Subclasses of typically real functions determined by some modular inequalities
Abstract
We investigate classes in which the subordination is replaced with the majorization and the function g is typically real but does not necessarily univalent, i.e. classes {f∈T:f≪Mg in Δ}, where M>1, g∈T, which we denote by TM,g. Furthermore, we broaden the class TM,g for the case M∈(0,1) in the following way:
TM,g={f∈T:|f(z)|≥M|g(z)| for z∈Δ}, g∈T.
Keywords
Full Text:
PDFReferences
Duren, P. L., Univalent Functions, Springer-Verlag, New York, 1983.
Goodman, A. W., Univalent Functions, Mariner Publ. Co., Tampa, 1983.
Koczan, L., On classes generated by bounded functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 52 (2) (1998), 95-101.
Koczan, L., Szapiel, W., Extremal problems in some classes of measures (IV). Typically real functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 43 (1989), 55-68.
Koczan, L., Zaprawa, P., On typically real functions with n-fold symmetry, Ann. Univ. Mariae Curie-Skłodowska Sect. A 52 (2) (1998), 103-112.
Rogosinski, W. W., Uber positive harmonische Entwicklugen und tipisch-reelle Potenzreichen, Math. Z. 35 (1932), 93–121 (German).
DOI: http://dx.doi.org/10.2478/v10062-010-0006-x
Date of publication: 2016-07-29 22:06:17
Date of submission: 2016-07-29 21:32:18
Statistics
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2010 Leopold Koczan, Katarzyna Trąbka-Więcław