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Abstract 
A single server with one customer class, serviced by the FIFO protocol, is considered and the 

instantaneous time in the queue profile of the customers is investigated. We provide the second 
order approximation for the random measure describing the customer time in the queue distribu-
tion under heavy traffic conditions.  
 

1. Introduction 
The real-time queueing theory is devoted to the study of systems that service 

customers with individual timing requirements. Such systems arise naturally in 
manufacturing in which orders have due dates, or in real-time computer and 
communication networks. To study queueing systems in which the customers 
have deadlines, we must attach a lead-time variable to each customer in the 
system. It is convenient to model the vector of customer lead times at any time t 
as a counting measure on R with a unit atom at the current lead-time of each 

customer and total mass equal to to the number of customers in the system at 
that time. Doytchinov, Lehoczky and Shreve [1] investigated the single queue 
case under the Earliest-Deadline-First (EDF) queue discipline. They proved that 
under heavy traffic conditions, a suitably scaled random lead time measure 
converges to a non-random function of the limit of the scaled workload process. 
Kruk, Lehoczky, Shreve and Yeung [2] gave the corresponding results for the 
First-In-First-Out (FIFO) queue discipline and generalized both the EDF and the 
FIFO results to the case of a single station with K input streams, queued in 
separate buffers and served by the head-of the-line processor sharing (HOL-PS) 
policy across streams. Yeung and Lehoczky [3] generalized the single server, 
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single customer class analysis for EDF and FIFO to multi-class feedforward 
networks. Recently, Kruk, Lehoczky, Shreve and Yeung [4] extended the results 
of [2] to multi-class acyclic EDF networks. Monte-Carlo simulations show that 
the approximations obtained in [1-4] are surprisingly accurate. 

It is natural to ask about the rate of convergence in the above-mentioned 
results. One way to address this question is to find the second order 
approximation for the (scaled) random lead time measure, i.e., to give a 
Functional Central Limit Theorem (FCLT) for the (suitably magnified) 
difference between the empirical and the theoretical instantaneous lead time 
profiles. This corresponds, roughly speaking, to the identification of the second 
term in the Taylor expansion for the random lead time measure. This paper 
presents the first step in this direction. We consider a single server with one 
customer class, serviced by the FIFO protocol and investigate the instantaneous 
time in the queue profile of the customers. This can be thought of as a special 
case of the lead time profile for the EDF or FIFO service discipline, with all the 
customer deadlines (initial lead times) equal to zero. Our main result provides 
the second order approximation for the random measure describing the customer 
time in queue distribution.  

 
2. The model, assumptions and notation 

We have a sequence of single-station queueing systems, each serving one 
class of customers. The queueing systems are indexed by the superscript (n). 
Each queue is empty at time zero. The inter-arrival times for the customer arrival 

process are ( ){ }
1

n
j j

u
∞

=
, a sequence of strictly positive, independent, identically 

distributed random variables with mean ( )1 nλ  and standard deviation ( )nα . The 

service times are ( ){ }
1

n
j j

υ
∞

=
, another sequence of positive, independent, identically 

distributed random variables with mean ( )1 nµ  and standard deviation ( )nβ . We 

assume that the sequences ( ){ }
1

n
j j

u
∞

=
 and ( ){ }

1

n
j j

υ
∞

=
 are independent. We define the 

customer arrival times  

 ( )
0 0nS @ ,    ( ) ( )

1

k
n n

k i
i

S u
=

∑@ ,   1k ≥ , (2.1) 

the customer arrival process 
 ( ) ( ) ( ){ }max ;n n

kA t k S t≤@ ,   0t ≥ , (2.2) 

and the work arrival process 

 ( ) ( ) ( )

