Eccentric distance sum index for some classes of connected graphs
Abstract
Keywords
Full Text:
PDFReferences
Bondy, J. A., Murty, U. S. R., Graph Theory with Application, Macmillan London, and Elsevier, New York, 1976.
Gupta, S., Singh, M., Madan, A. K., Eccentric distance sum: A novel graph invariant for predicting biological and physical properties, J. Math. Anal. Appl. 275 (2002), 386-401.
Hua, H., Zhang, S., Xu, K., Further results on the eccentric distance sum, Discrete App. Math. 160 (2012), 170-180.
Hua, H., Xu, K., Wen, S., A short and unified proof of Yu et al.’s two results on the eccentric distance sum, J. Math. Anal. Appl. 382 (2011), 364-366.
Ilic, A., Yu, G., Feng, L., On the eccentric distance sum of graphs, J. Math. Anal. Appl. 381 (2011), 590-600.
Wiener, H., Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947), 17-20.
Yu, G., Feng, L., Ilic, A., On the eccentric distance sum of trees and unicyclic graphs, J. Math. Anal. Appl. 375 (2011), 99-107.
DOI: http://dx.doi.org/10.17951/a.2017.71.2.25
Date of publication: 2017-12-18 20:31:32
Date of submission: 2017-12-16 22:16:38
Statistics
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Halina Bielak, Katarzyna Broniszewska