Harmonic mappings in the exterior of the unit disk
Abstract
\(\sum_{n=1}^{\infty}n^{p}(|a_{n}|+|b_{n}|)\leq 1\). We are interested in finding radius of univalence and convexity for such class and we find extremal functions. Convolution, convex combination, and explicit quasiconformal extension for this class are also determined.
Keywords
Full Text:
PDFReferences
Hengartner W., Schober G., Univalent harmonic functions, Trans. Amer. Math. Soc. 299 (1987), 1-31.
Jahangiri, Jay M., Harmonic meromorphic starlike functions, Bull. Korean Math. Soc. 37 (2000), No. 2, 291-301.
Jahangiri, Jay M., Silverman H., Meromorphic univalent harmonic functions with
negative coefficients, Bull. Korean Math. Soc. 36 (1999), No. 4, 763-770.
Lehto O., Virtanen K. I., Quasiconformal Mappings in the Plane, Springer-Verlag, Berlin-Heidelberg-New York, Second Edition, 1973.
Pommerenke Ch., Univalent Functions, Vandenhoeck & Ruprecht in Gottingen, 1975.
Sheil-Small T., Complex Polynomials, Cambridge University Press, 2002.
DOI: http://dx.doi.org/10.2478/v10062-010-0005-y
Date of publication: 2016-07-29 22:06:16
Date of submission: 2016-07-29 21:18:18
Statistics
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2010 Magdalena Gregorczyk, Jarosław Widomski