1

t
n n

j
j

V t υ
  

=
∑@ ,   0t ≥ . (2.3) 
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The work which has arrived to the queue by time t is then ( ) ( ) ( )( )n nV A t . We 

assume that customers are served using the FIFO queue discipline, i.e., the 
server always services the customer with the longest time in queue. The netput 
process  ( ) ( ) ( ) ( ) ( )( )n n nN t V A t t−@  measures the amount of work in queue at 

time t provided that the server is never idle up to time t. The cumulative idleness 

process ( ) ( ) ( ) ( )0minn n
s tI t N s≤ ≤−@  gives the amount of time the server is idle, 

and adding this to the netput process, we obtain the workload process 
( ) ( ) ( ) ( ) ( ) ( )n n nW t N t I t+@ , which records the amount of work in the queue, 

taking server idleness into account. Let us also define the queue length processes 
( ) ( )nQ t , as the number of customers in the queue at time t. All these processes 

are right-continuous with left-hand limits (RCLL). We assume that the following 
limits exist and are all positive: 
 ( )lim n

n
λ λ

→∞
= ,   ( )lim n

n
µ λ

→∞
= ,   ( )lim n

n
α α

→∞
= ,   ( )lim n

n
β β

→∞
= . (2.4) 

Define the traffic intensity ( ) ( ) ( )n n nρ λ µ@ . We make the heavy traffic 
assumption 
 ( )( )lim 1 n

n
n ρ γ

→∞
− =  (2.5) 

for some γ ∈¡ . We also impose the usual Lindeberg condition on the inter-
arrival and service times: 

 

( ) ( )( )( ) ( ) ( )( )

( ) ( )( )( ) ( ) ( )( )

1

1

21

21

lim

lim 0   0.

n n
j

n n
j

n n
jn u c n

n n
jn c n

u

c

λ

υ µ

λ

υ µ

−

−

−

  →∞ − > 
  

−

  →∞ − > 
  

 
 −
 
 

 
 = − = ∀ >
 
 

E I

E I

 (2.6) 

We introduce the heavy traffic scaling for the idleness, workload and queue 
length processes 

 
( ) ( ) ( ) ( )1n nI t I nt

n
=$ ,   µ

( )
( ) ( ) ( )1n nW t W nt

n
= ,   µ ( )

( ) ( ) ( )1n nQ t Q nt
n

= ,  

and the centered heavy traffic scaling for the arrival processes 

 µ ( )
( ) ( ) ( ) ( )1n n nA t A nt nt

n
λ = −  ,   µ ( )

( ) ( )
( )

1

1 1nt
n n

j n
j

V t
n

υ
µ

  

=

 
= − 

 
∑ .  

We define also 

 µ ( )
( ) ( ) ( ) ( )( )1n n nN t V A nt nt

n
 = −  . 
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Note that µ ( )
( ) µ ( )

( )
( )

( )
n n n

W t N t I t= + $ . Theorem 3.1 in [5] and Theorem 14.6 in 
[6] imply that 

 µ ( ) *n
A A⇒ , (2.7) 

where *A  is a Brownian motion with no drift and variance 2 3α λ  per unit time. It 
is also a standard result [7] that  

 µ ( ) ( ) µ ( ) ( )* * *, , , ,
n nn

N I W N I W  ⇒ 
 

$ , (2.8) 

where *N  is a Brownian motion with the variance ( )2 2α β λ+  per unit time 

and drift γ− , ( ) ( )* *
0min s tI t N s≤ ≤−@ , and ( ) ( ) ( )* * *W t N t I t= + . In other 

words, *W  is a reflected Brownian motion with drift, and *I  causes the 
reflection. Here and elsewhere, the symbol ⇒  denotes weak convergence of 
measures on the space [ )0,SD ∞  (or ( ],0SD −∞ ) of RCLL functions from [ )0,∞  
( ( ],0−∞ ) to a Polish space S. The topology of this space is a generalization of 
the topology introduced by Skorohod for [ ]0,1SD . See [6] for details. We 
usually take S = ¡  (as in (2.7)) or d¡ , with appropriate dimension d (e.g., in 
(2.8), 3d = ) for vector-valued functions, unless explicitly stated otherwise. 

