of index among last 4096 indexes encoded. Escape flags
are not used for index encoding.

Lengths of substrings are coded as two independent bytes too. Counters for
al values of both bytes depend only on the last 4096 lengths encoded. Each
counter is equal to the number of the occurrences of individual value of a given
byte. Escape flags are used for the length encoding.

In LZPP, four different flags are used. The alphabet of the coder used for flag
coding consists of four symbols — numbers O, 1, 2 and 3. The value of each of
these symbols can be expressed as C; := 1 + F, where F; is the number of the
occurrences of a given flag f among the 256 last encoded flags. Escape flags are
not used for the flag encoding.

The symbol coding in a context of order O is implemented by the coder,
which takes into account only the 1024 last encoded symbols in that context to
determine values of counters. Each of the symbol frequency countersis equal to
the number of occurrences of the adequate symbol increased by one.

While coding symbols in a context of order 1, only the last 256 symbols
appearing in a given context, encoded in that context or in the context of order O,
are taken into account. Here each frequency counter is equal to the number of
occurrences of the adequate symbol in a given context. In both cases, escape
flags are not used for encoding.

In coding of three-byte sequences, the values of frequency counters of
individual sequences, necessary for arithmetic coding, are computed from the
last HT_LEN = 512 compressed data bytes.

Buffers and hash table

In the LZPP method, similarly to LZSS, one buffer consisting of a dictionary
buffer and a coding buffer is used. The size of the dictionary buffer is set to
BUFF_SI ZE = 2MB, while the size of coding buffer is arbitrary, but not less

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 18/01/2026 03:48:43

than 65539 bytes (that value is equal to the maximal length of a substring of
MAX_DL = 65539 bytes).

In the compression algorithm, for finding substrings of four (= M N_DL)
and more bytes, a hash table of 65536 elements is used. This table consists of
unsorted lists of absolute indexes of sequences.

The function

ferea2(X0,X1,X2,X3) = CRC32(Xo,X1,X2,X3) Mmod 65536

is used for computing the hash of a substring. Here Xo, X1, Xo, X3 are the first four
bytes of a given substring. Usually, each four-byte substring from the dictionary
buffer hasits entry in the hash table. The only exception is the case when one of
the index lists is overflowed. This happens when it dready contains
MAX | TEMS = 2048 elements. In this case, before adding a new index to such a
list, the oldest index is removed.

2.2. Algorithm outline

Because of the volume limitations, we present here only the compression
agorithm of LZPP.

1. Initidization:

1.1 Setting of the main constantss M N DL =4, MAX DL = 65539,
BUFF_SI ZE = 2%, MAX_| TEMS = 2048, HT_LEN= 512,

1.2. Initialization of all necessary coders, with details presented in the previ-
ous section,

1.3. Initialization of other necessary variables and structures, including the
hash table and the variable w describing the position of the byte being
compressed rel ative to the beginning of data,

2. Whilethere are bytesin the coding buffer:

21.Find the longest substring having length in the range [M N_DL;
MAX_DL] and equal to substring at the beginning of the coding buffer —
likein the standard LZSS.

2.1.1. If such substring is found, denote by maxn its absolute position in
the input data, by max!| its length, and by dn the distance from
the beginning of the substring to the last byte in the dictionary
buffer — it will be the value coded as the substring index. If
(maxl =4 and dn <256) or (maxl =5 and dn <65536) or
max| > 6, then LZPP starts to encode the substring:
2.1.1.1. Theflag 1 iscoded,
2.1.1.2. Both bytes of length of the substring decreased by

M N_DL, that is the number max| —M N_DL (whichisin
range 0-65535), are coded. The mechanism of exclusions

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 18/01/2026 03:48:43

of impossible symbols is used, when there is less than

64K B of dataleft,

2.1.1.3. If (maxl >5 and w> 256), then the byte containing bits
8-15 of dn is coded. If w< 65536 then during the process
of encoding the impossible values are excluded (eg. when
w = 40000, then encoded byte cannot have any of the val-
ues 157-255).

