Subclasses of typically real functions determined by some modular inequalities

Leopold Koczan, Katarzyna Trąbka-Więcław

Abstract


Let T be the family of all typically real functions, i.e. functions that are analytic in the unit disk Δ:={zC:|z|<1}, normalized by f(0)=f(0)1=0 and such that Im z Im f(z) 0 for zΔ. Moreover, let us denote: T(2):={fT:f(z)=f(z) for zΔ} and TM,g:={fT:fMg in Δ}, where M>1, gTS and S consists of all analytic functions, normalized and univalent in Δ.
We investigate  classes in which the subordination is replaced with the majorization and the function g is typically real but does not necessarily univalent, i.e. classes {fT:fMg in Δ}, where M>1, gT, which we denote by TM,g. Furthermore, we broaden the class TM,g for the case M(0,1) in the following  way:
TM,g={fT:|f(z)|M|g(z)| for zΔ}, gT.

Keywords


Typically real functions; majorization; subordination

Full Text:

PDF

References


Duren, P. L., Univalent Functions, Springer-Verlag, New York, 1983.

Goodman, A. W., Univalent Functions, Mariner Publ. Co., Tampa, 1983.

Koczan, L., On classes generated by bounded functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 52 (2) (1998), 95-101.

Koczan, L., Szapiel, W., Extremal problems in some classes of measures (IV). Typically real functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 43 (1989), 55-68.

Koczan, L., Zaprawa, P., On typically real functions with n-fold symmetry, Ann. Univ. Mariae Curie-Skłodowska Sect. A 52 (2) (1998), 103-112.

Rogosinski, W. W., Uber positive harmonische Entwicklugen und tipisch-reelle Potenzreichen, Math. Z. 35 (1932), 93–121 (German).




DOI: http://dx.doi.org/10.2478/v10062-010-0006-x
Date of publication: 2016-07-29 22:06:17
Date of submission: 2016-07-29 21:32:18


Statistics


Total abstract view - 949
Downloads (from 2020-06-17) - PDF - 529

Indicators



Refbacks

  • There are currently no refbacks.


Copyright (c) 2010 Leopold Koczan, Katarzyna Trąbka-Więcław