We shall now define a collection of measure-valued processes which will be 
useful in the analysis of the instantaneous lead time profile of the customers. We 
shall follow the convention from [1-4] and consider the instantaneous lead time 
profile of the customers, where (in the FIFO case) the lead time is the negative 
of the time spent in queue, i.e.,  
 lead time  arrival time current time= − . 
Queue length measure:  

 ( ) ( )( ) Number of customers in the queue at time 
having lead times at time  in 

n t
t C

t C
 
 ⊂ 

@
¡

Q .  

Workload measure:  

 ( ) ( )( ) Work in the queue at time  associated with customers
in this queue having lead times at time  in 

n t
t C

t C
 
 ⊂ 

@
¡

W .  

Customer arrival measure:  

 ( ) ( )( ) Number of all arrivals by time 
having lead times at time  in 

n t
t C

t C
 
 ⊂ 

@
¡

A .  

Workload arrival measure:  

 ( ) ( )( ) Work associated with all arrivals by time 
having lead times at time  in 

n t
t C

t C
 
 ⊂ 

@
¡

V .  

We define the frontier  
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 ( ) ( )
( ) ( )

( )

The negative of the time in queue of the customer

currently in service or  if the queue is emptyn

n
n

A t

F t S t
  
 −  

@ . 

For the processes just defined, we use the following heavy traffic scalings: 

 µ ( ) ( )( ) ( ) ( )( )1n nt C nt nC
n

@Q Q ,   ¶ ( )
( )( ) ( ) ( )( )1n nt C nt nC

n
@W W ,  

 µ ( )
( )( ) ( ) ( )( )1n nt C nt nC

n
@A A ,   µ ( )

( )( ) ( ) ( )( )1n nt C nt nC
n

@V V ,  

 µ ( )
( ) ( ) ( )1n nF t F nt

n
@ .  

 
3. First order analysis 

We set ( ) ( )H y y +
= − . The function H is a 1 : 1 mapping of ( ],0−∞  onto 

[ )0,∞  and ( )1H y y− = −  on [ )0,∞ . We define the limiting scaled frontier 
process  
 ( ) ( )( ) ( )* 1 *F t H W t W t− = −@ ,   0t ≥ , (3.1) 

where *W  is as in (2.8). Denote by M the set of all finite, nonnegative measures 

on B(R), the Borel subsets of R. Under the weak topology, M is a separable, 

metrizable topological space. The following results are contained in Proposition 
3.10 and Theorem 3.1 of [1] (or Theorem 6.1 of [5]).  

Proposition 3.1. We have µ ( ) *n
F F⇒  as n → ∞ . 

Theorem 3.2. Let ¶ *
W  and µ *

Q  be the measure-valued processes defined by 

 ¶ ( )( ) [ ) ( )( )( ) ) ( )( )*

* *
0,,

1 ,0
C F t

t C y dy m C F t∞∩ ∞

 − = ∩  ∫@W I , (3.2) 

for all Borel sets C ⊂ ¡ , where m denotes Lebesgue measure, and 
µ ( ) ¶ ( )

**
t tλ@Q W . The processes ¶ ( )n

W  and µ ( )n
Q  converge weakly in 

[ )( )0, ,D ∞ M  to ¶ ( )n
W  and µ ( )n

Q , respectively. 
The aim of this paper is to investigate the rate of convergence in Theorem 3.2 by 
finding the corresponding second order approximations. 
 