21.1.4. If (maxl >6 and w> 65536), then the most significant
byte of dn is coded. The mechanism of exclusions of im-
possible valuesis also used,

2.1.15. Next, the least significant byte of dn is encoded. The
mechanism of exclusions of impossible values is used.
However, now it consists of two steps:

() LZPP excludes al values, which together with the rest
of bytes in dn would give the index of the substring
beginning from the one of the symbols excluded in this
moment (see criteria of symbol exclusions discussed in
paragraphs 1.6 and 1.7),

(b)If w< 256, then LZPP excludes additionaly all the
values from the range [w; 255],

2.1.1.6. All necessary variables and structures are updated, includ-
ing the hash table, buffer, variable w and three-byte se-
quences coder,

2.1.1.7. Go back to point 2.

2.1.2. If there is no appropriate substring, it is checked if the first three
bytes of coding buffer can be encoded as a three-byte sequence
(that is, if the counter of that sequenceis greater than zero):
2.1.2.1. If itis o, than:

(a) Theflag 2 is encoded,

(b)Given substring is encoded by the three-byte coder
with exclusions of sequences beginning with one of the
excluded at the moment symbols,

(c) All necessary variables and structures are updated, like
inpoint 2.1.1.6.

(d) Go back to paint 2.

2.1.2.2. Else, LZPP encodes a single symbal. First, if w> 0, it is
checked whether the given symbol has nonzero value of
the counter in the current context of order 1:

(@) If it is s, then:

(i) Theflag 3isencoded,

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 18/01/2026 03:48:43

(if) After removing all currently excluded symbols
from the alphabet, the given symbol is encoded by
the arithmetic coder using symbol counters appro-
priate for a given context,

(iii) All necessary variables and structures are updated,
likein2.1.1.6.

(iv) Go back to point 2.

(b) Else:

(i) Theflag Oisencoded,

(ii) After removing from the alphabet all currently ex-
cluded symbols and these symbols, whose counters
are nonzero in the current context of order 1, the
given symbol is encoded by the arithmetic coder
using symbol counters appropriate for the context
of order O,

(iii)The counter of the given symbol in the current
context of order 1 is updated, as well as all neces-
sary variables and structures, likein 2.1.1.6.

(iv) Go back to point 2.

3. Algorithm LZPP finishes.

3. Results and conclusions

One can implement many other optimisations different from those described
in this paper, but the results achieved by LZPP are quite satisfactory.

Table 1 shows, that LZPP achieves good results on Calgary Corpus [7]. The
compression ratio of LZPP is better by about 30% than that of LZSS and by
about 10% than WinZip's (and other similar, like pkzip, zlib, etc.). However, it
is worse by about 1,5%-2% compared with the commercia WinRar.
Unfortunately, too big amount of remaining redundancy places al LZ family
methods far behind the algorithms based on PPMZ [8], including RK.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

(Cdgary Corpus).

8%26'T |02€28. |28.6'T |8201708 |820€'2 |06SE6 |S859°2C |€2S080TJT8SE 2 |0017856 |8S60°E |0528S2TE6VTS2E 1dx
T6E8'T |097.1¥. |T626'T |OO8.L |92HE'Z |[92T2S6 |9S09°C [TTO6SOT|LELEC |€242796 |V LET'E |8V TSLZT|E6YTSZE wns
6GV2'T |26SPT |ovTe'T |S2ervT |262S'T|9T6.T]JS809°T |8€88T S6ES'T |0E08T |2€20'2|.82VC S69€6 suenq
96617'T |9526 68V17'T |68 STi.'T |6%720T |¥808'T |29TTT 06S/.'T |2S80T |6v0c€‘ec|L22vT 6.E6V dboud
8287'T |082ET |TLvP'T|0962T |r/SL'T|6ELST |2208‘T |OVT9T 98//'T |626ST |€T182'C |TEVOC OV9T.L 1601d
2e0e'C |vovTT |29S2'2|v.TTT |861¥9°'C|02TET |Jrel9'C|LE2ET TZ179'C |280ET JTSOE'E |S9E9T TT96¢€ oboud
/8/.%'0 |8020€ |92¢S.'0|8.28% |S¥9.'0|9v06¢ [J2918°0|65€2S ¥182'0 |92T0S |vvev'T |T8ET6 9TCETS oid
2.¥e'C |08TTT |T¥62'C|2260T |S2v/.'2 [€90ET |889.°C [88TET S82/.'C |9662T |89€EV'E |0LEQT S0T8E gJaded
2866°'C |08 8T06'C |9€EY v/.TE'E|LS6V TI9ZE'€ |0L6V 0Z62'E |6T61 £0SZ'v7 |TSE9 S6TT GgJaded
0£88'C 8811 £06.'C |vE9V ZTTE'E |667S Z.TE'E [|60SS 6.12'E |V6ES 09€2'V |SE0L 98CET 1aded
€LTS'C |OvIPT |SE9V'Z |L2EvT |reS0'E |2S.2.T |SEOT'E |61708T 9TTO'E |STS.LT |vP9Ll'E|€68TC 92S9v% ciaded
6902'2 |9.922 |9v8T'Z |Lvvee |ov.l'c|20S82 |6188‘C |2ir962 G/9/'2 |9ev82 |zeLE'E |659VE 66128 ziaded
1292'2 |9€0ST JozTe'z |669¥T |66T.L'C|7208T [,98.2°C|8TS8T /2T/.'2 |9208T [vrSee‘e|voTee TOTES Tioded
€000'2 |2T1219 |2ive'z|vrT69 |sole'c|seETEL |S5229°C |#90T8 €G5¥°'2 |06252. |9062'E |T2STOT 1892 zlgo
Y9TS'E |2S51V6 /999°'€ |9586 YTS9'E |ST86 /L0EB'E [2620T €0v.'E€ |YSO0T |STS.L'V|22/2T 0STZ tlgo
2GEZ'Z |[Y9ESOT |TS02Z 2 |SY6E0T |61¥99°C [6TOSZT |8290°E |LLEvPT J0699°C |TT8SCT JO9ES'E |€8999T [60TLLE SMau
€TCL'E |2E9.V |¥8.S'V |€098S 908y [22ST9 |TEVE'S|26€89 €628y |ST8TO |reECT’Z |08TT6 JOO¥2OT 096
9/28'T |8V¥S6ET |8218'T [80L0VT |L¥SE'C |TO86LT |9669°C |[FET902 |S221'2 |95€S8T |8070‘E [68T2EC |9S80T9 2)00q
G8ST'C |02ir,02 |TS6T 2 |2v60Te |£298'2 |850S.¢2 |[v6v2‘E |,G22TE |TE68'C |8T08.2 Jry0.L°E |[086SSE |T2/.892 TX00q
L9v/'T |262ve |6LTL'T |268€2 |SSSE‘C 6522 |8.0S°C |8.8VE €81€'C |6G92E |L1S8'2 |0996€ TOCTTT qiq
odq S31AQ odq S31AQ odq salAq odq S91AqQ odq S91AqQ odq S91AqQ azIs ol
70'T Ad 80 ¢ZINdd 6'C dVHUIM 0’8 dIZUIMN ddZ’1 SSZ71 reuibuo .

Table 1. Comparison of results achieved by LZPP a gorithm with results of other algorithms

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 18/01/2026 03:48:43

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

algorithms (Canterbury Corpus)