4. Second order approximations 
In all what follows, we fix 0t > . The main result of this paper is the 

following. 
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Theorem 4.1 Let B be a Brownian motion with the variance ( )2 2λ α β+  per 

unit time and no drift, independent of ( )*F t . Then, as n → ∞ , 

 

¶ ( )
( )( ) µ ( )

( )

( )( ) ( )( ) ( )( ) ( )*

1
14

* *

,

, ,   0

,   0 .

n n

F t

n t y H y H W t y

B y F t B F t y y

−

−∞

    ∞ − ∨ ≤        
 ⇒ ∨ − ≤ 
 

W

I
 (4.1) 

Moreover, if ( )( )
1
4lim n

n n λ λ ν→∞ − =  for some ν ∈¡ , then 

 

µ ( )
( )( ) µ ( )

( )

° ( )( ) ( )( ) ( )( ) ( )*

1
14

* *

,

, ,   0

,   0 ,

nn

F t

n t y H y H W t y

B y F t B F t y y

λ

λ

−

−∞

    ∞ − ∨ ≤        
 ⇒ ∨ − ≤ 
 

Q

I
 (4.2) 

where °B  is another Brownian motion, independent of ( )*F t , with the variance 
2 3α λ  per unit time and drift ν , and such that the correlation between B and °B  

equals 
2 2

α

α β+
. 

The convergence in both (4.1) and (4.2) takes place in ( ],0D −∞ . 
Remark 4.2 By (2.8), (3.1) and Theorem 3.2, for each 0y ≤ , 

 

¶ ( )
( )( ) ¶ ( )( ) ( )( ) ( )( )( )

µ ( )
( )

* * 1 *

1

, ,

,

n

n

t y t y H y F t H y H W t

H y H W t

−

−

∞ ⇒ ∞ = ∨ = ∨

  ≈ ∨     

W W
  

and, similarly, µ ( ) ( )( ) µ ( )
( )1,

nn
t y H y H W tλ −  ∞ ≈ ∨     

Q , i.e., the empirical 

measure ¶ ( )
( )

n
tW  ( µ ( )

( )
n

tQ ) of any half-line ( ),y ∞  can be estimated by plugging 

the rescaled workload ¶ ( )
( )

n
tW , instead of the limiting workload µ ( )

*
W t , into the 

theoretical profile ( )( )( )1 *H y H W t−∨  ( ( )( )( )1 *H y H W tλ −∨ ). Theorem 4.1 

characterizes the accuracy of these approximations. 
We shall prove only (4.1) (the proof of (4.2) is similar). To this end, we need 
two auxilliary results. For all 0y ≤ , we have 

 µ ( )
( )( ) ( )

( ){ }1

1, n
j

n n
j nt ny S ntj

t y
n

υ
∞

+ < ≤
=

∞ = ∑V I .  

Let us define the process  
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 µ ( )
( )( ) µ ( )

( )( ) ( ) ( )
1
4, ,

n n
J t y n t y H y nt H y ∞ ∞ + + −  

@ V ,   0y ≤ . (4.3) 

Proposition 4.3 We have, as n → ∞ , 
µ ( )

( )( ) µ ( )
( ) µ ( )

( ) ( )( ) ( ) ( )( )* *, , 0 , , , 0 , ,
n n n

J t y y W t F t B y y W t F t  ∞ ≤ ⇒ ≤    
, (4.4) 

where B is a Brownian motion with no drift and variance ( )2 2λ α β+  per unit 

time, independent of ( )*F t  and ( )*W t . 
PROOF: By ordinary and renewal FCLTs for triangular arrays (see, e.g., [5, 6, 
8], we have, with m n= , 

 

µ ( )
( )( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( )
{ } { }( ) ( )

( ) ( )

( )

2
2

2

2 2
2

2

1
4 1

2

0 0

1

1,

1

,

n

n

m

m

A nt
n n

k

k A nt ny

A m t
m

k m t my m t my

k A m t my

J t y nH y nt nH y
n

m y m t
m

B y

υ

υ

+

+

 = + + 
 

+ ≥ + <
 

= + + 
 

 
 ∞ = + + − 
  

 
 

= − − 
 
  

⇒

∑

∑ I I  (4.5) 

where B is a Brownian motion with no drift and variance ( )2 2λ α β+  per unit 
time. 
Define, for 0s ≥ , 

( ) ( ) ( ) ( )( ] ( ) ( )[ ) ( ) ( )( )
µ ( )

( ) ) µ ( )
( )

, , ,

           , ,

n n n n

n n

K s nt nt s nt nt nt nt s

sn t nt n t nt
n

−∞ − + = − ∞ − − + ∞

 = − ∞ − − + ∞   

@ V V V

V V
 (4.6) 

In other words, for ( ) ( )0 ,  ns nt K s≤ ≤  is the work arrived to the server in the 
time interval [ ]0, s . Let 

 ( ) ( ) ( ) ( )n nL s K s s−@ ,   ( ) ( ) ( ) ( )
0
minn n

u s
M s L u

≤ ≤
@ . (4.7) 

By (4.6) and (4.7), we have 

 

( ) ( ) µ ( )
( ) ) µ ( )

( )

µ ( )
( ) ) µ ( )

( )( )

0

- n 0

min , ,

                = min , , .

n nn

u nt

n n

t

uM nt n t nt t nt
n

n t nt t nt
η

η η

≤ ≤

≤ ≤

  = − ∞ − − + ∞     
 − ∞ − ∞ − −  

V V

V V

 (4.8) 
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It is easy to see (compare the definitions of the netput, cumulative idleness and 
workload processes), that for 0 s nt≤ ≤  we have ( ) ( ) ( ) ( ) ( ) ( )n n nW s L s M s= − . In 

particular, by (4.6)-(4.8) and the fact that µ ( )
( )( )0, 0

n
t ∞ =V , we have 

 

µ ( )
( ) ( ) ( ) ( ) ( )( ) µ ( )

( ) )
µ ( )

( ) ) µ ( )
( )( )

µ ( )
( )( )

0

0

1 ,

            min , ,

            max , .

n nn n

n n

nt

n

nt

W t L nt M nt t nt nt
n

t nt t nt

t

η

η

η η

η η

− ≤ ≤

− ≤ ≤

= − = − ∞ −

 − − ∞ − ∞ − −  
 = ∞ +  

V

V V

V

 (4.9) 

(2.5) yields ( ) 11n o
n n

γ
ρ

 
= − +  

 
. Using this fact, together with (4.9), after 

some algebraic manipulations, we get, for every fixed 0 0y < , 

µ ( )
( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )( )

( ) ( )

( )

( ) ( ) ( )
( ) ( )( )

( ) ( ) ( ) ( )( )0

0
1

0 1
1 1

1

00 1
1 1

1 1max

1       max 1

1       max

n

n

n

n

n n

n

A nt
n n n

jnt
j A nt n

A nt
n n

ju
j A nt u

A nt n y A nt u

n n
ju

j A nt u

W t o
n n

ntu tu o
n

n y nyu
n

η
η

υ ρ η η

υ ρ γ

υ ρ

+

− ≤ ≤
= + +

≤ ≤
= − +

 + ∨ − 
 

≤ ≤
= − +

   = + +  
   

    = − − + 
    

 
= − +


∑

∑

∑

( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( )

( )

( ) ( ) ( ) ( ){ } ( )

0

0

1 1

0 1

1       1

       max 1 ,

n

n n

A nt
n n

j

j A nt ny A nt u

n n

u

n y ntu tu o
n

X u Y u tu o

υ ρ γ

γ

+ = + ∨ − + 
 

≤ ≤


 
 
 

 
 + − ∧ − + 
   

= + − +

∑

 (4.10) 

where ( ) ( )nX u  ( ( ) ( )nY u ) is the first (second) term inside the curled brackets in 
the RHS of the third equation in (4.10). Let us notice that, by the definition of 