T9/0'T |00T8.E |€2.S'T [E¥2SS |€889'T [68TE6S |6820'2 | L270E |2G09'T |TSTY9S |20 '2 |S2T0S6 |78.0T82 wns
9€/0°€ |[¥29T 20G8'¢ [90ST |8862'E|ev.T cviz'e|oelT |e962'E [evLT cre0'v|oete |Leey T'sbiex
T99¢'C|2€80T |28€5'¢[SETCT |OoStvv'c|/89TT |¢199'C|0S/2T |S62S'C|T60CT |Sv8Y'€ |9G99T [Ove8E wns
98.¥'0|v0L,0€ |22¢S2°0(/828y |S¥9.°'0[9v06v |29T8'0(65€2S |r18.°0|9¢T0S |€8V¥'T [2T6C6 |9TCETS snd
8€/T'C|2E60ET |296T 2 [1822€ET |9106°¢C [2S6V LT |61722'E [9V26T |66T6'C |285LT |LVEL'E |8V6¥2C |T98T8Y X)'ZTugedid
069/.'T [89€v6 |€.6.'T|G5/856 [6E£9E'C[8609¢T |690.°C |00v¥¥T |6TOV'C |62T82T TS0 [0VY29T |¥S.L9¢2h X1'0T199|
658T'0 |[vz6ce |0€2€'T |[¥2292T |90€6'0(5826TT [2629'T [€02602 J0€29'0 |[2998 [859+'Z |68ELTE |¥2620T || SIX'Apsuusy
¥82G'¢ (9211 920¢'z 1201 G6G9°C [/€2T ¥¥19'2 |9TCT €00.2 (9521 €6G¢'€[915T 1¢.€ ds| rewweld
9826'T [8892 €968'T [e¥9z 12122 |¥80¢€ 10€2'¢ [60TE geve'e|sere GG/9'¢|62.€ 0STTT J'Sp|aly
9G9T'2 (0999 16GT'C [2¥99 16952 [1062 1985'¢ [s56. T0ES'2 [182L 0TET'E|6296 €091¢ lwiy-do
9/1€'¢|¥929¢ |960¢c'z [6€T9E |/¥86°2 [20.9v |98TT'E (862,87 |orr96'z |88€9r [8£99°C|62E€/S |6.TS2T X1yinoAse
9/10'¢ 8268 |€850'2 [1ET6E |2089°C (5605 |6818°2 [T9T¥S |re89'2 |STOTS [e2zez's |/vvT9 |6802ST X¥'6¢adle
odq | s@1Aq | odqg | seiAg | odq | s@1hq | odqg | se1hq | odq | seihAq | odqg | se14q aziIs
70T i 80¢ZNdd | 6¢ avadum | 08 dizum ddz1 SS71 [eu1bLIO olid

The tests conducted on Canterbury Corpus [9] give the results different from
Table 2. Comparison of the results achieved by the LZPP algorithm with the results of other

the above. They are shown in table 2.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 18/01/2026 03:48:43

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 18/01/2026 03:48:43

On Canterbury Corpus the LZPP agorithm is better by 68% than the smple
LZSS, about 30% better than WinZip and 5% better than WinRar. Thanks to
good compression of the file ‘kennedy.xls LZPP achieved the result only
dightly worse than PPMZ2. However, due to a very clever combination of
PPMZ and LZ the RK algorithm is practicaly beyond any of the remaining

methods.
References
[1] Storer JA., Szymanski T.G., Data compression via textual substitution, Journal of the ACM,
29 (1982) 928.

[2] ziv J, Lempel A., A Universal Algorithm for Sequential Data Compression, IEEE
Transactions on Information Theory, 23 (1977) 337.

[3] Ziv J., Lempel A., Compression of Individual Sequences via Variable-Rate Coding, |IEEE
Transactions on Information Theory, 24 (1978) 530.

[4] Shannon C.E., A mathematical theory of communication. Bell System Technical Journal, 27
(1948) 379 and 623.

[5] CamposA.S.E., Range coder, http://www.arturocampos.com, Barcelona, (1999).

[6] Cleary J.G., Witten |.H., Data compression using adaptive coding and partial string
matching, |EEE Transactions on Communications, 32 (1984) 396.

[7] Bel T.C., Cleary J.G., Witten |.H., Text Compression, Prentice Hall, Englewood Cliffs, NJ,
(1990).

[8] Bloom Ch., Solving the Problems of Context Modelling,
http://www.cbloom.com/papers/ppmz.zip, (1998).

[9] Arnold R., Bell T.C., A corpus for the evaluation of lossless compression algorithms, IEEE
Data Compression Conference (DCC), (1997).

[10] Pylak P., Metody optymalizacji algorytmow bezstratnej kompresji danych, Praca magisterska,
Katolicki Uniwersytet Lubelski, Lublin (2002), in Polish.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.tcpdf.org