( )nX  and the first equality in (4.5), the process ( )nX  is independent on 

( µ ( )
( )( ),

n
J t y ∞ , 0 0y y≤ ≤ ). Moreover, by FCLT, ( ) ( ) ( )nX u X u⇒ , where X is 

a driftless Brownian motion, and ( ) 0nY ⇒  by the Differencing Theorem (see, 

e.g., Theorem A.3 of [1]). Therefore, by (4.10), for every µ ( )
( )0 ,  

n
y W t  is 
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asymptotically independent on ( µ ( )
( )( ),

n
J t y ∞ , 0 0y y≤ ≤ ). This, together with 

(2.8) and (4.5), yields 
µ ( )

( )( ) µ ( )
( ) ( )( ) ( )( )*

0 0, , 0 , , 0 ,
n n

J t y y y W t B y y y W t  ∞ ≤ ≤ ⇒ ≤ ≤    
, (4.11) 

where B and ( )*W t  are independent. By the definition of the topology on 

( ],0D −∞ , (4.11) can be upgraded to 0y ≤ . By (3.1) and Proposition 3.1, 

 µ ( )
( ) ( ) ( ) ( ) ( ) µ ( )

( )* 1 * 11 1 1
n n

F t F t o H W o H W o− −  = + = + = + 
 

, (4.12) 

and, by (3.1) and (the upgraded) (4.11), 

 
µ ( )

( )( ) µ ( )
( ) µ ( )

( )( ) ( ) ( )( )

1

* *

, , 0 , ,

, 0 , ,

n n n
J t y y W t H W

B y y W t F t

−    ∞ ≤        

⇒ ≤
 (4.13) 

where B and ( ( )*W t , ( )*F t ) are independent. Finally, (4.4) follows 
immediately from (4.12) and (4.13).  
 
Lemma 4.4 For every 0 0y < , as n → ∞ , 

 µ ( )
( ){ }

0

1
4

0
sup 0

n P

y y
n t y

≤ ≤
→V . (4.14) 

PROOF: Fix 0 0y < . For every 0 0y y≤ ≤ , we have 

 

µ ( )
( )( ) ( ) ( )

µ ( )
( )[ ) ( ) ( )

µ ( )
( )

1
4

1
4

1
4

,

,

1 1 1 1, ,

n

n

n

n t y H y nt H y

n t y H y nt H y

n t y H y nt H y
n n n n

 ∞ + + −  

 ≤ ∞ + + −  
      ≤ − ∞ + − + − − +      

      

V

V

V

  

so 

 

µ ( )
( ){ } µ ( )

( )

µ ( )
( )( ) ( ) ( )

0

1 1
4 4

0

1 3
4 4

1 1 1sup ,

                     , 0

n n

y y

n

n t y n t y H y nt H y
n n n

n t y H y nt H y n

≤ ≤

−

        ≤ − ∞ + − + − −       
       

 − ∞ + + − + ⇒  

V V

V

 

by (4.3), (4.5), the Differencing Theorem and the Continuous Mapping 
Theorem.   
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PROOF OF (4.1): For any 0y ≤ , the LHS of (4.1) equals 

 

¶ ( )
( )( ) µ ( )

( )

¶ ( )
( )( ) µ ( )

( ) µ ( )
( )

µ ( )
( ) µ ( )

( ) µ ( )
( )

µ ( ) µ ( )
( )

1
14

1
4

1
4

1
14

,

, ,

,

.

n n

n n n

n n n

n n

n t y H y H W t

n t y t y F t

n t y F t H y F t

n H y F H y H W t

−

−

   ∞ − ∨       

  = ∞ − ∨ ∞    

    + ∨ ∞ − ∨        
     + ∨ − ∨          

W

W V

V
 (4.15) 

We shall analyze each term on the RHS of (4.15) separately.  
By the definition of the frontier and the FIFO discipline, none of the 

customers in queue at time t with lead time greater than ( ) ( )nF t  has ever been in 

service by time t. Thus, if µ ( )
( )

n
y F t≥ , then the first term on the RHS of (4.15) is 

zero and, moreover, if µ ( )
( )

n
y F t< , then 

 

¶ ( )
( )( ) µ ( )

( ) µ ( )
( )

¶ ( ) µ ( )
( ) µ ( )

( ) µ ( )
( )

µ ( )
( ) µ ( )

( ){ }

1
4

1
4

1
4

0 , ,

  , ,

  .

n n n

n n n n

n n

n t y t y F t

n F t t F t

n t F t

  ≤ ∞ − ∨ ∞    

    = ∞ − ∞       

≤

W V

W V

V

 (4.16) 

By Proposition 3.1 and Lemma 4.4, we have 

 µ ( )
( ) µ ( )

( ){ } 0
n n

t F t ⇒V , (4.17) 

and thus, by (4.16) and (4.17), 

 ¶ ( )
( )( ) µ ( )

( ) µ ( )
( )

1
4 , , 0

n n n
n t y t y F t  ∞ − ∨ ∞ ⇒    

W V . (4.18) 

Let us notice that, by definition, µ ( )
( ) 0

n
F t nt+ ≥ , so 

µ ( )
( ) 0

n
H y F t nt  ∨ + =    

. Thus, 
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µ ( )
( ) µ ( )

( ) µ ( )
( )

µ ( )
( ) µ ( )

( ) µ ( )
( ) µ ( )

( )

( )( )

1
4

1
4

*

,

,

n n n

n n n n

n t y F t H y F t

n t y F t H y F t nt H y F t

B y F t

    ∨ ∞ − ∨        
         = ∨ ∞ + ∨ + − ∨                  

⇒ ∨

V

V (4.19) 

by Proposition 4.3. Finally, by a similar argument, 

 

µ ( )
( ) µ ( )

( ) ¶ ( ) µ ( )
( ){ }

µ ( )
( ) µ ( )

( ) µ ( )
( ) µ ( )

( )

( )

1
4

1
4

*

,

n n n n

n n n n

n W t F t F t

n t F t H F t nt H F t

B F

 + = 
 

      + ∞ + + −            

⇒

W

V  (4.20) 

by Proposition 4.3, (4.17) and the inequality ¶ ( ) µ ( )
( ){ } µ ( ) µ ( )

( ){ }0
n n n n

F t F t≤ ≤W V . 

Thus, by (2.8), (3.1) and Proposition 3.1, we have 

 

µ ( )
( ) µ ( )

( )

µ ( )
( ) µ ( )

( )

( )( ) ( )( ) ( )*

1
14

1
4

*

,
.

n n

n n

F t

n H y F t H y H W t

n y W t y F t

B F t y

−

−∞

     ∨ − ∨          

    = ∨ − − ∨        
⇒ − I

 (4.21) 

It is easy to see that the convergence in (4.18), (4.19) and (4.21) is, in fact, joint, 
so, by (4.15), (4.1) follows.  
 
Corollary 4.5 As n → ∞ , 

¶ ( )
( )( ) µ ( )

( ) ( )( )( )
1

*4 , ,  0 ,  0
n n

n t y H y F t y B y F t y
   ∞ − ∨ ≤ ⇒ ∨ ≤      

W . (4.22) 

Moreover, if ( )( )
1
4lim n

n n λ λ ν→∞ − =  for some ν ∈¡ , then 

µ ( ) ( )( ) µ ( )
( ) ° ( )( )

1
*4 , ,  0 ,  0

nn
n t y H y F t y B y F yλ

   ∞ − ∨ ≤ ⇒ ∨ ≤      
Q . (4.23) 

The convergence in (4.22)-(4.23) takes place in ( ],0D −∞ . 

(4.22) follows immediately from the fact that 
¶ ( )

( )( ) µ ( )
( )

1
4 ,

n n
n t y H y F t  ∞ − ∨    

W  is the sum of the first two terms on the 

RHS of (4.15), together with (4.18) and (4.19). The proof of (4.23) is similar. 
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